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a  b  s  t  r  a  c  t

Since  the  factors  contributing  to  crash  frequency  and  severity  usually  differ, an integrated  model  under
the multinomial  generalized  Poisson  (MGP)  architecture  is proposed  to analyze  simultaneously  crash
frequency  and  severity—making  estimation  results  increasingly  efficient  and  useful.  Considering  the
eywords:
rash frequency
rash severity
ultinomial-generalized Poisson

substitution  pattern  among  severity  levels  and  the  shared  error  structure,  four  models  are  proposed
and  compared—the  MGP  model  with  or without  error  components  (EMGP  and  MGP models,  respec-
tively)  and  two nested  generalized  Poisson  models  (NGP  model).  A  case  study  based  on  accident  data  for
Taiwan’s  No.  1 Freeway  is  conducted.  The  results  show  that  the EMGP  model  has  the  best  goodness-of-fit
and  prediction  accuracy  indices.  Additionally,  estimation  results  show  that factors  contributing  to  crash

iffer m
rror components frequency  and  severity  d

. Introduction

To improve traffic safety, numerous statistical models have been
eveloped that identify factors contributing to crash frequency
nd severity. Most identify risk factors for either crash frequency
r severity independently. When modeling crash frequency (the
umber of accidents on roadway segments or at intersections over

 specified period), a considerable number of studies have used
arious methodological approaches. Due to the discrete and non-
egative integer character of accident counts, count-data models
uch as the Poisson model (e.g., Jones et al., 1991; Miaou, 1994;
hankar et al., 1997), negative binomial model (e.g., Hadi et al.,
995; Shankar et al., 1995; Poch and Mannering, 1996; Milton
nd Mannering, 1998; Lord, 2006; Malyshkina and Mannering,
010), Poisson lognormal model (e.g., Miaou et al., 2005; Lord and
iranda-Moreno, 2008), Gamma  model (e.g., Oh et al., 2006), gen-

ralized Poisson model (e.g., Dissanayake et al., 2009; Famoye et al.,
004) as well as zero-inflated modeling and other flexible modeling
echniques (e.g., Abdel-Aty and Radwan, 2000; Wang and Abdel-
ty, 2008; Park and Lord, 2009; Anastasopoulos and Mannering,
009; see Lord and Mannering, 2010 for elaborate and complete
eviews) have been applied to model crash counts.

Crash frequencies are commonly collected by severity on
elatively homogenous roadway segments, supporting the devel-

pment of crash count models. Thus, crash data are typically
lassified according to severity (e.g., property damage only,
njury, and fatality) or collision type (e.g., rear-end, head-on,

∗ Corresponding author. Tel.: +886 2 23494940; fax: +886 2 23494953.
E-mail address: ycchiou@mail.nctu.edu.tw (Y.-C. Chiou).
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arkedly.  Safety  improvement  strategies  are  proposed  accordingly.
© 2012 Elsevier Ltd. All rights reserved.

sideswipe, and right angle). With this data segmentation, sepa-
rate severity–frequency models are developed for each accident
severity level. In this way, a series of negative binomial accident
frequency models were developed for each crash severity level to
predict the number of accidents at each severity level on roadway
segments. Unfortunately, such an approach can generate a statis-
tical problem in that interdependence due to latent factors likely
exists across crash rates at different severity levels for a specific
roadway segment (Ma et al., 2008). For example, an increase in
number of accidents that are classified as having a certain severity
level is also associated with changes in the number of accidents
that are classified with other severity levels, setting up a correla-
tion among various injury-outcome crash frequency models (Lord
and Mannering, 2010).

Considerable research effort has focused on modeling accident
severity from an individual perspective using such methodolog-
ical approaches as logistic regression (e.g., Lui et al., 1988; Yau,
2004), bivariate models (e.g., Saccomanno et al., 1996; Yamamoto
and Shankar, 2004), the multinomial and nested logit structures
to evaluate accident-injury severities (e.g., Shankar et al., 1996;
Chang and Mannering, 1999; Carson and Mannering, 2001; Lee
and Mannering, 2002; Ulfarsson and Mannering, 2004; Khorashadi
et al., 2005), and the discrete ordered probit model (e.g., O’Donnell
and Connor, 1996; Duncan et al., 1998; Renski et al., 1999;
Kockelman and Kweon, 2002; Khattak et al., 2002; Kweon and
Kockelman, 2003; Abdel-Aty, 2003). For more details on accident
severity models may  refer to Savolainen et al. (2011).
Although these models have been applied by a number of
researchers with a considerable success, Milton et al. (2008) indi-
cated that these studies relied heavily on detailed data in individual
accident reports and they have been proved to be difficult to use

dx.doi.org/10.1016/j.aap.2012.03.030
http://www.sciencedirect.com/science/journal/00014575
http://www.elsevier.com/locate/aap
mailto:ycchiou@mail.nctu.edu.tw
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n safety programming because a large number of event-specific
xplanatory variables need to be estimated to produce useable
everity forecasts. Moreover, significant contributory factors in
he model are usually not closely related to traffic manage-

ent strategies, roadway geometrics, and weather-related factors;
herefore, the corresponding countermeasures are difficult to pro-
ose accordingly. Furthermore, as different data scales are used by
requency models and the severity model, integration is extremely
ifficult.

Obviously, crash frequency and severity are two key indices
hat measure risk for a roadway segment. Either one only gener-
tes partial insights for crash risk. Increased scope and in-depth
nsights cannot be obtained without considering both indices
ogether. Thus, two possible integrated modeling approaches were
ttempted. The first approach uses a conventional frequency
odel to predict total number of crashes and a severity model,

uch as the multinomial logit model, nested logit model, ordered
robit model, or mixed logit model, to predict aggregate sever-

ty probability (e.g., Yamamoto et al., 2008; Kim et al., 2008;
ilton et al., 2008). However, the assumption that crash fre-

uency and severity are mutually independent still exists. The
econd approach applies multivariate regression models to pre-
ict crash frequencies for different severity levels. Multivariate
egression models simultaneously develop crash frequency mod-
ls by severity (Bijleveld, 2005; Ma  and Kockelman, 2006; Song
t al., 2006; Park and Lord, 2007; Ma  et al., 2008; Aguero-Valverde
nd Jovanis, 2009; El-Basyouny and Sayed, 2009; Ye et al., 2009)
o overcome the correlation problem among crash frequencies at
ifferent severity levels. However, this approach requires a com-
lex estimation procedure combined with a subjectively preset
orrelation matrix of severity levels, making field validation very
ifficult.

Another drawback of the multivariate modeling approach is its
nability to grasp associated changes related to severity and fre-
uency variables only. If one fails to observe separately the effects of
actors contributing to crash frequency and severity, the multivari-
te model may  be partly limited for practical program evaluation.
n appealing idea is to view risk factors according to their accident
escriptive components (i.e., severity and frequency) individually
nder an integrated framework. However, expected difficulties
rise when analyzing subjects and procedures. Consequently, using

 conceptual model combining both crash frequency and severity
s worthwhile.

Thus, this paper aims to develop a novel multinomial gen-
ralized Poisson (MGP) model to simultaneously model crash
requency (count data) and severity (ratio data). Furthermore, the
roposed model considers the substitution pattern among sever-

ty levels and constructs a shared error structure as a correlation
atrix through error components specified under an integrated
odel framework. A case study of Taiwan freeway crash data is

tilized to assess the applicability of the proposed model. The
emainder of this paper is organized as follows. Section 2 presents
he proposed MGP  model. Section 3 addresses data collection and
escriptive statistics of the accident dataset for Taiwan’s No. 1
reeway. Section 4 presents model estimation results and compar-
sons. Section 5 discusses safety implications based on estimation
esults. Section 6 gives concluding remarks and suggestions to fur-
her research.

. The proposed models
The MGP  model is an extension of the multinomial-Poisson (MP)
egression model (Terza and Wilson, 1990). In the context of crash
requency and severity modeling, we assume that accidents can be
lassified into a finite number of clusters according to severity levels
nd Prevention 50 (2013) 73– 82

and that the frequency of each severity level follows a conditional
multinomial distribution, which is expressed as follows:

f

⎛
⎝Y

∣∣∣∣∣∣
J∑

j=1

yj = N

⎞
⎠ =

N!
∏J

j=1�
yj

j∏J
j=1yj!

(1)

where f (·) is the conditional probability of Y; Y = [y1, y2,. . .yj,. . .,yJ]

and
∑J

j=1yj = N; yj = 0, 1, 2,. . .,  ∞,  for j = 1, 2,. . .,  J, is a random vector
representing the observed crash counts of segment t within a given
period (e.g., 1 year) at severity level j; J is the total number of sever-
ity levels determined in advance; �1, �2,. . .,  �J are multinomial
probabilities of severity levels 1, 2, . . .,  J, respectively; �j = yj/N and
�1 + �2 + . . . + �J = 1; and N is the total number of accidents across
different severity levels of segment m within a given period. Thus,
the conditional multinomial distribution can be used to determine
crash frequencies at various severity levels, i.e., y1, y2,. . .,  yJ, given
total number of accidents, N. Furthermore, the joint probability of
these crash frequencies h(y1, y2,. . .,  yJ) can be expressed as the
product of conditional probability and marginal probability:

h(y1, y2, . . . , yJ) = f

⎛
⎝Y

∣∣∣∣∣∣
J∑

j=1

yj = N

⎞
⎠ · g

⎛
⎝ J∑

j=1

yj = N

⎞
⎠ (2)

where g(·) = g
(∑J

j=1yj = N
)

is the marginal probability of crash

counts. Terza and Wilson (1990) assumed that the marginal (uncon-
ditional) probability has the following Poisson distribution:

g(·) = �N exp(−�)
N!

(3)

where g(·) is the probability that N accidents occurred, and � is the
expected number of accidents. For estimation purposes, � is usually
specified as

� = exp(ˇ′X) (4)

where X and ˇ′ are vectors of explanatory variables and estimated
parameters, respectively. The formulation of the multinomial Pois-
son (MP) model is then derived by substituting Eqs. (1) and (3) into
Eq. (2).

The Poisson model assumes that variance equals mean. If
observed data exhibit over-dispersion (under-dispersion), this
assumption does not hold. This leads to estimation inefficiency
because inference was invalidated by unreliable estimated stan-
dard errors. We  can relax this assumption using the generalized
Poisson (GP) model (Famoye et al., 2004; Dissanayake et al., 2009).
The probability function of total accidents at any segment, N, can
be written as Eq. (5):

g(·) =
(

�

1 + ��

)N (1 + �N)N−1

N!
exp

(−�(1 + �N)
1 + ��

)
(5)

where � is the dispersion parameter. If � > 0, the GP model indi-
cates the over-dispersion feature in the empirical data. If � = 0, the
probability function degenerated to the Poisson model. In contrast,
if � < 0, the GP model denotes the under-dispersion feature in the
empirical data. All other involved arguments associated with Eq.
(5) are as defined previously. The mean and variance of N are rep-
resented by Eqs. (6) and (7),  respectively:

E(N|X) = � (6)

V(N|X) = �(1 + ��)2 (7)
According to Eq. (6),  the probability function in Eq. (5) degener-
ates into the original Poisson model as � = 0. Hence, the GP model is
a generalized Poisson model. Interested readers can refer to Famoye
(1993) for detailed proofs. In accordance with the derivation by
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erza and Wilson (1990),  formulation of the MGP  model can be
erived by substituting Eqs. (1) and (5) into Eq. (2) as follows:

(y1, y2, . . . yJ) =
∏J

j=1�
yj

j∏J
j=1yj!

⎡
⎣1 + �

⎛
⎝ J∑

j=1

yj

⎞
⎠

⎤
⎦

∑J

j=1
yj−1

×
(

�

1 + ��

)∑J

j=1
yj

exp

⎡
⎣−�

(
1 + �

∑J
j=1yj

)
1 + ��

⎤
⎦ (8)

here � =
∑J

j=1�j is expected total accidents. �j = ��j is expected
rash count at the jth severity level. �j is the probability of severity
evel j.

We  assume probability can be determined by the multinomial
ogit (MNL) model:

i = exp(si)∑j
j=1exp(sj)

(9)

here Sj = � ′Z + vj is a linearly additive function for measuring risk of
everity level j; Z is a vector of non-random explanatory variables,
uch as roadway geometrics, traffic factors, land use, and weather
ondition; � is a vector of unknown parameters; vj is a random
rror term, which we assume is a Gumbel distribution across all
bservations (McFadden, 1981).

Eq. (8) is a straightforward equation for integrating the two
escriptive model components (i.e., the frequency and severity
odel), and the probability of accident frequency at road segment
yj is the weighted sum of crash counts of all severity levels on the

ame segment over a unit time span. However, an important prop-
rty of the MNL  model is its independence from irrelevant alternate
everity outcomes. This independence may  be a major concern if
ome crash-injury severity levels share unobserved effects. To over-
ome partly such a restriction, a nested logit (NL) model can group
ome possible levels that share unobserved effects into conditional
ests (Koppelman and Wen, 1998). The NL model partitions a sever-

ty outcome set into several nests, each containing correlated levels.
he NL model can be expressed as

i =
exp(si/�k)

(∑
j ∈ Bk

exp(sj/�k)
)�k−1

∑L
l=1

(∑
j ∈ Bl

exp(sj/�l)
)�l

(10)

here Bk represents nest k, which is a subset containing correlated
utcomes with respect to crash severity; (1 − �k) is a correlation
easure of unobserved factors within nest k; and �k is in the range

f 0–1. As the value of �k decreases, the strength of the correlation
ithin the nest increases. Notably, �k is also called the inclusive

alue representing the degree of correlation among alternate sever-
ty levels within nest k. If �k = 1, the NL model becomes an MNL

odel. If �k is equal to zero, perfect correlation is implied among
he severity levels in the nest, indicating that the process by which
rashes result in particular severity levels is deterministic.

Since related studies (Shankar et al., 1996; Lee and Mannering,
002; Savolainen and Mannering, 2007; Savolainen et al., 2011)
ave revealed that two nearer accident severity levels such as
property damage only” and “possible injury”, or “disabling injury”
nd “fatality”, may  tend to have strong correlations due to ordinal
ature of crash severity data. Such problem violated MNL  model’s

ndependence of irrelevant alternatives (IIA) property resulted in

iased parameter estimates. In that case, an NL model is preferred.
hen the nested structure exists in �j, the MGP  model evolves

nto a flexible nested generalized Poisson (NGP) model, solving the
roblem of substitution patterns among severity levels.
nd Prevention 50 (2013) 73– 82 75

Based on the work by Ye et al. (2009), specifying a partial or full
error components structure may  be an innovative choice compar-
ing to the formulation of correlation matrix. The error components
structure is considered in the expected frequency � and severity
function of three severity levels sj (j = 1, 2, 3), which include fatality
(s1), injury (s2), and property damage only (s3). In this study, four
random coefficients (�i) are specified to the frequency function �
and severity function sj (j = 1, 2, 3) to model the following partial
covariance structure:

� = exp(ˇ′X + ε + �1u) (11)

s1 = � ′Z + v1 + �2u (12)

s2 = � ′Z + v2 + �3u (13)

s3 = � ′Z + v3 + �4u (14)

where u is an independent random variable, which is normally
distributed; and �j are their corresponding coefficients to be esti-
mated. To simplify the number of estimated parameters in the
error components structure, j − 1 standard deviation parameters
are identified by subjectively setting one parameter equals to
1. We  assume ε and vj have Generalized Poisson and Gumbel
distributions, respectively. Thus, the cumulative probability func-
tions conditional on this random variable h(y1, y2, . . . , yJ |u ) are
expressed as

h(y1, y2, . . . , yJ |u) =
∏J

j=1�j(Z, u)yj∏J
j=1yj!

⎡
⎣1 + �

⎛
⎝ J∑

j=1

yj

⎞
⎠

⎤
⎦

∑J

j=1
yj−1

×
(

�(X, u)
1 + ��(X, u)

)∑J

j=1
yj

exp

⎡
⎣−�(X, u)

(
1 + �

∑J
j=1yj

)
1 + ��(X, u)

⎤
⎦ (15)

To distinguish it from Eq. (8), Eq. (15) is called the multino-
mial generalized Poisson model with error components (EMGP).
The unconditional cumulative probability function of the random
multinomial can then be derived by integrating the conditional
cumulative probability function over the distributional domain of
the specified random variable:

H(y1, y2, . . . , yJ) =
∫

h(y1, y2, . . . , yJ)r(u)du (16)

where r(u) is the probability density function of u. As this integral
does not have a neat closed-form expression, the unconditional
probability function may  be approximated by the following sim-
ulated probability function Hs(y1, y2, . . . , yJ):

Hs(y1, y2, . . . , yJ) = 1
R

R∑
r=1

h(y1, y2, . . . , yJ |ur) (17)

The estimation procedure of the EMGP model typically fol-
lows the simulation-based maximum likelihood method, using
Halton draws, which have a more efficient distribution of draws
for numerical integration than purely random draws (Bhat, 2003;
Train, 2003). In many empirical settings, the number of draws for
simulation is determined according to the number of estimated
variables, the complexity of model specification, and sample sizes.
For accuracy purposes, the estimation results of proposed models

are presented for 200 Halton draws. The estimated parameters do
not vary markedly once the number of replications exceeds 150 in
the empirical case (see Train (2003) for further technique details
and simulation issues).
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Table  1
Descriptive statistics of 124 segments.

Variable Description Mean SE Min  Max

Crash counts
Y3 Property damage only (PDO) 70.4 63.7 3.0 284.0
Y2 Injury 4.1 3.5 0.0 17.0
Y1 Fatality 0.5 0.8 0.0 4.0
N  Total 75.1 65.4 6.0 290.0

Crash  counts per km (=crash counts/segment length)
Z3 PDO crashes per km 16.4 16.3 1.2 83.5
Z2 Injury crashes per km 0.8 0.6 0.0 2.8
Z1 Fatal crashes per km 0.1 0.2 0.0 1.5
N Total crashes per km 17.3 16.6 2.2 85.3

Freeway geometrics
GL Segment length (km) 5.9 4.4 0.8 22.4
GN  Number of lanes 2.6 0.6 2.0 4.0
GC  Curvature (‰) 0.7 1.1 0.0 7.1
GU Maximum upward slope (%) 1.3 2.1 0.0 13.7
GD  Maximum downward slope (%) 1.2 1.4 0.0 5.2
GO  Clothoid curve value (thousand degrees) 0.9 0.9 0.0 3.2
GS Speed limit (GS = 1 for 110 km,  GS = 0 else) 0.5 0.5 – –

Rainfall
RF  Annual rainfall (hundred millimeters) 21.1 7.5 11.1 38.9

Average daily traffic
TTV Total traffic (thousand passenger car units) 69.2 28.7 10.8 157.0
PSV Percentage of small vehicles (%) 51.4 10.1 31.9 70.5
PLV  Percentage of large vehicles (%) 23.8 4.2 15.5 34.2
PKV Percentage of trailer-tractors (%) 24.8 8.7 9.2 41.0

Freeway facilities (dummy variables, yes = 1; no = 0)
PT Presence of toll station 0.2 0.4 – –
PR  Presence of rest area 0.1 0.3 – –
PS Presence of posted speed camera 0.3 0.5 – –

3

c
(
d
(
t
i
a
c

a
s
n
p
t
b
fi
i
d
v
u
t
c
T
a
t
i

s
(

Neighborhood (dummy variables, yes = 1; no = 0)
AM Adjacent to metropolitan 

AP  Adjacent to airport, seaport or industry area 

. Data

The accident dataset for Taiwan’s No. 1 Freeway in 2005 was
ollected. Data were from three sources: (1) the accident database;
2) geometric documents; and (3) the traffic database. The acci-
ent database, maintained by the National Highway Police Bureau
NHPB), contains accident information, such as crash severity, loca-
ion and time of an accident, and number and types of vehicles
nvolved. Geometric data were digitalized according to the official
s-constructed freeway drawings, including number of lanes, slope,
urvature degree, and clothoid curve value.

Taiwan’s No. 1 Freeway runs north–south, is 373.3 km long,
nd has 63 interchanges. To facilitate model estimation, a study
egment is formed by two adjacent interchanges. By considering
orth- and south-bound directions separately, 124 analytical sam-
les are obtained. Since the lengths of segments remarkably differ,
o better reflect the crash risk, the dependent variable is presented
y the crash counts divided by the segment length (GL). The traf-
c database, maintained by the National Freeway Bureau (NFB),

ncludes traffic volume, speed and occupancy of three vehicle types
etected by loop detectors on a basic segment or on-ramp (small
ehicles, large vehicles and trailer-tractors). Considering the val-
es of passenger car equivalent (pce) of three types of vehicles,
he total traffic at each road segment are measured in passenger
ar units. Table 1 gives descriptive statistics for these segments.
he mean and standard deviation of accidents differ in either total
ccident cases or those cases at various severity levels, suggesting
hat the potential problem of over- or under-dispersion may  cause

nefficient model estimation and bias.

Table 2 presents the cross-tabulation of crash frequency and
everity. In total, 67 (1%) fatal accidents occurred in 2005, and 8735
94%) accidents were property-damage-only accidents. Moreover,
0.5 0.5 – –
0.2 0.4 – –

all 124 segments had at least one PDO accident, while only 47
segments (38%) had at least one fatal accident.

4. Results

According to model formulation in Section 2, four possible mod-
els can be estimated: the MGP  model with or without considering
error components among severity levels, namely, the MGP  and
EMGP models. Two NGP models considering different nested struc-
ture among severity levels, namely, the NGP1 (nesting two severe
severity levels: fatality and injury) and NGP2 (nesting two  minor
severity levels: PDO and injury) are tested. Unfortunately, accord-
ing to the estimated inclusive values for two NGP models, we could
not find any possible correlated nesting between two  severe acci-
dent levels (i.e., injury and fatality with t-ratio of �k = 0.634) nor
two non-severe accident levels (i.e., injury and PDO with t-ratio of
�k = 0.299).

Tables 3 and 4 compare performance indices and prediction
accuracy among models, respectively. In Table 3, the goodness-
of-fit indices, including number of significant variables, means
and standard deviations of predicted accident counts, � value,
log-likelihood values, adjusted rho-square, and the Bayesian infor-
mation criterion (BIC) are compared. The estimation results show
that the model with the error component (i.e., the EMGP  model)
perform better than those models that do not consider error com-
ponent (i.e., the MGP  and NGP models), and two nested models do
not perform better than the multinomial models (i.e., the MGP  and
EMGP models) in terms of BIC values. Additionally, according to

the estimated dispersion parameter (�) of EMGP, which is decreas-
ing from 0.082 to 0.062, the associated asymptotically t statistics
are significantly different from zero as well, indicating that empir-
ical data have a slightly over-dispersion problem. In addition,
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Table  2
Cross-tabulation of crash frequency and severity.

Severity level Total crash

PDO Injury Fatality

Number of crashes
Crash counts 8735 (94%) 509 (5%) 67 (1%) 9311 (100%)
Crash  counts per km 2038 (95%) 96 (4%) 13 (1%) 2147 (100%)

Number of segments
With at least one such crash 124 (100%) 110 (89%) 47 (38%)
Without any such crash 0 (0%) 14 (11%) 77 (62%)
Total  124 (100%) 124 (100%) 124 (100%)

Table 3
Comparisons of goodness-of-fit among the models.

Models Goodness of fit

Ka Crash (std.)b �c LL(ˇ) Adj-
2 d BICe

Multinomial generalized Poisson (MGP) 26 18.33 (14.53) 0.082 −1108.130 0.147 2341.588
Nested generalized Poisson (NGP1) 27 18.33 (14.53) 0.082 −1108.095 0.147 2346.339
Nested generalized Poisson (NGP2) 27 18.33 (14.52) 0.082 −1106.496 0.148 2343.139
Multinomial generalized Poisson with error components (EMGP) 29 16.39 (12.76) 0.062 −1037.935 0.201 2215.659

a K: number of significant variables under  ̨ = 0.1 level.
b Crash: mean predicted crash counts.
c �: dispersion parameter.
d Adj-
2: rho-square adjusted in compassion with Null model (with three constants for crash severity and a single constant for generalized Poisson model).
e BIC = −2 × LL(ˇ) + K × Ln N.

Table 4
Comparisons of prediction accuracy among the models.

Severity Accuracy Model Actual

MGP  NGP1 NGP2 EMGP

Fatality
Crash (%) 0.12 (0.82%) 0.12 (0.83%) 0.12 (0.82%) 0.10 (0.76%) 0.10 (0.82%)
MAPE  0.319 0.321 0.333 0.307 –
RMSE 0.200 0.200 0.205 0.198 –

Injury
Crash (%) 1.06 (7.48%) 1.06 (7.48%) 1.06 (7.49%) 0.90 (7.38%) 0.78 (7.48%)
MAPE 0.816 0.816 0.814 0.695 –
RMSE  0.746 0.746 0.748 0.654 –

Crash (%) 17.15 (91.70%) 17.15 (91.70%) 17.14 (91.69%) 15.39 (91.86%) 16.44 (91.70%)

N n in p
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e
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5

e

PDO MAPE 0.698 0.698 

RMSE  13.451 13.450 

ote: The percentages of the predicted crash counts at three severity levels are give

pecifying the error component can mitigate variation in �. Hence,
he estimated � of the EMGP model is lower than that of the MGP
nd two NGP models, but the inclusion of error components could
ot perfectly resolve the over-dispersion problem.

Table 4 compares the prediction accuracy of the four models
y mean absolute percentage error (MAPE) and root-mean-square
rror (RMSE). The EMGP model performs best in comparison with
ther models, although all four models achieve relatively high pre-
iction accuracy (Table 4).

For simplicity, only estimated parameters of two  extreme mod-
ls are reported and compared in Tables 5 and 6, respectively.
his study sets  ̨ = 0.10 as the variable selection criterion to avoid
n excessive number of non-stable and insignificant variables
dversely affecting efficiency in calculating numerical values and
onvergence results. Therefore, the potential variables, annual rain-
all (RF)  and percentage of trailer-tractors (PKV), are removed due
o their insignificant effects. This study also tests all possible rela-
ionships among variables, including linear, squared, exponential,
nd natural log relationships.
. Discussions

According to estimation results of the MGP  and EMGP mod-
ls (Tables 5 and 6), all significant variables are almost the same
0.698 0.617 –
13.447 13.111 –

arentheses.

with a relatively similar magnitudes; however, variables of the
EMGP model typically have more significant effects in terms of the
t statistic, again demonstrating the superior performance of the
EMGP model. Thus, only estimation results of the EMGP model are
discussed below.

Only two variables of maximum downward slope (GD) and adja-
cent to metropolitan (AM) have significant effects on both crash
frequency and severity, while other variables of crash frequency
and severity model components are all different, suggesting that
the factors contributing to crash frequency and severity differ.

First, in terms of geometric variables, maximum downward
slope (GD) are significantly tested in both frequency and sever-
ity model components, while number of lanes (GN), exponential of
maximum upward slope (GU), clothoid curve value (GO), and speed
limit (GS) only significantly contribute to crash severity and curva-
ture (GC) only affect crash frequency. The GN reduces PDO crashes
but results into more severe crashes, indicating that more number
of lanes may  cause severe accidents. The exp (GU) has a negative
coefficient on fatal crashes because drivers tend to drive at a lower
speed on an upward-sloped segment and then largely mitigate

the severity of crashes. Contrarily, both GD and GO have positive
coefficients associated with the fatal and injury crashes, implying
the crashes at high downward-sloped segments and curved transi-
tion curves are more severe. The GS has a positive effect on injury
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Table  5
Model results of the multinomial generalized Poisson (MGP).

Variable Severity level

Fatality Injury PDO

Para. t-Stat Para. t-Stat Para. t-Stat

Logit crash severity model component
Constant – 1.407 2.147 5.330 8.113

Freeway geometrics
GN Number of lanes – – −0.259 −4.053
Exp(GU) Exponential of maximum upward slope −0.466 −2.097 – –
GD  Maximum downward slope 0.306 4.034 0.183 6.861 –
GO  Clothoid parameter 0.250 2.341 0.177 4.158 –
GS  Speed limit – 0.280 3.017 –

Traffic  characteristics
TTV Total traffic −0.709 −2.501 −0.424 −4.169 –
PLV Percentage of large vehicles 4.604 5.755 4.604 5.755 –

Neighborhood
AM  Adjacent to metropolitan – – 0.271 3.276

Freeway facilities
PS Presence of posted speed camera – −0.685 −2.880 −0.489 −2.175
PR  Presence of rest area −1.361 −2.990 −0.321 −2.546 –

Variable Para. t-Stat

Generalized Poisson crash frequency model component (for all severity levels)
Constant 1.237 3.465
� 0.082 8.407

Freeway geometrics
GC Curvature 0.151 2.238
GD  Maximum downward slope −0.555 −4.099
GD2 Square of maximum downward slope 0.054 1.876

Traffic characteristics
PSV Percentage of small vehicles 3.050 4.291

Neighborhood
AM  Adjacent to metropolitan 0.504 3.442
AP  Adjacent to airport, seaport or industry area 0.498 2.565
PT  Presence of toll station −0.419 −2.568

Goodness of fit measures

Log-likelihood (Null model) −1298.488
Log-likelihood (Full model) −1108.130
Adj-
2 0.147

N le con
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Samples 124

ote: Null model: with three constants for crash severity (market share) and a sing

rashes because drivers tend to increase their speed at the seg-
ents with a higher speed limit, increasing accident severity once

he accident occurred.
The GC affects crash frequency, suggesting that a high freeway

urvature coefficient increases accident frequency. The GD has a
olynomial effect (a negative linear effect and a positive squared
ffect) on accident frequency and a linear positive effect on acci-
ent severity (only for fatality and injury). By taking a derivative
erm of a variable, a 1◦ increase in GD has a marginal effect of
ncreasing crash frequency by −0.448 + 0.072 × GD, suggesting that

 slight downward slope may  reduce accident frequency. How-
ver, once a slope’s grade exceeds 6.22%, crash frequency increases
apidly, suggesting that an abrupt downward slope significantly
ontributes to a reduced number of PDO crashes and, in turn,
ncreases accident severity. As slope increases, driver awareness
ncreases, reducing accident frequency for gentle slopes. However,

hen a slope exceeds a threshold (6.22% in this study), stopping
ecomes increasingly difficult, resulting in severer accident fre-

uency.

In terms of traffic characteristics, the TTV has negative effects on
wo severe severity levels, implying the crash severity can be low-
red at the segments with high traffic flow because of lower travel
stant for generalized Poisson model.

speed caused by traffic congestion. However, the PLV has relatively
high effects on two severe crashes, suggesting the higher percent-
age of large vehicles, the more severe of the crashes. Additionally,
the PSV has a positive effect on crash frequency. As the percentage
of small vehicles increases, the percentage of large vehicles and
tractor-trailers is then decreased and drivers’ awareness may  be
reduced and travel speed is increased, resulting into a high crash
potential condition. This result is similar to the findings of Hiselius
(2004) in Sweden.

The variable of adjacent to metropolitan (AM) increases crash
frequency and severity for PDO only, suggesting that a high number
of accidents occur on segments close to urban areas and, fortu-
nately, these accidents have low severity. This is because traffic
volume on segments neighboring urban arterials is usually heavy
and vehicles travel at a relatively slow speed, increasing the poten-
tial for PDO accidents. The variable of adjacent to airport, seaport or
industry park (AP) also increases crash frequency. It is because there
are more trucks traveling at the segments near airports, seaports

and industry parks, making crash potential high.

In terms of freeway facilities, posted speed cameras (PS)
decrease the potential of non-severe crashes (injury and PDO) given
the number of accidents unchanged, suggesting that although a PS
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Table  6
Model results of multinomial generalized Poisson with error components (EMGP).

Severity level

Fatality Injury PDO

Para. t-Stat Para. t-Stat Para. t-Stat

Logit crash severity model component
Constant – 2.000 65.822 5.587 85.503

Freeway geometrics
GN Number of lanes – – −0.152 −6.421
exp(GU) Exponential of maximum upward slope −0.496 −15.989 – –
GD  Maximum downward slope 0.342 11.068 0.185 6.316 –
GO  Clothoid parameter 0.231 7.459 0.158 5.248 –
GS  Speed limit – 0.369 11.954 –

Traffic  characteristics
TTV Total traffic −0.724 −23.387 −0.738 −25.559 –
PLV Percentage of large vehicles 6.488 89.411 6.488 89.411 –

Neighborhood
AM  Adjacent to metropolitan – – 0.200 6.447

Freeway facilities
PS Presence of posted speed camera – −0.711 −22.936 −0.483 −15.604
PR  Presence of rest area −1.382 −44.519 −0.579 −18.647 –

Error  component in crash severity model
�S 1.000 – 0.262 8.459 0.824 26.527

Para. t-Stat

Generalized Poisson crash frequency model component (for all severity levels)
Constant 0.982 31.684
�  0.062 6.390

Freeway geometrics
GC Curvature 0.152 4.925
GD Maximum downward slope −0.448 −14.797
GD2 Square of maximum downward slope 0.036 3.352

Traffic characteristics
PSV Percentage of small vehicles 3.260 95.035

Neighborhood
AM  Adjacent to metropolitan 0.428 13.763
AP  Adjacent to airport, seaport or industry area 0.534 17.217

Freeway  facilities
PT Presence of toll station −0.387 −12.458

Error  component in crash frequency model
�GPM 0.246 7.923

Goodness of fit measures

Log-likelihood (Null model) −1298.488
Log-likelihood (Full model) −1108.130

2
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 0.201
Samples 124

ote: Null model: with three constants for crash severity (market share) and a sing

oes not reduce crash frequency, it may  increase crash severity. The
ause and effect relationship may  be reversed. That is, posted speed
ameras are usually installed at the segments with high potential
or fatal crashes. If a segment has a rest area (PR), it has an effect
n contrast to that of PS,  because merging and diverging maneu-
ers on these segments slow traffic down and reduce potential for
evere accidents. Meanwhile, if the segment has a toll station, the
requency of accidents is reduced. Drivers would be more careful
hile traversing toll stations at a lower speed due to more compli-

ated driving maneuvers required than traveling at other segments,
o the crash potential is mitigated.

The estimated parameters of the explanatory variables in pro-
osed model results do not directly show the magnitude of the

ffects on the expected frequency for each level and all severi-
ies. Moreover, some explanatory variables (i.e., AM and GD) do not
arry the same effects and implications on crash frequency model
nd severity model components, respectively. To better understand
stant for generalized Poisson model.

the impact of contributory factors, Table 7 further reports the elas-
ticity effects of significant variables on individual severity levels
(i.e., PDO, injury and fatality) and on aggregate level. Since calcula-
tion formulas and implications of dummy  variables and continuous
variables are different, they cannot be compared and should be
described respectively.

Aggregate level elasticity values for continuous variables are
computed based on the estimated EMGP model by Eq. (18):

�tjk =
(

∂E(yjt)
∂xjtk

)  (
xjtk

E(yjt)

)
(18)

where E(yjt) = �jt(xjtk)�jt(xjtk); E(yjt) is expected frequency of sever-

ity level j at segment t; and xjtk is the contributory variable k of acci-
dent frequency at severity level j on segment t. As xjtk has changed,
the accident frequency and severity are adversely affected,
such that elasticity represents the effect of the corresponding
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Table  7
Aggregate elasticity estimates of the EMGP model.

Variable Severity level Frequency

Fatality Injury PDO

Continuous variable
Freeway geometrics
GN Number of lanes 0.383 0.377 −0.024 0.000
GC Curvature 0.243 0.142 0.147 0.147
GU Maximum upward slope −0.098 0.001 0.001 0.000
GD  Maximum downward slope 0.226 −0.081 −0.244 −0.232
GO  Clothoid curve value 0.208 0.132 −0.009 0.000

Traffic  characteristics
TTV Total traffic −0.659 −0.671 0.043 0.000
PSV Percentage of small vehicles 1.820 1.757 1.887 1.880
PLV Percentage of large vehicles 1.422 1.440 −0.093 0.000

Dummy  variable
Freeway geometrics
GS Speed limit −0.623 10.790 −0.626 0.000

Neighborhood
AM  Adjacent to metropolitan −0.313 3.877 −0.478 −0.238
AP  Adjacent to airport, seaport or industry area 39.476 46.454 33.394 34.147

Freeway facilities
2
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PS Presence of posted speed camera 

PT Presence of toll station 

PR  Presence of rest area 

actor on crash frequency at each severity level. Additionally, “elas-
icity effects” of dummy  variables are computed by altering the
alue of the variable to “1” for the subsample of observed segments
or which the variable takes a value of “0”, and to “0” for the sub-
ample for which the variable takes a value of “1”. We  then sum the
hifts of expected frequencies in the two subsamples after revers-
ng the sign of the shifts in the second subsample, and compute an
ffective percentage change in expected aggregate frequency. Thus,
he dummy  elasticity effect could be interpreted as the percentage
hange at the expected frequency of an injury severity level due
o change in the dummy  variable from 0 to 1 (for more details see
luru and Bhat, 2007).

Specifically, for continuous variables of PSV and PLV have an
stimated elasticity >1 for severe accident types, suggesting that
hey are key factors to more severe accidents. According to the
stimation results of the EMGP model (Table 6), an increase in PSV
ignificantly increases the number of accidents but not crash sever-
ty. By elasticity estimates, PSV was actually identified as a key
actor contributing to crash frequency with the similar marginal
ffects on each severity level. It is worth of noting that crashes at
he segments with high heavy traffic tend to be less severe.

Comparing to the high elasticity effects of traffic characteristics,
eometric variables have relatively lower effects on crash severity
nd frequency. It is because the geometric design standard for free-
ays is usually higher than surface roadways, making highly curved

nd sloped freeway segments barely existed. However, according to
he computed elasticity effects, some geometric variables still affect
rash severity and frequency. Generally, too curved and too many
anes freeway should be avoided in freeway planning and design.
t is interesting to note that the maximum downward slope have

 positive elasticity effect on fatal crashes but a negative elasticity
ffect on crash frequency, because drivers would be more carefully
hile traveling at the downward sloped segments, but once a crash

ccurs, the severity would be largely increased due to the difficulty
n braking.

The elasticity effects of dummy  variables are relatively larger

han those of continuous variables because of their different formu-
as. Therefore, it is meaningless to compare the effects of continuous
nd dummy  variables. However, among all dummy  variables, AP
as the largest positive elasticity effects on crashes at all severity
2.259 −9.784 0.430 0.000
2.654 −23.631 −23.710 −23.699
1.650 −35.320 2.456 0.000

levels. To install warning signs and to properly confine overtak-
ing behaviors at the segments near airports, seaports and industry
parks could effectively reduce crashes at all severity levels. Con-
versely, PT and PR have negative effects on severe crashes. The
presence of toll station and rest area can slow vehicle speed and
reduce the number of severe accidents. Notably, the presence of
rest area can largely reduce severe accidents but slightly increases
PDO accidents.

6. Conclusions

This study contributes to literature in several ways. First, this
study integrates an accident frequency model with a severity model
under the MGP  architecture, and uses the integrated model to ana-
lyze accident data—count data (crash frequency) and ratio data
(severity)—such that the MGP  model is more efficient in evaluat-
ing and presenting accident data. Notably, according to estimation
results, the factors contributing to accident frequency and severity
differ markedly. Generally, traffic related factors have larger effects
on crash severity and frequency than geometric factors.

Additionally, four models are developed and compared. This
study adopted the shared error term to construct common errors
and covariance structure so as to improve model explanatory capa-
bility and reliability. The estimation results show that the EMGP
model performs best, as this model specifies the error component
in the crash frequency and severity model by allowing different
errors in crash frequency and severity. Thus, the estimation results
show that the proposed covariance structure can further enhance
the model performance.

Based on the proposed framework, future studies can introduce
more flexible models in the context of frequency modeling, such
as Poisson log-normal, random-parameters and other mixed dis-
tribution count models. For modeling severity outcomes, ordered
probit, mixed logit (also called the random parameters logit model)
and more compatible generalized extreme value models (GEV fam-
ily model) like generalized nested logit (GNL) are recommended.

Additionally, there is no segment with zero crash count due to
the spatial segmentation used in this study, which might lead to
biased estimation parameters. More refined spatial segmentation
or other censored models (e.g., Tobit regression in Anastasopoulos
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t al., 2012) on accident rates can be considered. Furthermore, this
tudy uses the shared error component to handle the common
rror term and covariance structure. The covariance structure can
e derived to enhance model performance further. Additionally,

t also deserves to compare prediction performances among dif-
erent modeling frameworks in the context of crash severity and
requency, such as multivariate Poisson log-normal (MPLN) mod-
ls, which aims to simultaneously modeling crash frequencies at
ll severity levels. Last, additional explanatory variables can be uti-
ized to investigate their effects on accident frequency and severity
o generate more effective safety improvement strategies.
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