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Abstract In the present study, we examined the behavior of
two indices for measuring the intraclass correlation in the
one-way random effects model: the prevailing ICC(1) (Fisher,
1938) and the corrected eta-squared (Bliese & Halverson,
1998). These two procedures differ both in their methods of
estimating the variance components that define the intraclass
correlation coefficient and in their performance of bias and
mean squared error in the estimation of the intraclass correla-
tion coefficient. In contrast with the natural unbiased principle
used to construct ICC(1), in the present study it was analyti-
cally shown that the corrected eta-squared estimator is identi-
cal to the maximum likelihood estimator and the pairwise
estimator under equal group sizes. Moreover, the empirical
results obtained from the present Monte Carlo simulation
study across various group structures revealed the mutual
dominance relationship between their truncated versions for
negative values. The corrected eta-squared estimator performs
better than the ICC(1) estimator when the underlying popula-
tion intraclass correlation coefficient is small. Conversely,
ICC(1) has a clear advantage over the corrected eta-squared
for medium and large magnitudes of population intraclass
correlation coefficient. The conceptual description and numer-
ical investigation provide guidelines to help researchers
choose between the two indices for more accurate reliability
analysis in multilevel research.
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Because of the inherently hierarchical nature of experimen-
tal randomization by cluster and clustered sampling designs,
multilevel phenomena and modeling are common in behav-
ioral, educational, and social sciences. Although the under-
lying structure of multilevel models is more complex than
the traditional linear regression models, their basic concept
and modeling framework provide a straightforward mecha-
nism for examining the interrelation of individual and group
influences. Thus, the class of hierarchical linear models has
become the most widely accepted basis for multilevel analysis
(Goldstein, 2002; Raudenbush & Bryk, 2002; Snijders &
Bosker, 1999). The relevant methodological and theoreti-
cal issues have been further addressed throughout various
areas of research by Cools, Van den Noortgate, and
Onghena (2009); Hedge and Hedberg (2007); Hoffman
and Rovine (2007); Hofmann (1997, 2002); Hofmann,
Griffin, and Gavin (2000); Kozlowski and Klein (2000);
Murray, Varnell, and Bliestein (2004); and Tasoluk,
Droge, and Calantone (2009).

One of the distinctive features of multilevel data is that
the primary outcomes for study participants within the same
unit are more similar than the responses by individuals in
different units. Hence, a problem of interest with regard to
hierarchical data is the assessment of similarity or degree of
resemblance among cluster members. The clustering can be
expressed in terms of correlation among the measurements
on individuals within the same group. The fundamental
properties and general guidelines related to intraclass corre-
lation coefficient (ICC) as an interrater reliability measure
are described in Bartko (1976), McGraw and Wong (1996),
and Shrout and Fleiss (1979). In particular, McGraw and
Wong emphasized the distinction between various forms of
the ICC developed using data from one-way and two-way
random and mixed-effect ANOVA models. In a typical
interrater reliability study, each of a random sample of g
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participants is rated independently by n judges. For the sim-
plest case, the one-way random effect model assumes that the
random participant represents the only systematic source of
variation (without judge effect). On the other hand, the two-
way random or mixed effect model assumes there is a system-
atic source of random or fixed judge effect as well as the
random participant variation. Moreover, the two-way random
and mixed models can be extended to accommodate the addi-
tional participant–judge interaction effect. Notably, these four
two-way models differ in whether judge represents random or
fixed effects and in whether the mode includes an interaction
component (For ease of reference, the prescribed five models
were noted as Cases 1, 2A, 3A, 2, and 3 in Table 1 of McGraw
and Wong 1996). Consequently, the conceptual modeling dif-
ference among these five models ultimately leads to a distinct
and unique definition of ICCs. The corresponding standard
ANOVA estimators can be constructed with the mean square
expectation (as shown in Tables 3 and 4 of McGraw &Wong,
1996). However, McGraw and Wong’s primary focus was to
provide a comprehensive account of procedures for computing
confidence intervals and constructing significance tests.
Hence, the existence and comparison of alternative estimators
of ICC reliability measure were not considered. Note that there
is a considerable amount of recent literature pertaining to both

the theoretical and practical problem of meaningfully and
efficiently estimating correlations among individuals in nested
designs (e.g., Alferes & Kenny, 2009; Beal & Dawson, 2007;
Bliese, 1998, 2000; Bliese & Halverson, 1998; Castro, 2002;
Courrieu, Brand-D’abrescia, Peereman, Spieler, & Rey, 2011;
Hedges&Rhoads, 2011; LeBreton& Senter, 2008; O’Connor,
2004; Wampold & Serlin, 2000).

In the present article, we focused on the intraclass correla-
tion coefficient that quantifies the homogeneity level in
responses by individuals from the same group for the outcome
of a one-way random-effects model, which is often useful as
an initial step in the development of a multilevel analysis.
Accordingly, the ICC(1) index, introduced by Fisher (1938),
is the most frequently adopted measure of intraclass correla-
tion. A comprehensive review of various inference procedures
for the ICC in the one-way random-effects model was given
by Donner (1986). Moreover, an extensive description of
various methods for estimating and testing the within-groups
and between-groups variances was presented in Searle,
Casella, and McCulloch (1992). The purposes of the present
study were (a) to explicate the essential issues concerning the
estimation of ICC, and (b) to provide specific guidance for the
use of proper ICC index in the light of new empirical eviden-
ces based on simulation technique.

Table 1 The bias of ICC indices
for g ¼ 4 and N ¼ 20 n ¼ 5ð Þ Group Size Structure

Equal Linear Extreme

ρ bρTA bη2

TC bρTA bη2

TC bρTA bη2

TC

0.00 0.063759 0.037186 0.067002 0.039329 0.086986 0.051589

0.05 0.041917 0.007477 0.044562 0.009193 0.061296 0.019523

0.10 0.023034 −0.018711 0.024420 −0.017895 0.036878 −0.010710

0.15 0.006223 −0.041795 0.007667 −0.041060 0.015692 −0.037663

0.20 −0.009490 −0.063138 −0.009490 −0.063435 −0.005943 −0.063879

0.25 −0.023619 −0.082057 −0.026342 −0.084796 −0.026351 −0.088472

0.30 −0.037888 −0.100120 −0.040228 −0.102587 −0.043018 −0.108729

0.35 −0.049613 −0.115218 −0.054630 −0.119937 −0.060379 −0.129223

0.40 −0.061150 −0.129277 −0.067756 −0.135419 −0.075783 −0.147017

0.45 −0.074410 −0.143853 −0.078682 −0.148031 −0.088404 −0.161189

0.50 −0.081787 −0.152420 −0.088148 −0.158560 −0.102256 −0.176245

0.55 −0.090286 −0.161014 −0.097730 −0.168433 −0.112250 −0.186532

0.60 −0.095447 −0.165508 −0.105590 −0.175620 −0.121990 −0.195793

0.65 −0.101594 −0.170155 −0.111976 −0.180779 −0.127277 −0.199802

0.70 −0.106299 −0.172178 −0.113498 −0.179889 −0.129185 −0.199079

0.75 −0.104033 −0.166232 −0.114432 −0.177056 −0.127992 −0.194387

0.80 −0.101521 −0.158582 −0.110571 −0.168241 −0.122973 −0.184157

0.85 −0.091493 −0.141216 −0.101177 −0.151939 −0.112605 −0.166284

0.90 −0.077342 −0.117232 −0.085953 −0.127172 −0.093294 −0.136623

0.95 −0.050889 −0.076458 −0.056408 −0.083098 −0.061256 −0.089314

0.99 −0.014940 −0.022268 −0.016491 −0.024252 −0.017316 −0.025345
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Despite the widespread use and apparent utility of ICC in
several different fields of research, the most fundamental
interpretation is that it is a measure of the proportion of the
total variance in the outcome that is accounted for by the
group membership. In multiple linear regression, it is well
known that the coefficient of determination R2 represents
the overall usefulness of the regression model, making it an
appealing measure for the strength of association or the
percentage of total variance that is explained by the predic-
tor variables. However, the advocated contention regarding
the role of R2 in linear regression models does not generalize
to a one way random-effects model in a straightforward
manner. Interestingly, the corresponding measure for the
proportionate reduction in error is denoted by bη2 in the
context of ANOVA designs, and both R2 and bη2 have the
identical formulation, as was noted by Maxwell, Camp, and
Arvey (1981). Although bη2 is widely used in organizational
research to draw inferences about group membership
cohesion, it was shown in Bliese and Halverson (1998)
that the sample eta-squared estimator bη2 is an inaccurate
measure of the amount of the total variance that is due to
the group level properties. Specifically, their simulation
study revealed that bη2 provides a positively biased estimate
of ICC and that the performance varies with group size and
underlying magnitude of population intraclass correlation.
Although the inappropriateness of bη2 as an estimate of
ICC was effectively demonstrated in the empirical results of
Bliese and Halverson, there remains the problem:Which other
indices should be used, and which ones are preferable under
particular conditions?

Accordingly, Bliese and Halverson (1998) suggested the
corrected eta-squared Eta2(C) formula as a modification ofbη2 to provide more accurate estimates of the intraclass
correlation. Although the proposed estimator Eta2(C) may
be useful in many settings, it was noted that Eta2(C) sys-
tematically underestimates the population group level prop-
erty and that the magnitude of underestimate is caused
without adjusting the degrees of freedom associated with a
sample when drawing inferences about the population intra-
class correlation. Instead, Bliese and Halverson recommen-
ded the well-known ICC(1) formula because ICC(1)
estimates are not biased by either group size or the number
of groups in the sample. Since the empirical investigation of
Bliese and Halverson focused on the behavior of bη2, they
did not present any numerical examinations regarding the
properties of Eta2(C) and ICC(1) in their estimation of intra-
class correlation. From a methodological standpoint, the
prescribed features of Eta2(C) and ICC(1) in Bliese and
Halverson, therefore, should be clarified.

In addition, the following three caveats seem to have
been overlooked. First, although ICC(1) is strongly tied
to normal theory and unbiased estimation of variance
components, the derivation of Eta2(C) is not clearly

conveyed relative to the existing estimation principles
and formulas. Second, a serious disadvantage of the two
estimators Eta2(C) and ICC(1) is that they can assume
negative values even though ICC is defined as a non-
negative parameter. In practice, the estimate is often set
equal to zero when this occurs. Although this simple
and intuitive adjustment is of practical meaning, the
fundamental behavior of the ICC estimator is inherently
altered. Third, regarding the estimation appraisal, unbi-
asedness is certainly not the only criterion of theoretical
importance. Mean square error (MSE) is another useful
performance criterion obtained by incorporating the bias
(accuracy) and variability (precision) of an estimator.
Realistically, however, the existing results are arguably
not detailed enough to demonstrate the explicit and
relative estimation performance between the two indices.
In the present research, we took up the aforementioned
methodological and theoretical issues with technical
clarifications and numerical investigations. Finally, Mon-
te Carlo simulation study was conducted to assess the
bias and MSE of the truncated counterparts of Eta2(C)
and ICC(1) for negative values under several model
configurations in terms of varied group structure and
magnitude of intraclass correlation. The present account
helps to clarify their unique and contrasting behavior
and to choose an appropriate ICC measure in the con-
text of studying the degree of clustering.

Measures of intraclass correlation

In a two-level study design, suppose the response variable is
measured on each of ni individuals within each of g groups
that arise from the one-way random effects model assuming
the following form:

Yij ¼ μþ g i þ "ij; i ¼ 1; :::; g; j ¼ 1; :::; ni; ð1Þ

where Yij is the individual level outcome, μ is the grand

mean, γi and εij are independent random variables with g i �
N 0;σ2

g

� �
, and "ij � N 0;σ2

"

� �
. The variance of Yij is then

given by σ2
g þ σ2

", where σ2
g represents the between-groups

variance and σ2
" represents the within-groups variance. Ac-

cordingly, the ICC ρ is defined as ρ ¼ σ2
g= σ2

g þ σ2
"

� �
, which

can be interpreted as a simple correlation coefficient Corr
(Yij, Yij’) between any two observations, Yij and Yij’, in the
same group with j ≠ j’. We are interested in assessing the
magnitude of ICC, which is directly interpretable as the pro-
portion of the total variance of the response that is accounted
for by the clustering or group cohesion.
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From the one-way random effects model defined in
Eq. 1, the estimated measure of proportionate reduction
in error is

bη2 ¼ SSB

SST
; ð2Þ

where SSB is the between-groups sum of squares, and
SST is the total sum of squares. Although bη2 accurately
describes the effect of group membership in a sample, it
systematically overestimates ICC (Bliese & Halverson,
1998). The well-established ANOVA estimator bρA is obtained
by replacing variance parameters in population ICC ρ with
corresponding unbiased estimators:

bρA ¼ MSB�MSW

MSBþ n0 � 1ð ÞMSW
¼ F� � 1

F� þ n0 � 1
; ð3Þ

where MSB is the between-groups mean square, MSW is the

within-groups mean square, n0 ¼ N �Pg
i¼1

n2i =N

� �
= g � 1ð Þ;

N ¼ Pg
i¼1

ni is the total number of observations, and F* 0MSB/

MSW. For a group size of equal number, ni 0 n, it is readily
apparent that bρA reduces to the familiar formula

ICC 1ð Þ ¼ MSB�MSW

MSBþ n� 1ð ÞMSW
¼ F� � 1

F� þ n� 1
ð4Þ

Although bρA is the most frequently adopted measure of
intraclass correlation, it is not unbiased (Donner, 1986).
Unfortunately, this general result contradicts the position
of Bliese and Halverson that ICC(1) is not biased by either
group size or the number of groups. Such conflicting results
will be discussed later in the numerical investigation. Note
that Olkin and Pratt (1958) derived the minimum variance
unbiased estimator of the intraclass correlation, but its use
has been impeded by the lack of a closed form expression.
The corresponding computation requires a special purpose
computer program (see, e.g., Donoghue & Collins, 1990).
Apparently the computational complexity of the unbiased
estimator has resulted in limited acceptance for practical
use. Thus, it is worthwhile to consider alternative formulas
that might yield similar results with less computation.

Alternatively, the maximum likelihood estimator bρM of ρ
can be derived, although an explicit expression generally

Table 2 The bias of ICC
indices for g ¼ 4 and
N ¼ 200 n ¼ 50ð Þ

Group Size Structure

Equal Linear Extreme

ρ bρTA bη2

TC bρTA bη2

TC bρTA bη2

TC

0.00 0.006112 0.003033 0.006619 0.003305 0.059756 0.031544

0.05 −0.000862 −0.015910 −0.001105 −0.016212 0.034656 −0.001356

0.10 −0.006034 −0.030454 −0.006738 −0.031093 0.012869 −0.030265

0.15 −0.012225 −0.044496 −0.013321 −0.045407 −0.007387 −0.056856

0.20 −0.020230 −0.059061 −0.021807 −0.060301 −0.028802 −0.083135

0.25 −0.027562 −0.072111 −0.030141 −0.074218 −0.046770 −0.105845

0.30 −0.036033 −0.085420 −0.040701 −0.089263 −0.063765 −0.126897

0.35 −0.045367 −0.098606 −0.050266 −0.102756 −0.079014 −0.145713

0.40 −0.054033 −0.110586 −0.060300 −0.115918 −0.093468 −0.162646

0.45 −0.063636 −0.122564 −0.068735 −0.126966 −0.105734 −0.176998

0.50 −0.071081 −0.131833 −0.078283 −0.138156 −0.118549 −0.190907

0.55 −0.077796 −0.139577 −0.086244 −0.147152 −0.127686 −0.200781

0.60 −0.086447 −0.148293 −0.094372 −0.155643 −0.134336 −0.207366

0.65 −0.091229 −0.152451 −0.098157 −0.158948 −0.140529 −0.212266

0.70 −0.094891 −0.154479 −0.102811 −0.162163 −0.141644 −0.211475

0.75 −0.095397 −0.152197 −0.103688 −0.160549 −0.140476 −0.206726

0.80 −0.093118 −0.145744 −0.101316 −0.154073 −0.133989 −0.195347

0.85 −0.086670 −0.133180 −0.094413 −0.141377 −0.122011 −0.176291

0.90 −0.073959 −0.111822 −0.081207 −0.119888 −0.101866 −0.146213

0.95 −0.048859 −0.073378 −0.054263 −0.079711 −0.066561 −0.095479

0.99 −0.014521 −0.021695 −0.016146 −0.023725 −0.019153 −0.027661
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does not exist. However, much of the complexity is consid-
erably simplified if each group is of the same size. As was
noted by Donner (1986) concerning the special case of ni 0
n, the maximum likelihood estimator bρM coincides with the
pairwise estimator bρP , defined as the Pearson product-
moment correlation computed over all possible pairs of
observations that can be constructed within groups:

bρP ¼ F� � 1� 1= g � 1ð Þ
F� þ n� 1þ n� 1ð Þ= g � 1ð Þ : ð5Þ

Moreover, in line with the estimation of ICC, the cor-
rected eta-squared estimator Eta2(C) suggested by Bliese
and Halverson (1998, Eq. 4) can be written in our notation
as

Eta2 Cð Þ ¼ bη 2 � 1=n

1� 1=n
: ð6Þ

It is straightforward, then, to show from Eq. 2 that bη2 ¼
SSB=SST ¼ F�= F� þ g n� 1ð Þ= g � 1ð Þf g for SST 0 SSB +
SSW, MSB 0 SSB/(g – 1), and MSW 0 SSW/{g(n – 1)} under
balanced design. Hence, an alternative form of Eta2(C)
given in Eq. 6 can be readily established by using the
new expression ofbη2 that Eta2(C) 0 {F* – 1 – 1/(g – 1)}/{F* +
n – 1 + (n – 1)/(g – 1)}. Consequently, the formulation of

Eta2(C) yields the equivalence property for the three estima-
tors Eta2 Cð Þ ¼ bρP ¼ bρM . Interestingly, this fundamental cor-
respondence among the three indices of Eta2(C), bρP and bρM
was not addressed in Bliese and Halverson. In view of the
strong connection of Eta2(C) with the maximum likelihood
principle, it is natural to present a simplified approximation
for the case of unequal group sizes with the advantage of
giving accessible expression. Accordingly, the following for-
mula with computational ease and general accessibility is
considered

bη2C ¼ bη2 � 1=n0
1� 1=n0

¼ F� � 1� 1= g � 1ð Þ
F� þ n0 � 1þ n0 � 1ð Þ= g � 1ð Þ : ð7Þ

Although a similar notion was presented in Bliese and
Halverson, no numerical evidence was provided to demon-
strate its estimation property.

Thus, it is easy to see from Eqs. 4, 5 and 6 that Eta2 Cð Þ
¼ bρPð Þ and ICC(1) are virtually equivalent if the number of
groups g is large, although Eta2(C) is always slightly less
than ICC(1) for all values of g > 1. Although there are
several comparative studies about the finite-sample
properties of the aforementioned estimators (e.g., Bliese
& Halverson, 1998; Donner & Koval, 1980; Swiger, Harvey,
Everson, & Gregory, 1964), they appear to overlook the fact

Table 3 The bias of ICC indices
for g ¼ 10 and N ¼ 50 n ¼ 5ð Þ Group Size Structure

Equal Linear Extreme

ρ bρTA bη2

TC bρTA bη2

TC bρTA bη2

TC

0.00 0.040430 0.029886 0.041376 0.030547 0.058236 0.043240

0.05 0.021726 0.006245 0.022530 0.006808 0.036237 0.016995

0.10 0.008721 −0.011003 0.009178 −0.010744 0.017448 −0.005492

0.15 −0.000804 −0.023969 −0.000361 −0.023660 0.002056 −0.024008

0.20 −0.007738 −0.033598 −0.008178 −0.034064 −0.010448 −0.039045

0.25 −0.013300 −0.041106 −0.013904 −0.041737 −0.021566 −0.052167

0.30 −0.018631 −0.047839 −0.019630 −0.048793 −0.031613 −0.063575

0.35 −0.022554 −0.052614 −0.025247 −0.055284 −0.039272 −0.072217

0.40 −0.025994 −0.056485 −0.029714 −0.060165 −0.047902 −0.081294

0.45 −0.029491 −0.060053 −0.034535 −0.065062 −0.052596 −0.086023

0.50 −0.032805 −0.063009 −0.037516 −0.067721 −0.057896 −0.090879

0.55 −0.034672 −0.064180 −0.040376 −0.069915 −0.061135 −0.093320

0.60 −0.035881 −0.064279 −0.041911 −0.070355 −0.063899 −0.094875

0.65 −0.037051 −0.063948 −0.042699 −0.069691 −0.063305 −0.092622

0.70 −0.036726 −0.061684 −0.043349 −0.068463 −0.062957 −0.090171

0.75 −0.034275 −0.056751 −0.040767 −0.063466 −0.059778 −0.084397

0.80 −0.032257 −0.051805 −0.037458 −0.057228 −0.054829 −0.076286

0.85 −0.027931 −0.043893 −0.033449 −0.049722 −0.047159 −0.064807

0.90 −0.021124 −0.032745 −0.025105 −0.037005 −0.035804 −0.048769

0.95 −0.012217 −0.018616 −0.014946 −0.021584 −0.020691 −0.027929

0.99 −0.002759 −0.004153 −0.003358 −0.004816 −0.004688 −0.006291
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that bρA and bη2

C permit negative values whenever F* < 1
or F* < g/(g – 1), respectively. In practice, the estimate
is set to zero when this occurs. This modification incurs
a truncated form of estimator, and the associated estimation
performance differs from the original counterpart, especially
when the underlying ICC is small. In fact, it was reported in
Bliese (2000) that the ICC(1) values are typically between
0.05 and 0.20, which implies that the true magnitudes of ICC
tend to be small in practical applications. Consequently, the
existing numerical results for untruncated formulas do not
necessarily apply to the truncated versions of the two estima-
tors. To extend the concept and applicability of the ICC
indices, it is prudent to investigate the estimation behavior of
their truncated forms.

Numerical study

In this section, we consider the performance appraisal in
point estimation of ICC following the notion of choosing a
profound index for the level of reliability. In view of the
common practice of reporting zero estimates of ρ when ICC
measures yield negative values, it is natural to consider the
truncated version for such occurrence. The corresponding

modified formulas bρTA and bη2

TC for the two prominent indicesbρA and bη2

C defined in Eqs. 3 and 7 are defined as

bρTA ¼ bρA if bρA � 0; and bρTA ¼ 0 if bρA < 0; ð8Þ
And

bη2

TC ¼ bη2

C if bη2

C � 0 and bη2

TC ¼ 0 if bη2

C < 0; ð9Þ

respectively. Although this natural modification is intuitive

and heuristic, the theoretical properties of bρTA and bη2

TC are
substantially different from those of their counterparts, bρA
and bη2

C , when the underlying coefficient parameter ρ is
small. However, a unified and rigorous presentation of these
truncated measures of ρ does not exist to our knowledge.
For pedagogical purposes, it is constructive to provide in-
formative results that not only permit new insights into their
relationships but also allow clear representations of various
methodological issues.

Note that the estimators bρA and bη2

C are functions of F*, as

are the two modifications bρTA and bη2

TC It follows from the
model assumption with balanced group sizes ni 0 n that the F*

statistic is distributed as a multiple of an F distribution F� �
nσ2

g=σ
2
" þ 1

� �
F, where F is an F distribution with (g – 1) and

Table 4 The bias of ICC
indices for g ¼ 10 and
N ¼ 500 n ¼ 50ð Þ

Group Size Structure

Equal Linear Extreme

ρ bρTA bη2

TC bρTA bη2

TC bρTA bη2

TC

0.00 0.003703 0.002560 0.003831 0.002650 0.040675 0.028632

0.05 −0.000724 −0.007134 −0.000868 −0.007291 0.019723 0.002813

0.10 −0.002105 −0.012461 −0.002893 −0.013201 0.002781 −0.018112

0.15 −0.004339 −0.018084 −0.005363 −0.019019 −0.010845 −0.034973

0.20 −0.006790 −0.023463 −0.008356 −0.024884 −0.022985 −0.049626

0.25 −0.010553 −0.029654 −0.012434 −0.031351 −0.033868 −0.062462

0.30 −0.013988 −0.035135 −0.015945 −0.036894 −0.043239 −0.073184

0.35 −0.016939 −0.039748 −0.020141 −0.042685 −0.051911 −0.082846

0.40 −0.020367 −0.044405 −0.024371 −0.048134 −0.059563 −0.091035

0.45 −0.024954 −0.049819 −0.028059 −0.052668 −0.065700 −0.097389

0.50 −0.026395 −0.051703 −0.031578 −0.056631 −0.071498 −0.102944

0.55 −0.029165 −0.054514 −0.035008 −0.060129 −0.075914 −0.106819

0.60 −0.031594 −0.056522 −0.036857 −0.061628 −0.078591 −0.108556

0.65 −0.032192 −0.056264 −0.039413 −0.063400 −0.080164 −0.108808

0.70 −0.033590 −0.056331 −0.039046 −0.061762 −0.078759 −0.105668

0.75 −0.032443 −0.053317 −0.038557 −0.059484 −0.074874 −0.099467

0.80 −0.030226 −0.048613 −0.036352 −0.054905 −0.069559 −0.091335

0.85 −0.026428 −0.041664 −0.031510 −0.046959 −0.060039 −0.078190

0.90 −0.020785 −0.032068 −0.024820 −0.036346 −0.045925 −0.059506

0.95 −0.012264 −0.018580 −0.014728 −0.021246 −0.026552 −0.034276

0.99 −0.002750 −0.004140 −0.003377 −0.004832 −0.006122 −0.007875
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(N − g) degrees of freedom. Thus, the bias and MSE of an
estimator bρ F�ð Þ of ρ are defined as

Bias bρ; ρð Þ ¼ E bρ F�ð Þ � ρ½ � andMSE bρ; ρð Þ

¼ E bρ2 F�ð Þ � ρ
n o2

� 	
; ð10Þ

where the expectation is taken with respect to the distribution
of F*. However, the distributional result does not extend
directly to unbalanced group size settings; see Searle et al.,
1992. Because of the complexity of the estimation problem,
analytical justifications of the theoretical discrepancies of the
two estimators are generally not feasible. Thus, a large-scale
simulation study is employed to assess the estimation proper-

ties of the prescribed truncated formulas bρTA and bη2

TC given in
Eqs. (8) and (9), respectively.

Study design

To demonstrate the potential extent of characteristics that an
applied work may reflect in clustering research, the number

of groups and average group size are set as g 0 4 and 10, and
n ¼ N=g ¼ 5 and 50, respectively. Moreover, the group
sizes are designated to have three different characteristics:
equal, linear, and extreme structures so as to exemplify
notable circumstances of practical importance. Specifically,
the group sizes {ni, i 0 1,…, g} for the combination of g 0 4
and N ¼ 20ðn ¼ 5Þ are:

Equal structure: {5, 5, 5, 5};
Linear structure: {2, 4, 6, 8};
Extreme structure: {14, 2, 2, 2}.

In the case of g 0 4 and N ¼ 200ðn ¼ 5Þ, the group sizes
are chosen as:

Equal structure: {50, 50, 50, 50};
Linear structure: {20, 40, 60, 80};
Extreme structure: {194, 2, 2, 2}.

On the other hand, the group sizes for the setting of g 0
10 and N ¼ 50ðn ¼ 5Þ are:

Equal structure: {5, 5, 5, 5, 5, 5, 5, 5, 5, 5};
Linear structure: {1, 2, 3, 4, 5, 5, 6, 7, 8, 9};
Extreme structure: {32, 2, 2, 2, 2, 2, 2, 2, 2, 2}.

Table 5 The root mean squared error of ICC indices for g ¼ 4 and N ¼ 20 n ¼ 5ð Þ

Group Size Structure

Equal Linear Extreme

ρ bρTA bη2

TC bρTA bη2

TC bρTA bη2

TC

0.00 0.126871 0.089515 0.133112 0.094334 0.167778 0.120544

0.05 0.140086 0.104359 0.145052 0.107948 0.174133 0.129706

0.10 0.156674 0.126649 0.160605 0.129519 0.184015 0.146398

0.15 0.174914 0.151800 0.178628 0.154568 0.197357 0.168087

0.20 0.191161 0.175451 0.195257 0.178874 0.211774 0.191747

0.25 0.206616 0.198060 0.210428 0.201982 0.225851 0.214796

0.30 0.220869 0.219414 0.224894 0.223384 0.241047 0.237872

0.35 0.232773 0.238065 0.238514 0.243910 0.254138 0.259121

0.40 0.242599 0.254201 0.249982 0.261740 0.266261 0.278439

0.45 0.252932 0.270399 0.259515 0.276870 0.277532 0.295883

0.50 0.258661 0.281411 0.266743 0.289664 0.286215 0.311136

0.55 0.263807 0.291430 0.272634 0.300768 0.292647 0.322756

0.60 0.265233 0.296829 0.276465 0.308705 0.297787 0.332836

0.65 0.265266 0.300634 0.276603 0.312825 0.298265 0.337392

0.70 0.263710 0.301729 0.271952 0.310909 0.295369 0.337194

0.75 0.253199 0.293074 0.266337 0.306847 0.285841 0.329905

0.80 0.240586 0.281121 0.252732 0.294049 0.271348 0.316285

0.85 0.218076 0.257323 0.230615 0.271103 0.249634 0.293104

0.90 0.187181 0.222667 0.197833 0.234880 0.212656 0.252089

0.95 0.132226 0.159427 0.140040 0.168739 0.151303 0.181783

0.99 0.051079 0.062428 0.053840 0.065997 0.057369 0.070089
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The group structures are expanded to N 0 500 with g 0 10
and n ¼ 50 as follows:

Equal structure: {50, 50, 50, 50, 50, 50, 50, 50, 50, 50};
Linear structure: {10, 20, 30, 40, 50, 50, 60, 70, 80, 90};
Extreme structure: {482, 2, 2, 2, 2, 2, 2, 2, 2, 2}.

Note that the linear structures are approximately but not
exactly linear in group sizes because of a minor adjustment
made so that their sum meets the selected total number of
observations. We also conducted a simulation study for
g 0 100 with n ¼ 5 and 50; however, the general phenom-

enon between the two indices bρTA and bη2

TC was similar to that
of g 0 10, and the discrepancies were rather small. To
conserve space, the details are not provided here.

Accordingly, the performance of bias and MSE of bρTA andbη2

TC are examined for ρ 0 0 to 0.95, with an increment of 0.05
and 0.99 for each of the 12 combined model configurations of
two numbers of groups, two average group sizes, and three
group size structures. Without loss of generality, the one-way
random effects model with parameter values μ ¼ 1;σ2

g ¼
ρ= 1� ρð Þ; andσ2

" ¼ 1 is used as the base for Monte Carlo
assessment. With the selected model configurations, the esti-
mates of bias andMSE defined in Eq. 10 are computed through

simulation of 100,000 replicate data sets. For each replicate, N
observations are generated from the designated one-way ran-
dom effects model. These values in turn determine the F*

statistic and the estimates bρTA and bη2

TC . Then, the resulting

errors bρTA�ð ρÞ and bη2

TC � ρ
� �

, and squared errors bρTA � ρð Þ2

and bη2

TC � ρ
� �2

, are computed. The simulated bias and MSE

associated with the two ICC indices are the arithmetic means of
the corresponding 100,000 replicated values. The computed
biases are presented in Tables 1, 2, 3 and 4 for g; nð Þ ¼
ð4; 5Þ; 4; 50ð Þ; 10; 5ð Þ; and 10; 50ð Þ , respectively. In addition,
the corresponding root mean squared errors (RMSE 0MSE1/2)
are summarized in Tables 5, 6, 7 and 8. These numerical results
reveal unfamiliar and essential relations between the competing
formulas.

Empirical results

Although it was noted previously that the bη2

C index tends to
underestimate ρ, it can be readily seen from Tables 1, 2 ,3

and 4 that the modified version bη2

TC incurs slightly positive

Table 6 The root mean squared error of ICC indices for g ¼ 4 and N ¼ 200 n ¼ 50ð Þ

Group Size Structure

Equal Linear Extreme

ρ bρTA bη2

TC bρTA bη2

TC bρTA bη2

TC

0.00 0.013350 0.008141 0.014501 0.008901 0.119797 0.078759

0.05 0.049347 0.041277 0.051273 0.042786 0.130562 0.092691

0.10 0.078526 0.070023 0.082135 0.073059 0.148244 0.118187

0.15 0.103505 0.096094 0.107847 0.099914 0.167467 0.146282

0.20 0.124526 0.119775 0.129959 0.124637 0.186498 0.174265

0.25 0.144244 0.142323 0.149043 0.146963 0.205312 0.201024

0.30 0.160106 0.162077 0.166379 0.168416 0.222946 0.226225

0.35 0.175440 0.181537 0.181137 0.187437 0.238632 0.249005

0.40 0.187202 0.197743 0.194575 0.205328 0.253912 0.270426

0.45 0.198804 0.213728 0.205096 0.220308 0.266164 0.288560

0.50 0.207423 0.226570 0.215882 0.235208 0.278007 0.305756

0.55 0.214131 0.237218 0.223845 0.247168 0.285798 0.318484

0.60 0.220902 0.247812 0.229392 0.256710 0.290336 0.327359

0.65 0.223116 0.253217 0.231298 0.261747 0.294199 0.334536

0.70 0.222967 0.255745 0.231800 0.265094 0.290770 0.334144

0.75 0.218452 0.253016 0.227135 0.262532 0.285366 0.330067

0.80 0.209001 0.244480 0.219206 0.255252 0.271318 0.316553

0.85 0.193769 0.228458 0.203304 0.238759 0.249731 0.293567

0.90 0.167460 0.199434 0.176145 0.209235 0.214228 0.254353

0.95 0.120026 0.144552 0.127292 0.153045 0.153682 0.184417

0.99 0.046116 0.056583 0.049520 0.060565 0.058767 0.071774
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bias when ρ is near zero because of truncation for nega-
tive values. In general, however, it remains negatively
biased, and the estimation behavior varies with group
structures. Unlike the documented claim that modified
ICC(1) is not affected by group size and the number of
groups (Bliese & Halverson, 1998, p. 168), the perfor-
mance of bρTA differs across the aforementioned four di-
verse group characteristics. Explicitly, the extensive
empirical results showed that the performance of the trun-
cated indices improves with an increasing number of
groups and increasing average group size. On the other
hand, it is noteworthy that their accuracy deteriorates as
the group size allocation changes from equal, linear to
extreme structures. The same phenomenon can be seen for
the RMSE results in Tables 5, 6, 7 and 8 as well.

Furthermore, there is an important distinction between the

two estimators. The absolute bias of bη2

TC is smaller than that ofbρTA at very small values of ρ. Specifically, the simulated biases
associated with four groups and 20 total observations in

Table 1 show that Bias bη2

TC; ρ
� �

< Bias bρTA; ρð Þ for all three
group-size structures when ρ ≤ 0.10. In additional, Table 3 (10

groups and 50 total observations) shows the same dominance
at ρ 0 0 and 0.05 for equal and linear structures, and at ρ ≤
0.10 for extreme structure. In the cases of four and 10 groups
with the average sample size n ¼ 50 of Tables 2 and 4, the
situation occurs only at ρ 0 0 for equal and linear structures,
and at ρ 0 0 and 0.05 for extreme structure. In contrast, it can

be concluded that bρTA is consistently more accurate than bη2

TC

at values of ρ ≥ 0.15 for all three group size structures with
respect to bias assessment. On the other hand, the computed
RMSE results in Tables 5, 6, 7, and 8 basically reveal the same

phenomenon that bη2

TC performs better than bρTA for small
values of ρ, whereas the opposite is true for moderate and
large values of ρ. However, the condition is slightly more
prevalent than that in the evaluation of bias. For example,

RMSE bη2

TC; ρ
� �

is less than RMSE bρTA; ρð Þwhen ρ ≤ 0.30 for
all three group size structures with the number of groups g 0 4
and N 0 20 in Table 5. The dominance situations only oc-
curred at the values of ρ ≤ 0.25 in Tables 6 and 7. Moreover,
the results in Table 8 basically maintain almost the same
pattern for ρ ≤ 0.25 with the only exception at ρ 0 0.25 for
the extreme group size structure. Overall, the truncated

Table 7 The root mean squared error of ICC indices for g ¼ 10 and N ¼ 50 n ¼ 5ð Þ

Group Size Structure

Equal Linear Extreme

ρ bρTA bη2

TC bρTA bη2

TC bρTA bη2

TC

0.00 0.077203 0.063381 0.078705 0.064584 0.108642 0.089752

0.05 0.091038 0.078514 0.092546 0.079784 0.117766 0.100542

0.10 0.107809 0.098571 0.109342 0.099922 0.131370 0.118227

0.15 0.122816 0.116985 0.125067 0.118975 0.146871 0.138197

0.20 0.134992 0.132239 0.138483 0.135523 0.161665 0.157158

0.25 0.144663 0.144556 0.148650 0.148351 0.173859 0.173307

0.30 0.151184 0.153640 0.157313 0.159502 0.184608 0.187593

0.35 0.156988 0.161452 0.163122 0.167694 0.192277 0.198410

0.40 0.160238 0.166538 0.167632 0.174158 0.198188 0.207274

0.45 0.160818 0.168937 0.169142 0.177598 0.201242 0.212624

0.50 0.161210 0.170844 0.169768 0.179784 0.201992 0.215301

0.55 0.158012 0.168918 0.167367 0.178782 0.199958 0.214901

0.60 0.153497 0.165404 0.163898 0.176282 0.196233 0.212428

0.65 0.147126 0.159791 0.157069 0.170288 0.187682 0.204586

0.70 0.137813 0.150885 0.149000 0.162696 0.178417 0.195627

0.75 0.125649 0.138510 0.136353 0.149902 0.163600 0.180551

0.80 0.111141 0.123478 0.120557 0.133540 0.145377 0.161328

0.85 0.092836 0.103935 0.102261 0.114079 0.121473 0.135759

0.90 0.068708 0.077609 0.075967 0.085474 0.091298 0.102710

0.95 0.039268 0.044737 0.044259 0.050241 0.052779 0.059823

0.99 0.008913 0.010250 0.010148 0.011628 0.012127 0.013872
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estimator bη2

TC has smaller RMSE for small values of ρ (≤ 0.20)
for all group structures, whereas bρTA gives better RMSE for
moderate and large values of ρ (≥ 0.35). Hence, the domi-

nance relationship between bρTA and bη2

TC is closely related to
group structures when the true value of ρ is between 0.20 and
0.35. In other words, each estimator is better only for certain
combined configurations of ρ, numbers of groups, average
group sizes, and group size structures.

Implication for intraclass correlation analysis

In the present article, we focused our attention on the two

general formulas bρTA and bη2

TC for their appealing features of
overall accuracy and computational ease. The detailed numer-
ical investigation further helps differentiate the use of a proper
ICC index from others under various circumstances. First, the
ICC(1) or bρA index is used by authors and requested by
reviewers almost reflexively in multilevel analysis. The em-
pirical evidence demonstrates that further improvement may
be obtained by adopting the corrected eta-squared estimator

when the magnitude of an intraclass correlation is small.
Second, according to the body of accumulated knowledge in
field research (Bliese, 2000), the underlying magnitudes of

ICC are typically less than 0.20. Thus, Eta2(C) or bη2

C appears
to be a more appropriate estimate of the strength of intraclass
correlation. With the reported values of F*, the number of
groups, and actual group sizes in actual practice, the corrected
eta-squared estimators can be readily computed with the pre-
scribed formulas. On the other hand, it can be shown that

Eta2(C) and bη2

C can be recovered directly from ICC(1) and bρA
through the identity

Eta2 Cð Þ ¼ n � ICCð1Þ � 1� ICCð1Þð Þ= g � 1ð Þ
nþ 1� ICCð1Þð Þ n� 1ð Þ= g � 1ð Þ ð11Þ

And

bη2

C ¼ n0bρA � 1� bρAð Þ= g � 1ð Þ
n0 þ 1� bρAð Þ n0 � 1ð Þ= g � 1ð Þ ; ð12Þ

respectively. Thus, for example, an ICC(1) of 0.20 with the
number of groups g 0 10 and group size n 0 5 translates into
having an Eta2(C) value of 0.17 with Eq. 11. Similarly, the

Table 8 The root mean squared error of ICC indices for g ¼ 10 and N ¼ 500 n ¼ 50ð Þ

Group Size Structure

Equal Linear Extreme

ρ bρTA bη2

TC bρTA bη2

TC bρTA bη2

TC

0.00 0.007438 0.005794 0.007657 0.005962 0.077493 0.061586

0.05 0.030336 0.028572 0.032134 0.030201 0.091051 0.077255

0.10 0.049069 0.046975 0.052162 0.049924 0.110191 0.100805

0.15 0.064754 0.062939 0.069436 0.067387 0.130046 0.124842

0.20 0.078536 0.077332 0.084285 0.082879 0.147426 0.145995

0.25 0.090571 0.090470 0.097413 0.097075 0.162264 0.164287

0.30 0.100408 0.101553 0.107773 0.108672 0.175663 0.180589

0.35 0.108305 0.110756 0.117004 0.119351 0.185883 0.193601

0.40 0.115122 0.119002 0.124124 0.128040 0.193650 0.203788

0.45 0.119736 0.125354 0.129420 0.134884 0.198600 0.210923

0.50 0.123002 0.129764 0.133404 0.140309 0.202120 0.216182

0.55 0.123577 0.131766 0.134870 0.143272 0.202617 0.218257

0.60 0.123818 0.133182 0.134154 0.143737 0.200319 0.217084

0.65 0.120291 0.130537 0.132308 0.143012 0.195680 0.213270

0.70 0.116203 0.127183 0.126309 0.137650 0.185344 0.203324

0.75 0.107326 0.118561 0.118666 0.130334 0.172579 0.190281

0.80 0.096749 0.107689 0.107089 0.118609 0.155069 0.172040

0.85 0.081501 0.091549 0.090588 0.101184 0.132144 0.147391

0.90 0.062190 0.070459 0.069551 0.078380 0.100334 0.112714

0.95 0.036210 0.041422 0.040916 0.046556 0.058804 0.066561

0.99 0.008223 0.009512 0.009527 0.010961 0.013900 0.015871
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correspondence between bρA and bη2

C can be established through
Eq. 12 for a given value n0. In short, Bliese and Halverson
(1998) asserted that ICC(1) and Eta2(C) provide significant
improvements over bη2 for describing the effect of group
membership. In the present article, we presented a compre-
hensive treatment to provide operational guidelines and prac-
tical implications for choosing between the two indices ICC
(1) and Eta2(C) and their extended formulas.

Conclusion

The present article concerns the use of two ICC indices as
strength of association measures for clustering studies. De-
spite their routine and common application in empirical
studies, the fundamental properties of ICC indices are not
sufficiently illustrated in the literature. The well-known
ANOVA estimator and the previously suggested corrected
eta-squared formulas were closely examined with respect to
their point estimation principle, unbalanced data extension,
and practical truncation consideration. In view of estimation
principle, ICC(1) was obtained by substituting the variance
components in population ICC with corresponding unbiased
estimators. In contrast, the corrected eta-squared estimator
was identical to the maximum likelihood estimator and the
pairwise estimator under equal group sizes. Although their
expressions were tractable and easy to compute, the intrinsic
estimation complexity prevented analytical justification.
Therefore, contemporary computer capabilities were used
to conduct intensive simulation study for the bias and
MSE performance of the two competing formulas. The
numerical examinations revealed their critical and subtle
discrepancy in estimating population ICC: Their estimation
properties varied with the number of groups, average group
size, and group size structure. Moreover, the modification of
corrected eta-squared estimator performed better for small
values of ICC, and the adjusted ICC(1) was preferred for
moderate and large ICC values. Recognizing the different
behavior of the two estimators helps to clarify the issue of
evaluating the strength of the group property and how to
choose an appropriate estimate in multilevel analysis. This
information may be useful in selecting an appropriate mea-
sure of the intraclass correlation when a researcher has a
basic conceptual idea about the underlying ICC in conjunc-
tion with the fundamental configurations of the obtained
sample, such as the number of groups, average group size,
and group size structure.

Author Note The author thanks Professor T. K. Peng of I-Shou
University for helpful comments on an earlier version of this manu-
script, and the action editor, Ira Bernstein, and two anonymous referees
for constructive suggestions, which resulted in a clearer exposition.
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