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This  paper  proposes  a two-stage  mining  framework  to explore  the key  risk  conditions  that  may  have
contributed  to  the  one-vehicle  crash  severity  in Taiwan’s  freeways.  In the  first  stage,  a genetic  mining
rule  (GMR)  model  is  developed,  using  a novel  stepwise  rule-mining  algorithm,  to  identify  the  potential
risk  conditions  that  best  elucidate  the  one-vehicle  crash  severity.  In  the  second  stage,  a  mixed  logit
model  is  estimated,  using  the  antecedent  part  of  the  mined-rules  as  explanatory  variables,  to  test  the
rash severity
enetic mining rule
ne-vehicle crashes
ixed logit model

tepwise rule-mining algorithm

significance  of  the  risk  conditions.  A total  of 5563  one-vehicle  crash  cases  (226  fatalities,  1593  injuries
and  3744  property  losses)  occurred  in  Taiwan’s  freeways  over  2003–2007  are  analyzed.  The  GMR  model
has  mined  29  rules  for use.  By incorporating  these  29  mined-rules  into  a mixed  logit  model,  we  further
identify  one  key  safe  condition  and  four  key  risk  conditions  leading  to serious  crashes  (i.e.,  fatalities  and
injuries).  Each  key  risk  condition  is  discussed  and  compared  with  its adjacent  rules.  Based  on  the  findings,
some  countermeasures  to rectify  the  freeway’s  serious  one-vehicle  crashes  are  proposed.
. Introduction

A  comprehensive understanding of the key risk conditions
hat may  have contributed to different degrees of severity in
ehicle crashes can facilitate the traffic engineers to initiate
ractical traffic safety programs. In the past, a number of works
mployed the parametric statistical methods to analyze crash
everity—for example, binary outcome models (Al-Ghamdi, 2002;
ze and Wong, 2007; Helai et al., 2008; Lee and Abdel-Aty, 2008),
rdered discrete outcome models (O’Donnell and Connor, 1996;
rinivasan, 2002; Tay and Rifaat, 2007; Rifaat and Chin, 2007; Pai
nd Saleh, 2007; Eluru et al., 2010; Zhu and Srinivasan, 2011) and
nordered multinomial discrete outcome models (Shankar et al.,
996; McFadden and Train, 2000; Milton et al., 2008; Haleem and
bdel-Aty, 2010). Among them, ordered discrete outcome models
ave two main limitations including the constraint on the variable

nfluence (e.g. a variable would either increase or decrease crash
everity) and under-reporting, especially for low severity levels
n accident data (Savolainen and Mannering, 2007; Yamamoto
t al., 2008). The mixed logit model, a more generalized modeling

pproach, could account for heterogeneous effects and correlation
n unobserved factors by allowing the random parameters to differ
cross crash-involved road users in a mixing distribution. Due to

∗ Corresponding author. Tel.: +886 2 23494940; fax: +886 2 23494953.
E-mail address: ycchiou@mail.nctu.edu.tw (Y.-C. Chiou).

001-4575/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.aap.2012.05.017
© 2012 Elsevier Ltd. All rights reserved.

the limitation of designated distributions of parametric modeling,
other distribution-free methods, such as decision tree (Chang and
Chen, 2005; Chang and Wang, 2006) and artificial neural network
(Chiou, 2006; Delen et al., 2006; Chimba and Sando, 2009), were
also employed to analyze the crash severity. A comprehensive
review of most recent accident models can be found in Savolainen
et al. (2011).  The aforementioned methods may  be confronted
by two difficulties. First, the parametric statistical methods may
successfully identify the significant variables that can explain the
crash severity or account for the complex relationships among
them. The enumerated combination of significant variables,
however, may  be inadequate to explore the intertwined chained
relationships, which can be crucial in analyzing vehicle crashes
(Liu, 2007; Sze and Wong, 2007; Rhodes and Pivik, 2011). Gen-
erally, it is hard to presume the intertwined relationships among
more than two variables; hence, the potential interactions among
significant variables in crash severity study may  not fully discover
the crash causalities. Second, the classification outcomes resulted
from decision tree or neural network methods are sometimes
difficult to interpret. It can be ascribed to the hidden knowledge
not fully explored from the crash dataset. In many circumstances,
the prediction error of decision tree method is high, and the neural
network method is functioning like a black box.
According to the error-chain theory, a typical vehicle crash can
be resulted from a series of errors, not solely by a single factor.
In this sense, mining the complicated rules to unveil the chain
factors seems imperative and promising for crash severity studies.

dx.doi.org/10.1016/j.aap.2012.05.017
http://www.sciencedirect.com/science/journal/00014575
http://www.elsevier.com/locate/aap
mailto:ycchiou@mail.nctu.edu.tw
dx.doi.org/10.1016/j.aap.2012.05.017
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ule mining (a.k.a. rule generation, rule recovery, or classifica-
ion/association rule mining) is one of the data mining techniques
hich search for useful knowledge from available database for

etter decision support. Rule mining is naturally modeled as
ulti-objective problems with three criteria: predictive accuracy,

omprehensibility and interestingness (Freitas, 1999; Ghosh and
ath, 2004). Conventional rule mining models have intrinsic

imitations on operational procedure or searching efficiency. In
ontrast, evolutionary rule mining algorithms provide more robust
nd efficient means to explore enormous search space. One such
volutionary algorithm is to use genetic algorithm (GA) to learn of
he decision rules, termed genetic mining rule (GMR) (e.g. Freitas,
999; Shin and Lee, 2002; Ghosh and Nath, 2004; Dehuri and Mall,
006; Chen and Hsu, 2006). The performance of GMR  algorithms
as been proven and applied in many fields (Clarke et al., 1998;
hiou et al., 2010); yet the issue still arises as to conflicts and
edundancies among the mined-rules.

This study aims to discover the key rules that potentially domi-
ate the risk conditions causing crash severity, to accurately predict
he crash severity, and moreover, to eradicate conflicts and redun-
ancies among the mined-rules. The scope of the present study will

imit the analysis of one-vehicle crashes in freeway contexts only. A
wo-stage mining framework is proposed to maximize the predic-
ive accuracy of crash severity with a minimum number of key rules.
n the first stage, a GMR  model is proposed to identify the potential
isk conditions that can best explain the degrees of crash severity.
n the second stage, a mixed logit model is further estimated to test
he significance of the mined risk conditions. The rest of this paper
s organized as follows. Section 2 presents the crash data with defi-
itions of contributing factors based on available dataset. Section 3

ntroduces the proposed mining framework with GMR  model and
ixed logit model. Section 4 presents the mining results by GMR
odel, which are further compared with those derived from the

ecision tree model. The estimation results of mixed logit model are
lso presented. Section 5 examines each of the key risk conditions
nd then proposes countermeasures accordingly. Finally, conclud-
ng remarks and suggestions for future research are addressed.

. Data

The data were drawn from 2003 to 2007 National Traffic Acci-
ent Investigation Reports, provided by Taiwan National Police
gency. In the reports, each crash case has been carefully narrated
y the police with digitized information about degrees of severity
fatal, injury, and property-damage only) of the involved parties,
imes of day of crash occurrence, vehicle movements (moving
traight, right-turn, left-turn, lane-change), driver demographics
age, gender, driver sobriety), involved vehicle types, roadway geo-

etrics, and other environmental conditions such as traffic control,
eather (sunny, rain, fog, storm), pavement (wet, dry), lighting,

mong others. In view that more complicated and intertwined fac-
ors may  exhibit in the collision cases involved with two  or more
arties, this paper only presents the one-vehicle crashes, which
eans that only a single vehicle is involved in the crash events.

wo- or more than two-vehicle crashes will be studied in another
aper.

During the five-year study period, a total of 5563 one-vehicle
rash cases took place in Taiwan’s freeways. Table 1 presents the
etailed crash information, from which the potential 21 explana-
ory variables (recorded by the police) are defined. Each variable is
ategorical, with a brief description summarized in Table 1. Here-

nafter, the most serious accidents are denoted as A1 (fatalities),
ollowed by A2 (injuries), and A3 (property-damage only). The
umbers of A1, A2 and A3 are 226, 1593, and 3744, respectively—a
ather uneven distribution also seen in many other countries. To
d Prevention 50 (2013) 405– 415

overcome the small number of observations in A1 crashes, which
may  lead to unreasonable mined-results by the GMR model, both
A1 and A2 crashes are combined (1819 cases) and regarded as “seri-
ous crashes”; A3 crashes (3744 cases) are categorized as “minor
crashes” in the following analysis. However, while estimating the
mixed logit model, the three-level A1, A2 and A3 crashes are used
to capture the statistical implications of risk conditions more pre-
cisely.

3. The mining framework

The core logic of the proposed mining framework contains two
stages: (1) developing a GMR  model to identify the key risk con-
ditions and (2) formulating a mixed logit model to examine the
significance of the risk conditions mined. In the first stage, the pro-
posed GMR  model is used to discover the “if-then” rules that can
best elucidate the one-vehicle crash severity in the freeway con-
texts over the study horizon. For comparison, a decision tree (DT)
model is also introduced to analyze the same dataset. In the second
stage, the mixed logit model is formulated. Details of the two-stage
modeling framework are depicted as follows.

3.1. The GMR  model

The proposed GMR  model contains encoding method, fitness
function, genetic operators, and rule selection, narrated below.

3.1.1. Encoding method
To represent the relationship between explanatory variables

and crash severity, a chromosome is used to represent each poten-
tial “if-then” rule. The associated conditions in the “if part” are
antecedence part and those in the “then part” are consequent part.
The antecedent part consists of at least 1 and at most 21 variables
xi selected from Table 1. The consequent part is composed by only
one variable y, that is, severity degree. Due to the uneven distri-
bution of three crash cases as explained, the severity variable y is
redefined as serious crash (1: fatal or injury) and minor crash (2:
property damage only).

Generally, a rule can be regarded as a knowledge representa-
tion of the form “If A then C,” where A is a set of cases satisfying
the conjunction of predicting attribute values and C is a set of cases
with the same predicted severity degree. Specifically, a typical rule
i can be expressed as Rule i: “If x1 = ai1 and x2 = ai2 . . .and xj = aij . . .
and x21 = ai21 then y = gi,” or in short, “If Ai then Ci,” where aij is the
categorical value of jth attribute variable and gi is the value of clas-
sification variable in rule i. Ai and Ci are the sets of parties satisfying
the antecedent part and consequent part of rule i, respectively.

By encoding a rule as a chromosome, each gene is used to repre-
sent a corresponding variable. In this study, there are 21 antecedent
variables and one consequent variable, thus the length of a chro-
mosome is 22. Each gene will take one of the categorical values of
the corresponding variable. Because the ranges of all variables are
different, the ranges of gene values will vary. In any circumstance,
if a gene in a rule antecedent takes a value of 0, it represents the
corresponding variable not considered by the rule.

3.1.2. Fitness function
The role of fitness function is to evaluate the quality of the rule

numerically. An individual chromosome (a rule) with higher fitness
function value has a higher probability being selected to reproduce
the offspring. Shin and Lee (2002) adopted hit ratio (confidence),
also known as predictive accuracy plus coverage (Kim and Han,

2003), as the fitness function. What should be emphasized here,
however, is the performance of the entire rule set in lieu of the per-
formance of each individual rule. Due to the potential conflict and
redundancy among rules, a well-performed individual rule does not
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Table 1
One-vehicle crash information in Taiwan’s freeways (2003–2007).

Variable Definition Type Description Number of crashes

A1 A2 A3

X1 Surface condition Categorical 1, Dry; 167 1128 2403
2,  wet 59 465 1341

x2 Signal control Categorical 1, None; 222 1556 3644
2, yes 4 37 100

x3 Driver gender Categorical 1, Male; 203 1326 3206
2,  female 23 267 538

x4 Weather Categorical 1, Sunny; 158 1061 2236
2,  cloudy; 16 105 277
3, rain, storm, fog 52 427 1231

x5 Obstacle Categorical 1, None; 217 1513 3456
2,  work zone; 6 47 169
3,  others 3 33 119

x6 Lighting condition Categorical 1, daytime; 96 836 2150
2,  dawn or dusk; 5 52 105
3,  nighttime with illumination; 66 337 765
4,  nighttime without illumination 59 368 724

x7 Speed limit Categorical (discretized) 1, 110 km/h; 65 608 1296
2,  100 km/h; 75 574 1444
3,  90–70 km/h; 41 227 458
4,  60–40 km/h 45 184 546

x8 Road status Categorical 1, Straight road; 201 1482 3456
2,  grade and curved road; 16 48 108
3,  tunnel, bridge, culvert, overpass; 4 35 106
4, others 5 28 74

x9 Marking Categorical 1, Lane line with marker; 212 1531 3587
2,  lane line without marker; 4 15 53
3,  no lane-changing line; 5 35 56
4,  no lane line 5 12 48

x10 Use of seat belt Categorical 1, Seat belt fastened; 152 1539 3729
2,  seat belt not fastened; 27 22 12
3,  unknown 47 32 3

x11 Use of cell phone Categorical 1, Not in use; 127 1548 3725
2,  use; 0 4 7
3,  unknown 99 41 12

x12 License Categorical 1, With license; 202 1483 3608
2,  without license; 20 101 128
3,  unknown 4 9 8

x13 Driver occupation Categorical 1, In job; 123 1025 2640
2,  student; 24 59 108
3,  jobless; 15 93 119
4,  unknown 64 416 877

x14 Driver age Categorical (discretized) 1, Under 30 years old; 81 610 1313
2,  30–40 years old; 62 426 1224
3,  40–50 years old; 48 339 781
4,  50–65 years old; 29 194 404
5,  above 65 years old 6 24 22

x15 Time period Categorical (discretized) 1, 07:01–09:00 morning peak; 18 111 304
2,  09:01–16:00 daytime; 63 530 1357
3,  16:01–19:00 afternoon peak; 19 205 532
4,  19:01–23:00 nighttime; 34 235 528
5,  23:01–07:00 midnight 92 512 1023

x16 Location Categorical 1, Traffic lane; 119 1153 2626
2,  shoulder; 55 226 527
3,  median; 9 17 29
4,  accelerating or decelerating lane, ramp; 33 160 425
5,  toll plaza and others 10 37 137

x17 Vehicle type Categorical 1, Passenger car; 145 994 2381
2,  light truck; 38 394 680
3,  bus; 3 17 40
4,  heavy truck, trailer and tractor; 36 166 617
5,  others (motorcycle and bicycle) 4 22 26
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Table  1 (Continued)

Variable Definition Type Description Number of crashes

A1 A2 A3

x18 Action Categorical 1, Forward; 180 1272 3055
2,  left lane-change; 7 93 189
3,  right lane-change; 10 107 241
4,  abrupt deceleration; 3 40 117
5,  others 26 81 142

x19 Alcoholic use Categorical 1, No; 117 1262 3295
2,  under 0.25 mg/l (or 0.05%); 12 62 75
3,  over 0.25 mg/l (or 0.05%); 47 234 343
4,  cannot be tested; 37 15 20
5,  unknown 13 20 11

x20 Journey purpose Categorical 1, Commuting trip; 23 190 467
2,  business trip; 7 97 224
3,  transportation activity; 42 196 583
4,  visiting/shopping trip; 27 204 382
5,  others 127 906 2088

x21 Major cause Categorical 1, Improper lane-change; 2 77 172
2,  speeding; 49 168 496
3,  fail to keep a safe distance; 4 24 152
4,  alcoholic use; 41 226 323
5, fail to pay attention to the front; 17 104 277
6,  other driver’s liability; 87 699 1736
7,  factors not attributed to drivers 26 295 588
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ecessarily imply that the combination of these rules will automat-
cally perform well. Hence, this paper sets the fitness function as an
ncrease of correctly classified cases by the rule set in ways that it
ombines the previously mined rules with the newly included rule,
xpressed as follows:

t
i = nS+Ri

− nS (1)

here f t
i

represents the incremental number of correctly classi-
ed cases if Ri is selected at the learning epoch t; nS represents
he number of cases correctly classified by the rule set S, which
omprises the selected rules up to the learning epoch t; nS+Ri

rep-
esents the number of cases correctly classified by the rule set S
nd the rule i (Ri). In order to maximize the incremental increase in
he number of correctly classified cases, the algorithm would avoid
electing the rules which are conflict or redundant to the previously
elected rules in the rule set S. In so doing, the problem of conflict
r redundancy would be effectively mitigated during the stepwise
ule mining process. Additionally, because each selected rule is
o maximally increase the correctly classified cases, the learning
esults based on the objective function Eq. (1) should be identical
o those based in Eq. (2),  which aims to maximize the predictive
ccuracy of all selected rules.

t
i = nS+Ri

N
(2)

here Ft
i

is the predictive accuracy rate at the epoch t if Ri is added
o the incumbent rule; N represents the total number of crash cases.

Two performance indices – coverage and predictive accuracy
 are also computed for rule comparison. The coverage of Ri is
enoted by CRi =

∣∣Ai

∣∣, representing the cardinality of set Ai (i.e.,
he set contains the crash cases satisfying the antecedent part of
i). The predictive accuracy of Ri is denoted by PAi = |Ai ∩ Ci|/|Ai|
Freitas, 1999), where Ci represents the set containing the cases
atisfying the consequent part of Ri. Ai ∩ Ci represents the set con-

aining the cases satisfying both antecedent and consequent parts
f Ri;

∣∣Ai ∩ Ci

∣∣ is the cardinality of the set Ai ∩ Ci.
Since the genes in the proposed GMR  model are not binary

ncoded, simple genetic algorithms proposed by Goldberg (1989)
226
1593

-damage only 3744

cannot be used. In turn, this study employs the following max-min-
arithmetical crossover, proposed by Herrera et al. (1998) and the
non-uniform mutation, proposed by Michalewicz (1992).

(1) Max-min-arithmetical crossover
Let Gt

w = {gwt
1, . . . , gt

wk
, . . . , gt

wK } and Gt
v =

{gt
v1, . . . , gt

vk
, . . . , gt

vK } be two chromosomes selected for
crossover, the following four offsprings can be generated:

Gt+1
1 = aGt

w + (1 − a)Gt
v (3)

Gt+1
2 = aGt

v + (1 − a)Gt
w (4)

Gt+1
3 with gt+1

3k
= min{gt

wk, gt
vk} (5)

Gt+1
4 with gt+1

4k
= max{gt

wk, gt
vk} (6)

where a is a parameter (0 < a < 1) and t is the number of gener-
ations.

(2) Non-uniform mutation
Let Gt = {gt

1, . . . , gt
k
, . . . , gt

K } be a chromosome and the gene
gt

k
be selected for mutation (the domain of gt

k
is [gl

k
, gu

k
]), the

value of gt+1
k

after mutation can be computed as follows:

gt+1
k

=
{

gt
k

+ �(t, gu
k

− gt
k
) if b = 0

gt
k

− �(t, gt
k

− gl
k
) if b = 1

(7)

where b randomly takes the binary value of 0 or 1. The func-
tion �(t, z) returns to a value in the range of [0,z] such that the
probability of �(t, z) approaches 0 as t increases:

�(t, z) = z(1 − r(1−t/T)h
) (8)
where r is a random number in the interval [0,1], T is the max-
imum number of generations and h is a given constant. In Eq.
(8), the value returned by �(t, z) will gradually decrease as the
evolution progresses.
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dataset, the proposed GMR  model can predict the serious crashes
Fig. 1. The encoding and selection of rules.

.1.3. Rule selection
Conventional GMR  models simultaneously select a set of rules

o achieve the objective function. It is inevitable that some mutu-
lly conflicting or redundant rules will be selected, which not only
eteriorates the model performance but increases the difficulties in

nterpretation (in this study, interpreting the causal relationships
etween explanatory variables and crash severity). Moreover, the
ined rules are often too complicated or too lengthy to be inter-

reted in a sensible way. To overcome these difficulties, instead
f learning the rules simultaneously, this paper proposes a novel
stepwise rule mining approach,” which contains the following
teps:

Step 0: Initialization:  Randomly generate the initial population
and set S =  ̊ and t = 1.
Step 1: Rule selection:  Select the rule (Ri) with maximum f t

i
as

shown in Fig. 1.
Step 2: Rule modification:  Perform rule modifications on Ri
according to improvement and parsimony strategies and then add
the modified rule to the incumbent rule set S. Let t = t + 1.
Step 2-1: Improvement strategy: Sequentially vary the value
of each gene of Ri from x1 to x21. If the predictive accuracy
is improved, then accept the modification. Otherwise, the rule
remains unchanged.
Step 2-2: Parsimony strategy: Set the value of each gene of the
candidate rule to be 0 in a sequence from x1 to x21, suggesting
the corresponding factor not considered in the rule. If the predic-
tive accuracy is not deteriorated, then accept the modification.
Otherwise, the rule remains unchanged.

Step 3: Stop condition:  Repeat steps 1 and 2 until the predictive
accuracy of the incumbent rule set can no longer be improved by
adding any other rules or the preset maximum number of epochs
has reached.

If more than one rule with different consequent parts (i.e., dif-
erent severity degrees) has been fired by the same crash case, the
redicted severity degree should be determined by the consequent
art of the rule with the highest predictive accuracy among all fired
ules.

.2. The mixed logit model

Recently, the mixed logit model, or random parameters logit
odel, has been applied for the analysis of crash injury-severity
e.g. Milton et al., 2008; Kim et al., 2010). The mixed logit addresses
he limitations of the multinomial logit by allowing for heteroge-
eous effects and correlation in unobserved factors (Train, 2009).
d Prevention 50 (2013) 405– 415 409

A mixed logit model is derived with the addition of a second error
term to the severity function:

Sin = ˇiXin + [�in + εin] (9)

where Sin is the severity function determining the injury-severity
level i (A1, A2, A3) on crash case n. ˇi is a vector of parameters. Xin
is a vector of explanatory variables. �in is a random error term with
zero mean. εin is the error term that is independent and identically
distributed, and does not depend on underlying parameters or data.

The mixed logit allows the parameter vector ˇi to vary across
the crash-involved drivers. ˇi may  be either fixed or randomly dis-
tributed with fixed means, allowing for heterogeneous effects. A
mixing distribution is introduced to the model formulation, result-
ing in injury severity probabilities as follows (Train, 2009):

Pin(i) =
∫

X

exp[ˇiXin]∑
iexp[ˇiXin]

f (ˇ|�)d  ̌ (10)

where f(ˇ|�) is a density function of  ̌ and � is a vector of parame-
ters which describe the density function (mean and variance).

The functional form of the parameter density functions is given
to normal distribution and a simulation-based maximum likelihood
method with Halton draws can be applied in the model estimation
(McFadden and Train, 2000).

In order to assess the effects of explanatory variables estimates
on injury-severity outcome probabilities, elasticities are further
computed. However, for categorical (dummy) explanatory vari-
ables, a regular elasticity cannot be calculated since the probability
is not differentiable. To explore the marginal effect of such a cate-
gorical variable, a pseudo-elasticity, which gives the percent effect
on the injury-severity probabilities of the variable switching from
a value of 0 to 1, can be calculated as follows (Kim et al., 2010;
Morgan and Mannering, 2011):

EPin
xnk

= Pin[given xnk = 1] − Pin[given xnk = 0]
Pin[given xnk = 0]

(11)

where Pin is defined by Eq. (10), xnk is the kth explanatory variable
associated with injury severity i for crash case n. Direct and cross
pseudo-elasticities are presented in this study as a measure of the
marginal effect of an explanatory variable by taking the average
over the whole sample.

4. Empirical results

In the following analysis, 70% of the crash cases are randomly
chosen for training (i.e., 3895 cases) and the remaining 30% (1668
cases) are used for validation. A �2-test has shown that the severity
distributions between training and validation do not differ signifi-
cantly (p < 0.05).

4.1. The results of GMR model

The parameters of the proposed GMR  model are set as follows:
population size = 50, crossover rate = 0.85, mutation rate = 0.08. The
learning process is depicted in Fig. 2.

Although the misclassification rate can be monotonically low-
ered by increasing the number of rules selected, a good GMR  model
should be able to fit the training data, but more importantly, to
fit the validation data as well. According to Fig. 2, to avoid over-
training, 29 rules are thought appropriate because the validation
misclassification rate of the rule set has reached the lowest value.
Table 2 gives the prediction accuracies for both training and vali-
dation under various severity degrees. It shows that in the training
with a correct rate of 60.20% and minor crashes with a correct rate
of 84.43%. The overall correct rates of the proposed GMR  model in
training and in validation are 76.51% and 74.82%, respectively.
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Fig. 2. Learning process of GMR  model.

Table 2
Different severity cases (percentages) predicted by GMR  model.

Datasets Real severity Predicted severity Total

Serious (A1 + A2) Minor (A3)

Training
Serious (A1 + A2) 767 (60.20%) 507 (39.80%) 1274 (100.00%)
Minor (A3) 408 (15.57%) 2213 (84.43%) 2621 (100.00%)
Total  1175 2720 3895

Validation
Serious  (A1 + A2) 325 (59.63%) 220 (40.37%) 545 (100.00%)
Minor (A3) 200 (17.81%) 923 (82.19%) 1123 (100.00%)
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Total  525 

ote: The bold values represent the correctly predicted cases.

Table 3 reports the finally selected rules together with its cor-
esponding performance indices (hereinafter, CR denotes coverage
nd PA denotes predictive accuracy). Note that the selected-rules
ave been ranked in a descending order according to predictive
ccuracy values.

Most of the rules in Table 3 can be readily inspected and

xplained by the “if-then” relationship of the rules themselves.
aking R7 as an example, the rule indicates that “If the weather
s sunny, speed limit is 110 km/h, and the car driver does not hold

 valid license, then the crash tends to be serious (fatal or injury).”

able 3
ptimal combination of rules mined by GMR  model.

Rules x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

R1

R2 1 

R3 2 3 

R4 1 

R5 2 

R6 2 3 3 

R7 1 1 2 

R8 3 

R9 1 

R10 1 1 

R11 2 

R12 3 3 

R13 2 

R14 1 3 1 

R15

R16 4 

R17 2 1 

R18 1 

R19 3 3
R20 1 2 

R21 2 

R22 4 

R23 1 3 1 

R24 1 3 

R25 1 

R26 1 

R27

R28 1 

R29 1 1 1 
1143 1668

As for R11, the rule says that “If the seat belt is not fastened, then
the crash tends to be serious (fatal or injury)”; in contrast, R26 says
that “If the seat belt is fastened, then the crash tends to be minor
(property-damage only).”

It is interesting to note that the two performance indices, CR and
PA, are negatively correlated (−0.66), suggesting that the higher

coverage the rule has, the lower predictive accuracy it would be.
Also note that the rules associated with minor crashes (y = 2) are
all ranked behind the rules associated with serious crashes (y = 1).
In general, the rules associated with minor crashes (y = 2) have

x14 x15 x16 x17 x18 x19 x20 x21 y CRi PAi

5 3 1 18 0.944
1 5 4 1 39 0.897

1 37 0.892
2 2 1 29 0.897
1 2 1 31 0.871

1 25 0.880
1 1 44 0.864

2 2 1 42 0.857
5 2 2 1 19 0.842
3 3 1 34 0.824

1 79 0.823
1 5 1 32 0.813

2 1 1 43 0.814
2 1 48 0.813

1 4 3 1 30 0.800
5 2 1 61 0.787

2 2 1 36 0.778
2 2 1 48 0.771
1 1 45 0.756

2 1 47 0.745
4 7 1 87 0.713
3 2 1 96 0.698

2 64 0.813
2 60 0.767

6 2 1015 0.697
2 3800 0.687

1 2 3157 0.678
2 3651 0.668
2 2199 0.653
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Table  4
Different severity cases (percentages) predicted by DT model.

Datasets Real severity Predicted severity Total

Serious (A1 + A2) Minor (A3)

Training
Serious (A1 + A2) 502 (39.40%) 772 (60.60%) 1274 (100.00%)
Minor (A3) 387 (14.77%) 2234 (85.23%) 2621 (100.00%)
Total  889 3006 3895

Validation
Serious  (A1 + A2) 214 (39.27%) 331 (60.73%) 545 (100.00%)
Minor (A3) 177 (15.76%) 946 (84.24%) 1123 (100.00%)
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Total  391 

ote: The bold values are the correctly predicted cases.

igher coverage and lower predictive accuracy than the rules asso-
iated with serious crashes (y = 1). The average coverage (predictive
ccuracy) of the rules for minor and serious crashes includes 1992
ases (70.90%) and 44 cases (82.17%), respectively. The coverage of
he rules for serious crashes ranges from 18 to 96 cases, suggest-
ng that the risk conditions of serious crashes are rather diverse. In
ther words, there will be no single risk condition that can explain
oticeable percentages of the fatal or injury crashes in most cir-
umstances.

.2. The results of DT model

Via trial-and-error, the parameters of DT model are set as fol-
ows: splitting criterion is Gini reduction; minimum number of
bservations in a leaf is 1; observations required for a split search
s 8; maximum number of branches from a node is 2; maximum
epth of tree is 6; splitting rules saved in each node is 5. The model

s executed by SAS Enterprise Miner Release 4.3 with learning pro-
ess depicted in Fig. 3. Note that the misclassification rate decreases
s the number of leaves gets larger.

A total of 18 rules have been generated by the DT model, 8 of
hich are associated with serious crashes (y = 1) and 10 associated
ith minor crashes (y = 2), summarized as follows:

R1: If x11 = 3 Then y = 1.
R2: If x11 = 2 Then y = 2.
R3: If x21 = 2 and x10 = {2, 3} and x17 = {1, 4} and x11 = 1 Then y = 1.
R4: If x3 = 2 and x4 = {2, 3} and x17 = {2, 3, 5} and x11 = 1 Then y = 1.
R5: If x3 = 1 and x4 = {2, 3} and x17 = {2, 3, 5} and x11 = 1 Then y = 2.
R6: If x12 = 1 and x19 = 1 and x10 = 1 and x17 = {1, 4} and x11 = 1 Then
y = 2.
R7: If x21 = {2, 3, 4, 5, 7} and x19 = {2, 3, 4, 5} and x10 = 1 and x17 = {1,
4} and x11 = 1 Then y = 2.
R8: If x15 = {2, 4, 5} and x21 = {1, 3, 4, 5, 6, 7} and x10 = {2, 3} and
x17 = {1, 4} and x11 = 1 Then y = 1.

R9: If x15 = {1, 3} and x21 = {1, 3, 4, 5, 6, 7} and x10 = {2, 3} and
x17 = {1, 4} and x11 = 1 Then y = 2.
R10: If x13 = {1, 2, 4} and x21 = {2, 3, 6} and x4 = 1 and x17 = {2, 3, 5}
and x11 = 1 Then y = 2.
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Fig. 3. Learning process of DT model.
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R11: If x13 = 3 and x21 = {2, 3, 6} and x4 = 1 and x17 = {2, 3, 5} and
x11 = 1 Then y = 1.
R12: If x20 = 3 and x21 = {1, 4, 5, 7} and x4 = 1 and x17 = {2, 3, 5} and
x11 = 1 Then y = 2.
R13: If x21 = {1, 2, 3, 6, 7} and x12 = {2, 3} and x19 = 1 and x10 = 1 and
x17 = {1, 4} and x11 = 1 Then y = 2.
R14: If x21 = 5 and x12 = {2, 3} and x19 = 1 and x10 = 1 and x17 = {1, 4}
and x11 = 1 Then y = 1.
R15: If x14 = {1, 2} and x21 = {1, 6} and x19 = {2, 3, 4, 5} and x10 = 1
and x17 = {1, 4} and x11 = 1 Then y = 1.
R16: If x14 = {2, 3, 5} and x21 = {1, 6} and x19 = {2, 3, 4, 5} and x10 = 1
and x17 = {1, 4} and x11 = 1 Then y = 2.
R17: If x15 = {1, 2, 3, 4} and x20 = {1, 2, 4, 5} and x21 = {1, 4, 5, 7} and
x4 = 1 and x17 = {2, 3, 5} and x11 = 1 Then y = 2.
R18: If x15 = 5 and x20 = {1, 2, 4, 5} and x21 = {1, 4, 5, 7} and x4 = 1
and x17 = {2, 3, 5} and x11 = 1 Then y = 1.

Table 4 further presents the number of cases with different
severity degrees predicted by the DT model. In predicting the minor
crashes, the DT model performs slightly better (the correct rates in
training and validation are 85.35% and 84.24%, respectively, as indi-
cated in Table 4) than the proposed GMR  model (84.43% and 82.19%,
respectively, as indicated in Table 3). However, in predicting the
serious crashes, the DT model performs far inferior (the correct
rates in training and validation are 39.40% and 39.27% respectively
as shown in Table 4) to the proposed GMR  model (60.20% and
59.63% respectively as indicated in Table 3). The overall correct
rates of the GMR  model outperform in both training and validation
(76.51% and 74.82%, respectively) as opposed to 70.24% and 69.54%
respectively for the DT model. As such, the subsequent mixed logit
model in the second stage will be estimated from the learning
results of the GMR  model, in lieu of the DT model.

4.3. The mixed logit model

The 29 rules (risk conditions), mined by the GMR  model, are set
as the explanatory (dummy) variables to explain the crash severity.
The estimation results are presented in Table 5 with correct signs.
The parameters found to be random were the constant and R11 con-
tributing to fatal crash, implying that “seat belt not fastened” (risk
condition R11) tends to be risky but the effects can vary across the
drivers. The constant for the fatal proportion is normally distributed
with mean 1.694 and standard deviation (�c) 1.368. It suggests that,
in probability, 10.8% of the fatalities have constant term less than 0
and 89.2% greater than 0. Similarly, the risk condition on “seat belt
not fastened” R11 for the fatal proportion is normally distributed
with mean 1.941 and standard deviation (�R11 ) 1.032. Therefore, in
probability, 3% of the fatalities have R11 less than 0 and 97% greater
than 0. Moreover, the coefficients of R25 and R27 are not significant

in fatal and injury crash levels, as opposed to property-damage only
(p < 0.05).

Table 5 also presents the detailed pseudo-elasticity values,
including own-elasticity and cross-elasticity effects, associated
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Table  5
Estimation results of mixed logit model using the 29 rules mined by GMR  model.

Variable Fatal Injury

Coefficient t-Statistic Elasticity Coefficient t-Statistic Elasticity

Fatal Injury Property
damage only

Fatal Injury Property
damage only

Constant 1.694 4.569* 0.887 2.143
�c 1.368 2.050
R1 3.390 4.977* 83.0% −3.3% −4.3%
R2 2.653 3.416* −3.6% 53.1% −4.9%
R3 3.342 3.169* −1.8% 48.3% −2.0%
R4 2.486 3.825* −4.3% 91.5% −6.5%
R5 3.269 3.096* −2.6% 27.4% −2.8%
R6 3.915 3.186* 69.4% −1.1% −2.1% 3.138 2.830* −6.2% 35.2% −5.5%
R7 2.094 2.611* −0.6% 10.9% −0.9%
R8 3.440 3.340* 45.7% −2.1% −3.1% 2.641 3.328* −3.3% 21.2% −3.7%
R9 2.126 2.342 −2.2% 14.1% −2.3%
R10 2.121 2.692* −2.4% 9.1% −2.6%
R11 1.941 2.229 8.3% 0.5% 0.6%
�R11 1.032 2.017
R12 1.877 2.708* −0.3% 5.1% 0.1%
R13 1.972 3.357* −0.4% 7.2% −0.7%
R14 2.115 2.122 11.5% −1.8% −1.7% 2.110 3.182* −2.3% 14.2% −4.7%
R15 1.519 2.081 −0.2% 3.1% −0.4%
R16 1.827 3.039* −1.2% 6.3% −1.6%
R17 2.027 3.011* −1.4% 18.2% −1.5%
R18 2.654 3.301* 13.7% −2.2% −4.2% 1.634 2.560 −0.2% 4.2% −0.4%
R19 2.132 3.447* −3.5% 17.3% −4.7%
R20 1.897 3.415* −0.3% 7.2% −0.5%
R21 1.511 3.784* −0.5% 5.4% −0.8%
R22 1.705 4.535* −0.5% 12.5% −0.9%
R23 −2.061 −1.875 −45.3% 3.1% 1.1% −0.888 −2.428 3.2% −16.2% 3.3%
R24 −0.755 −2.061 1.1% −8.1% 1.3%
R26 −4.916 −12.814* −510.3% 35.7% 15.4% −2.416 −6.388* 39.6% −175.0% 70.5%
R28 −0.3917 −2.321 −6.5% −27.6% −11.9%
R29 −0.2158 −2.798* −2.2% −19.0% −4.1%

Log-likelihood −2646.808
Restricted log-likelihood −4279.095
Likelihood ratio index 0.381

Note: 1: The coefficients of R25 and R27 are not significant (p < 0.05).
2: The bold variables have pseudo-elasticity values greater than 50% or less than −100%.
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:  � denotes the standard deviation of distribution.
* Indicates the parameter statistically significant at the 0.01 level; whereas unma

ith the 29 risk conditions mined, which give the percent effects
n the injury-severity probabilities of the variables switching from

 to 1. In theory, if an elasticity value of a risk condition is greater
less) than 100%, then the corresponding risk condition should be
egarded as sensitive (insensitive) to fatality or injury. However,
o explore the marginal effects of categorical variables in a stricter

anner, we regard the pseudo-elasticity values less than 50% as
little sensitive,” 50–100% as “likely sensitive,” and greater than
00% as “sensitive” to fatal and/or injury. As such, five risk con-
itions in Table 5 have been identified with own-elasticity values
reater than 50%, suggesting that these risk conditions have poten-
ially sensitive effects on serious crashes (fatalities and/or injuries).
pecifically, R1 has a pseudo-elasticity value of 83.0% on fatal, R2 has

 value of 53.1% on injury, R4 has a value of 91.5% on injury, R6 has a
alue of 69.4% on fatal, and R26 has a value of −510.3% on fatal and

 value of −175.0% on injury. However, the negative signs of R26
uggest that “use of seat belt” is the most critical variable in reduc-
ng serious crashes; therefore, it should be regarded as a “key safe
ondition,” as opposed to the remaining four “key risk conditions”
1, R2, R4, and R6.

For comparison, another mixed logit model simply using the
riginal 21 explanatory variables is also attempted. Since the orig-

nal explanatory variables are all categorical, various numbers of
ummy  variables must be introduced (the number of dummy
ariables = the number of categories − 1), making 62 dummy
xplanatory variables for the initial estimation. By excluding
parameters indicate statistically significant at the 0.05 level.

insignificant variables, the estimation results of the mixed logit
model with the original 21 variables are reported in Table 6. Most
of the signs are also reasonable but the parameters found to be
random were “cell phone not in use” contributing to injury crash,
implying that “cell phone not in use” tends to lower the crash
severity and the effects vary across the drivers. It is also normally
distributed with mean −2.141 and standard deviation 2.332, which
results in 82.1% of the distribution less than 0, and 17.9% of the
distribution greater than 0. Moreover, the variable “use of seat
belt” in Table 6 has a pseudo-elasticity value of −336.5% on fatal
and a value of −121.9% on injury, while the variable “use of cell
phone” has a value of −382.3% on fatal. It indicates these two  orig-
inal explanatory variables are the most critical factors leading to
serious crashes.

5. Discussions

We  compare the estimation results presented in Tables 5 and 6.
The log-likelihood ratio test shows that the model using the original
21 explanatory variables is significantly inferior to the model using
the 29 mined-rule explanatory variables (p < 0.05). Consequently,
the following discussion will be based on the GMR  mined-rule esti-

mation results to identify the key risk conditions.

According to Table 5, five key conditions R1, R2, R4, R6 and
R26 have “likely sensitive” or “sensitive” effects on the crash
severity. Therefore, these “key risk conditions” can be regarded
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Table  6
Estimation results of mixed logit model using the original 21 explanatory variables.

Variable Fatal Injury

Coefficient t-Statistic Elasticity Coefficient t-Statistic Elasticity

Fatal Injury Property
damage only

Fatal Injury Property
damage only

Constant 3.946 7.074* 3.815 5.773*

Speed limit (110 km/h) 0.432 2.753* −2.8% 6.1% −2.5%
Speed  limit (90–70 km/h) 0.569 2.539 −1.4% 3.1% −1.4%
Marking (lane line without marker) 1.026 2.167 −0.3% 0.6% −0.4%
Use  of seat belt (fastened) −3.570 −7.593* −336.5% 7.2% 11.8% −2.972 −5.045* 47.5% −121.9% 32.5%
Use  of cell phone (not in use) −4.064 −11.192* −382.3% 5.8% 12.0% −2.141 −4.500* 20.2% −37.7% 18.2%
� Use of cell phone (not in use) 2.332 2.920*

Driver occupation (jobless) 1.091 3.014* −1.1% 1.5% −0.9%
Driver  age (under 30 years old) 0.418 2.364 −2.6% 6.2% −2.3%
Driver  age (40–50 years old) 0.384 1.997 −1.4% 3.4% −1.2%
Driver  age (50–65 years old) 0.575 2.290 −1.2% 2.6% −0.9%
Driver  age (above 65 years old) 1.661 2.767* 1.3% −0.2% −0.2%
Location (shoulder, edge) 0.929 4.051* 12.4% −0.7% −1.1%
Location (median) 1.841 2.953* 1.4% −0.2% −0.3%
Location (accelerating or decelerating lane, ramp) −1.114 −2.437 0.5% −1.9% 0.4%
Vehicle  type (passenger car) −0.634 −3.080* 6.6% −17.0% 5.6%
Vehicle  type (heavy truck, trailer truck, tractor) −1.399 −3.688* 2.4% −10.0% 2.3%
Action  (right lane-change) −1.112 −2.180 −7.0% 0.2% 0.2%
Alcoholic use (cannot be tested) 2.784 6.378* 1.8% −1.3% −1.5%
Major cause (speeding) −0.854 −3.269* 1.6% −5.2% 1.4%
Major  cause (fail to keep a safe distance) −1.892 −3.167* 0.5% −3.3% 0.5%
Major  cause (other driver’s liability) −0.395 −2.619* 2.9% −7.9% 2.6%

Log-likelihood −2685.295
Restricted log-likelihood −4279.095
Likelihood ratio index 0.372
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ote: 1: � denotes the standard deviation of distribution.
: The bold variables have pseudo-elasticity values greater than 50% or less than −1

* Indicates the parameter is statistically significant at the 0.01 level and unmarke

s the antecedent part of R1, R2, R4, and R6. In contrast, the “key
afe conditions” can be regarded as the antecedent part of R26.
he “key safe condition” reflected by R26 obviously depicts that
fastening seat belt can reduce the crash severity once a driver
ets involved in a crash.” We  further look into the remaining four
key risk conditions”: R1, R2, R4, and R6. Hereinafter, the terms
Ratio” as shown in Table 7 is defined as the number of serious
rashes divided by the number of total crashes. For comparison,
he ratios of other rules adjacent to the four key risk conditions are
lso presented. The so-called “adjacent rules” are those rules using
he same explanatory variables as the key rules in the antecedent
arts, but one of the explanatory variables takes a different value.
o save space, only the adjacent rules with ratio values greater
han the ratio of each key rule will be reported. For instance, we
ave attempted 9 adjacent rules for R1, but only 4 adjacent rules
ith ratios greater than 32.70% = (226 + 1593)/(226 + 1593 + 3744)

re reported and denoted as R1 − 1 ∼ R1 − 4.

R1 contains two variables: “vehicle type = others” and “alcoholic

se = over 0.25 mg/l.” The vehicle type belonging to “others” cate-
ory includes motorcycles and bicycles, which are not allowed to
nter the freeways according to the regulations, because they are

able 7
omparison of R1 with its adjacent rules.

Rule Antecedent part 

Vehicle type Alcoholic use 

R1 Others Over 0.25 mg/l 

R1 − 1 Heavy truck, trailer and tractor Over 0.25 mg/l 

R1 − 2 Bus Over 0.25 mg/l 

R1 − 3 Light truck Over 0.25 mg/l 

R1 − 4 Passenger car Over 0.25 mg/l 

ote: Ratio = the number of serious crashes/the number of total crashes, same for the rem
meters are statistically significant at the 0.05 level.

much more vulnerable than larger vehicles. Once the motorcyclists
or bicyclists have alcoholic use, they might unconsciously enter
the freeways and probably causing one-vehicle crash with serious
severity, although such cases have rarely happened. Table 7 com-
pares the ratios of the number of serious crashes to the number of
total crashes of R1 with its adjacent rules. Note that a total of 18 such
cases are covered by this rule and almost all such crashes are seri-
ous (94.44%), much higher than its adjacent rules R1 − 1 ∼ R1 − 4.
No matter which types the vehicle may  be, the crashes tend to
be serious once the cyclists have alcoholic use. Accordingly, more
intensive patrol is suggested to eradicate the alcohol-used cyclists
illegally entering the freeways. Meanwhile, the geometrics and
signs near the on-ramp areas should be designed in such a way
to prevent motorcyclists or bicyclists from illegally entering the
freeways.

R2 contains four variables: “Driver gender = male,” “Driver
age = under 30 years old,” “Time period = midnight” and “Major

cause = alcoholic use.” Table 8 compares the ratios of R2 with its
adjacent rules. Note that the selected rule has much higher ratio
than its adjacent rules. Also note that the crashes caused by drunk
young drivers in midnight or night time tend to have a higher

Number of crashes

Serious Minor Total Ratio

17 1 18 94.44%
14 9 23 60.87%

1 1 2 50.00%
27 30 57 47.37%

225 303 528 42.61%

aining tables.
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Table  8
Comparison of R2 with its adjacent rules.

Rule Antecedent part Number of crashes

Driver age Time period Major cause Serious Minor Total Ratio

R2 <30 Midnight Alcoholic use 35 4 39 89.74%
R2 − 1 30–40 Midnight Alcoholic use 7 5 12 58.33%
R2 − 2 40–50 Midnight Alcoholic use 4 6 10 40.00%
R2 − 3 <30 Night time Alcoholic use 2 3 5 40.00%
R2 − 4 <30 Midnight Fail to pay attention to the front 4 6 10 40.00%
R2 − 5 <30 Midnight Factors not attributed to drivers 4 6 10 40.00%

Note: Driver gender was  examined and no significant difference has been found.

Table 9
Comparison of R4 with its adjacent rules.

Rule Antecedent part Number of crashes

Road status Location Alcoholic use Serious Minor Total Ratio

R4 Straight road Shoulder Under 0.25 mg/l 26 3 29 89.66%
R4 − 1 Straight road Shoulder Over 0.25 mg/l 14 4 18 77.78%
R4 − 2 Straight road Toll plaza and others Under 0.25 mg/l 2 2 4 50.00%
R4 − 3 Grade and curved road Shoulder Under 0.25 mg/l 1 1 2 50.00%
R4 − 4 Straight road Traffic lane Under 0.25 mg/l 20 35 55 36.36%

Table 10
Comparison of R6 with its adjacent rules.

Rule Antecedent part Number of crashes

Surface condition Obstacle Speed limit Serious Minor Total Ratio
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R6 Wet  Others 90–70 

R6 − 1 Wet No 90–70 

everity. Accordingly, in addition to more intense drunk driving
nforcement, improving the illumination is perhaps an effective
ountermeasure to mitigate the risk of driving at night.

R4 contains three variables: “Road status = straight road,” “Loca-
ion = shoulder or edge” and “Alcoholic use = under 0.25 mg/l.”
able 9 compares the ratios of R4 with its adjacent rules. Note that
he selected rule still exhibits the highest ratio of serious crashes,
ollowed by R4 − 1 which is the same conditions with the selected-
ule except that the drivers have even heavier alcoholic use. From
able 9, most of rules with higher severe crash ratio are involved
ith alcoholic use, suggesting the importance of enforcement in

radicating the drink-drive phenomena.
Similar to R2, the influence of alcoholic use is also involved in R4.

he implications of R4 mainly focus on the influence from environ-
ental or spatial characteristics with alcoholic use, while those of

2 mainly from driver or temporal characteristics with alcohol use.
ynthesizing the analysis of R2 and R4, both are important refer-
nces as to proposing the countermeasures for reducing the crash
everity involved with drink-drive.

R6 contains three variables: “Surface condition = wet,” “Obsta-
le = others (e.g. fallen object, breakdown vehicles)” and “Speed
imit = 90–70 km/h.” The speed limit is 110 or 100 km/h for most
egments in Taiwan’s freeways, a reduced speed limit = 90–70 km/h
ndicates that the segments can be curved or in tunnels, toll stations
r work zones. Table 10 compares the ratios of R6 with its adjacent
ules. The selected-rule suggests that the conditions with wet  sur-
ace and unexpected obstacles in the reduced speed limit segments
ould be riskier than other segments. If there have no obstacles,
he ratio can then be largely reduced to 35.59% as indicated by
6 − 1. Even so, the wet surface at the reduced speed limit seg-
ents is still potentially dangerous. Accordingly, prompt removals

f roadway fallen objects or breakdown vehicles and provisions of

eal-time incident information should be regarded as the possible
ountermeasures.

In addition to the abovementioned key risk conditions, other risk
onditions are also briefly discussed as follows. R10 contains “heavy
22 3 25 88.00%
79 143 222 35.59%

alcoholic use” and “afternoon peak.” Once again, it suggests the
necessity of law enforcement on drink-drive. R14 reveals a higher
risk of light alcoholic use and cell phones usage under 90–70 km/h
speed limit. This also supports the policy of forbidding cell phones
usage during driving, especially in the reduced speed limit seg-
ments. As for R16, it reveals that the elder drivers are in higher risk
when they pass through the reduced speed limit segments. Thus,
more visible speed limit signs or other safety devices are essen-
tial, especially for the aged drivers. R20 is composed of “without
license” and “truck.” It is understandable that truck drivers without
licenses can jeopardize themselves and others. This can be eradi-
cated through intensive law enforcement with higher fines. As for
R22, it reveals that truck drivers aged 40–50 may have higher risk
during night-time without illumination.

It should be pointed out that few mined-rules in this study are
rather difficult to interpret. For instance, R19, crashes in night-time
with illumination and without lane-changing behaviors tend to be
serious. There have no manifest risk conditions to be identified
here; nonetheless, it could be due to other factors (e.g. fatigue driv-
ing) not narrated by the police in the traffic accident investigation
reports. This may  call for further studies.

It is worth noting that crash data usually suffer from under-
reporting effects, especially for the lower injury severity cases. An
outcome-based sample, which is over-represented by accidents of
higher severity, would result in biased parameters which skew the
inferences on the effects of key safety variables (Yamamoto et al.,
2008). Thus, more careful investigation into accident reports should
be taken prior to models estimation.

6. Conclusions

This paper has contributed to propose a two-stage mining

framework with the genetic mining rule (GMR) model and the
mixed logit model to identify the joint effects of key risk conditions
contributing to one-vehicle crash severity in freeway contexts. A
novel stepwise rule mining algorithm is proposed to avoid selecting
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bias  in parameters and the structure of injury severity models. Accident Analysis
and Prevention 40 (4), 1320–1329.
Y.-C. Chiou et al. / Accident Analy

onflicting or redundant rules. The empirical analysis based on the
003–2007 one-vehicle crash cases occurred in Taiwan’s freeways
A1: 226 cases, A2: 1593 cases, A3: 3744 cases has mined 29 rules
n the first stage, which can achieve overall correct rates of 76.51%
n training and 74.82% in validation). By incorporating these 29

ined-rules into a mixed logit model as explanatory dummy  vari-
bles in the second stage, five key risk conditions leading to serious
rashes have been identified. In-depth investigations on these key
isk conditions are further discussed and some countermeasures to
meliorate the traffic safety are proposed accordingly. The empiri-
al results have demonstrated that the proposed two-stage mining
ramework can satisfactorily identify the key risk conditions on
rash severity.

Some directions for future studies can be identified. First, other
nformation such as driver’s mentality conditions, reaction behav-
ors, fatigues, and traffic conditions while crashes occurred are
ot recorded in the traffic accident investigation reports; but
uch information may  be important for crash severity analysis as
ell. Thus, how to refine the police’s traffic accident investigation

eports, not only for liability purposes but also for research and
ractical traffic management purposes, can be an important topic
or future study. Second, to capture the influence of each original
xplanatory variable on different risk conditions, it can be use-
ul to establish a comprehensive relationship between individual
xplanatory variables and crash severity. Third, in most countries,
atal crash takes only a small portion of all crashes, but its con-
ributing factors are of major concern. Our proposed GMR  model
sed “coverage” as one of the performance indices, making it diffi-
ult in selecting the rules representing the most severe crashes due
o the small sample size of fatal crash cases. We  thus grouped the
rashes into “serious” (fatal and injury) and “minor” (property dam-
ge only) and then mined the potential risk conditions contributing
o the serious crashes. To enrich the fatal crash cases by studying a
onger period of time will enhance the proposed GMR  model. Last
ut not least, analysis of two-vehicle or more-than-two-vehicle
rashes can be more challenging calling for another study, which
equires developing a more sophisticated mining framework for
se.
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