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Abstract In the present article, we demonstrates the use of
SAS PROC CALIS to fit various types of Level-1 error
covariance structures of latent growth models (LGM).
Advantages of the SEM approach, on which PROC CALIS
is based, include the capabilities of modeling the change
over time for latent constructs, measured by multiple
indicators; embedding LGM into a larger latent variable
model; incorporating measurement models for latent pre-
dictors; and better assessing model fit and the flexibility in
specifying error covariance structures. The strength of
PROC CALIS is always accompanied with technical
coding work, which needs to be specifically addressed.
We provide a tutorial on the SAS syntax for modeling the
growth of a manifest variable and the growth of a latent
construct, focusing the documentation on the specification
of Level-1 error covariance structures. Illustrations are
conducted with the data generated from two given latent
growth models. The coding provided is helpful when the
growth model has been well determined and the Level-1
error covariance structure is to be identified.

Keywords Error covariance structure . Latent growth
model . Structural equation modeling

The latent growth model (LGM) plays an important role in
repeated measure analysis over a limited number of
occasions in large samples (e.g., Meredith & Tisak, 1990;
Muthén & Khoo, 1998; Preacher, Wichman, MacCallum, &

Briggs, 2008, p. 12). The model can not only characterize
intraindividual (within subjects) change over time, but also
examine interindividual (between subjects) difference by
means of random growth coefficients, and is a typical
application of hierarchical linear modeling (HLM). The
within-subjects errors over time and the between-subjects
errors are conventionally referred to as “Level-1” and
“Level-2” errors, respectively. LGM can also be handled by
using structural equation modeling (SEM) (e.g., Bauer,
2003; Bollen & Curran, 2006; Chan, 1998; Curran, 2003;
Duncan, Duncan, & Hops, 1996; Mehta & Neal 2005;
Meredith & Tisak, 1990; Willet & Sayer, 1994). SEM and
HLM stem from different statistical theory, and each has
developed its own terminology and standard ways of
framing research questions. However, there exists much
overlap between the two methodologies under some
circumstances. Typically, when a two-level data structure
arises from the repeated observations of a variable over
time for a set of individuals (so that time is hierarchically
nested within each individual), SEM is analytically equiv-
alent to HLM (e.g., Bauer, 2003; Bovaird, 2007; Curran,
2003; MacCallum, Kim, Malarkey, & Kiecolt-Glaser, 1997;
Raudenbush, 2001; Rovine & Molenaar, 2000; Willett &
Sayer, 1994). The SEM approach provides advantages over
the HLM approach in examining model fit; modeling the
change over time for latent constructs, with the curve-of-
factors model; embedding LGM into a larger latent variable
model, with the factor-of-curves model; and incorporating
measurement models for latent predictors (e.g., Bauer,
2003; Bollen & Curran, 2006, Chap. 7, 8; Bovaird, 2007;
Chan, 1998; Curran, 2003; Duncan, Duncan, & Strycker,
2006, Chap. 4; MacCallum et al., 1997; Raudenbush, 2001;
Rovine & Molenaar, 2000). However, the SEM approach
suffers from a tedious and error-prone data management
task. Many steps are needed to properly structure the data,
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and the SEM code quickly becomes unwieldy. In contrast,
the HLM approach allows for simpler model specifica-
tion, is computationally more efficient, and can easily
be expanded to higher level growth models for manifest
variables (Curran, 2003; Wu, West, & Taylor, 2009). A
detailed comparison between HLM and SEM can be seen
in Bauer (2003) and Curran (2003).

Specialized software for SEM such as EQS (Bentler & Wu,
2005), LISREL (Jöreskog & Sörbom, 2001), Mplus (Muthén
& Muthén, 2007), Mx (Neale, Boker, Xie, & Maes, 2003),
and SAS PROC CALIS (SAS Institute Inc., 2010) are readily
available. HLM (Raudenbush, Bryk, & Congdon, 2005),
MLwiN (Rasbash et al., 2000), and SAS PROC MIXED
(SAS Institute Inc., 2010) are typical software for HLM.
Because of the isomorphism between SEM and HLM for the
same growth model, parameter estimates with SEM and those
with HLM should be equivalent. Any minor variations can be
attributed to different computational methods used (standard
maximum likelihood [ML] estimation or full information
maximum likelihood [FIML] estimation for SEM, and
restricted maximum-likelihood estimation for HLM). Relevant
discussions have been given in Bauer (2003), Bovaird (2007),
Curran (2003), and Mehta and Neale (2005).

Level-1 errors could be autocorrelated. Autocorrelations,
considered to be nuisance parameters, might result from
carryover effects, memory effects, practice effects, or other
unmodeled associations, and might not be present when a
more complex model or a more appropriate time structure is
used (Grimm & Widaman, 2010; Sivo & Fan, 2008). For
example, the growth curve ARMA (p, q) model has been
proposed to absorb error autocorrelations (e.g., Sivo, Fan,
& Witta, 2005; Sivo & Fan, 2008). When Level-1 errors are
autocorrelated, misspecification of their covariance struc-
tures has a substantial impact on the inference for model
parameters (Ferron, Dailey, & Yi, 2002; Kwok, West, &
Green, 2007; Murphy & Pituch, 2009). However, correct
covariance structure is difficult to specify by theory (Kwok
et al., 2007, p. 588). Therefore, a specification search
becomes needed. Littell, Milliken, Stroup, Wolfinger, &
Schabenberger (2006, Chap. 5) illustrated two types of
tools with SAS PROC MIXED to help select a covariance
structure. First are graphical tools to visualize correlation
patterns among residuals. Second are information criteria
measuring the relative fit of competing covariance struc-
tures. AIC (Akaike, 1974) and BIC (Schwarz, 1978) are
commonly used descriptive measures. The model that
minimizes AIC or BIC is preferred. Before using these
methods, researchers should first rule out covariance
structures that are obviously inconsistent with the character-
istics of the data. On the other hand, although linear growth
curve models are often fitted because of their ease in
estimation, theory may suggest that more complex growth
models be used, since they can better capture developmen-

tal patterns. Correctly specifying the growth model might
lead to a simple covariance structure (Grimm & Widaman,
2010). Moreover, when the growth model is misspecified,
statistical inference during the search process can be
misleading (Yuan & Bentler, 2004). Therefore, the growth
model should be well determined before searching for an
“optimal” covariance structure for Level-1 errors.

A variety of processes underlying Level-1 errors may be
specified (e.g., Newsom, 2002; Singer & Willett, 2003, Chap.
7; Wolfinger, 1996). SAS PROC MIXED contains more than
30 different types of Level-1 preprogrammed error processes.
However, some important processes are unavailable, and any
modification of existing processes is not allowed. In contrast,
there exists much flexibility in PROC CALIS when
specifying error covariance structures. For example, the
second-order autoregressive process, not available in PROC
MIXED, can be handled with PROC CALIS. The strength of
PROC CALIS is always accompanied with technical coding
work, which needs to be specifically addressed, and is the
focus of this article. In addition to PROC CALIS, any
comparable SEM software could be used.

There seems to be no commonly acceptable criteria for
assessing model fit according to the indices such as AIC and
BIC resulting from PROC MIXED. In contrast, there is some
agreement on the cut-off criteria of conventional fit indices
based on the likelihood ratio test in SEM, such as RMSEA,
CFI, and NNFI (TLI) (e.g., Hu & Bentler, 1999). However,
since in SEM-based LGM the factor loadings are usually
fixed at time points rather than freely estimated, and the fit of
the model to the mean structure should be reflected as well,
assessment of model fit by using conventional SEM-based fit
indices should be cautious (Mehta & Neale, 2005; Wu et al.,
2009). When every individual is observed at the same fixed
set of time points (called “balanced”) with no missing values
(called “complete”), ML estimation is used; otherwise, FIML
estimation is used (Wu et al., 2009). With FIML estimation,
the model-implied means and covariances are computed for
each individual, and the maximum likelihood chi-square fit
function is obtained by summing −2 log likelihood across all
of the individual data vectors (Bovaird, 2007). For balanced
and complete data, FIML simplifies to ML, and, in this case,
RMSEA, CFI, and NNFI among the SEM-based fit indices
have shown good potential performance in evaluating the fit
of LGM (Wu & West, 2010; Wu et al., 2009). For unbalanced
designs or missing data, conventional guidelines for adequate
fit with these indices may be misleading (Wu et al., 2009).

During the search process, we need instruments for the
implementation of fitting various types of error covariance
structures. The primary motivation to use PROC CALIS is
to take advantage of its flexibility in specifying Level-1
error covariance structures and its capability to deal with
growth modeling for both manifest variables and latent
constructs. PROC CALIS performs better than PROC
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MIXED, but more sophisticated coding work is required.
The purpose of the present article is to address this issue by
giving a tutorial on the syntax using PROC CALIS to fit
many types of Level-1 error covariance structures in LGM
for a manifest variable as well as for a latent construct.
Illustrations will be conducted with the data generated from
two given latent growth models. SAS is a general-purpose
and publicly available software. Its ability to do data
management and analysis within a single package will
make the instruments we provide attractive to many
researchers.

Latent growth models

In this section, we briefly introduce the LGM with a variety
of Level-1 error covariance structures through a typical
example depicted in Fig. 1. In the figure, y1 – y4 denote the
repeated measures of y on four occasions and X is a Level-2
predictor. hai

is the unobserved intercept representing the
initial status for individual i, and hbi the unobserved slope

showing the individual’s linear rate of change per unit
increase in time. hai

and hbi are both latent factors. The

Level-1 model can be written as

y ¼ Λ
»

yhþ ε; ð1Þ

w h e r e y ¼ ½y1 y2 y3 y4�0, Λ
»

y ¼
1 1 1 1
l1 l2 l3 l4

� �0
,

h ¼ ½ha hb�0, and ε ¼ ½ε1 ε2 ε3 ε4�0. lt is the measurement
time points (t = 1, 2, 3, 4) and ε denotes Level-1 errors. The
solid line with four arrowheads presented in Fig. 1 indicate
that εt are pairwise correlated. The factor loading associated
with initial status are all fixed at 1, whereas those
associated with the slope are set at the value lt to reflect
the particular time point t for individual i. A common
coding of lt for different time points is to set l1 = 0 for
baseline and lt ¼ t � 1 for the follow-ups. For this model,
subject i’s growth trajectory is a straight line, hai

þ lthbi , lt
= 0, 1, 2, 3. (For simplicity, subscript i is omitted for the

rest part of this article.) The loading matrix Λ
»

y containing

fixed values has a superscript * to distinguish from the
traditional notation used for the unknown loadings in
confirmatory factor analysis (CFA). The model is a
restricted CFA model.

The Level-2 model can be written as

h ¼ Γ0 þ Γxxþ zh ; ð2Þ

where Γ0 ¼ ½g00 g01�0, Γx ¼ ½g10 g11�0, x ¼ X½ �, and zh ¼
½zha zhb �0. Growth factors ηα and ηβ (a random intercept and

a random slope) are both predicted by a time invariant subject-
level covariate X. g00 and g10 denote, respectively, the
intercept and slope of the regression of ηα on X; γ01 and γ11
are those of ηβ on X; and zha and zhbare Level-2 errors. Two

or more time invariant predictors of change may be included.
Since it is not our focus, for simplicity, we consider only one
predictor here. ζη and ε are assumed to be uncorrelated. The
models can be rewritten in combined form as

y ¼ Λ
»

yðΓ0 þ ΓxxÞ þΛ
»

yzη þ ε; ð3Þ

based on which the model-implied mean vector μ and the
model-implied covariance matrix Σ of the manifest variables
y1–y4 and X can be expressed as functions of the model
parameters as follows (Bollen & Curran, 2006, p. 134–135):

m ¼ my
mx

� �
¼ Λ

»

yðΓ0 þ ΓxmxÞ
mx

� �
; ð4Þ

Σ ¼ Λ
»

yðΓxΣxxΓ
0
x þΨzhÞΛ

»
y

0
þΘε Λ

»

yΓxΣxx

ΣxxΓ
0
xΛ

»
y

0
Σxx

24 35 ; ð5Þ

where Θε and Ψzη denote the variance-covariance matrices
of ε and ζη, respectively, and μx and Σxx denote,
respectively, the mean vector and the variance–covariance
matrix of predictors (mx ¼ mX and Σxx ¼ s2

X for this
model, since there is only one predictor).

1ε

Intercept
  ( ) αη

Slope
 ( ) βη

1y 2y 3y 4y

2ε 3ε 4ε

10γ 11γ

1

00γ 01γ

X

1 1 1 1 0 1 2 3

Time 1 Time 2 Time 3 Time 4

αηζ
βηζ

η ηα βζ ζσ

Fig. 1 Linear latent growth model with four repeated measures and a
predictor X (adapted from Bollen and Curran [2006, p. 128] and
Preachers et al. [2008, p. 29])
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The Level-1 errors, ε1, ε2, ε3, and ε4, are assumed to be
normally distributed with zero means. The general error
covariance matrix (ECM) is unstructured and is given by

Θε ¼
s2
ε1

sε2ε1 s2
ε2

sε3ε1 sε3ε2 s2
ε3

sε4ε1 sε4ε2 sε4ε3 s2
ε4

26664
37775 : ð6Þ

The corresponding option given in SAS PROC MIXED is
TYPE = UN. Other types of ECM, with fewer parameters
may be desirable. The Level-2 errors zha and zhb are

assumed to be normally distributed with zero means. Their
covariance matrix is usually specified as unstructured
(Murphy & Pituch, 2009):

Ψzh ¼
s2
zha

szha zhb

szha zhb
s2
zhb

" #
: ð7Þ

Types of the Level-1 Error Covariance Structure
and SAS Statements

Any type of the Level-1 ECM (Θε) except unstructured can
be expressed as a set of linear and/or nonlinear constraints
on the parameters involving the covariance structure. SAS
PROC MIXED provides a REPEATED statement, in which
many types of the Level-1 error covariance structure can be
specified through the TYPE = option (e.g., Singer, 1998).
However, some important processes, such as higher order
autoregressive and moving average processes are not
included. Moreover, PROC MIXED cannot handle LGM
for constructs.1 To improve, use PROC CALIS. The STD,
COV, and PARAMETERS statements in PROC CALIS can
be used together to specify any type of ECM. The STD
statement defines variances to estimate for exogenous and
error variables. The COV statement defines covariances to
estimate for exogenous and error variables. The PARAME-
TERS statement defines additional parameters that are not
specified in the models, and it uses both the original and
additional parameters for modeling ECM. In other words,
each specific type of ECM is composed of functions of the
original and additional parameters. The SAS statements in
PROC CALIS for fitting different types of the Level-1 error
covariance structures, including AR(1) (the first-order autor-
egressive), MA(1) (the first-order moving average), ARMA
(1,1) (the first-order autoregressive moving average), AR(2)

(the second-order autoregressive), MA(2) (the second-
order moving average), ARH(1) (heterogeneous AR(1)),
TOEPH (heterogeneous Toeplitz), and UN (unstructured)—
with four equally spaced occasions—are summarized in
Table 1. AR(1), MA(1), ARMA(1,1), AR(2), and MA(2)
are members of the ARMA family. Documentation for LGM
with ARMA(1,1), TOEPH, and AR(2) for Level-1 errors is
given as follows:

Example 1: ARMA(1,1) The ARMA(1,1) process is defined
as "t ¼ f1"t�1 þ nt � q1nt�1, where f1 denotes the autore-
gressive parameter, θ1 the moving average parameter, and vt
an i.i.d. disturbance process (Box, Jenkins, & Reinsel, 1994,
p. 77). Its interpretation is that the Level-1 error at time t can
be predicted by the Level-1 error at time t–1 and the
independent disturbance at time t–1. The resulting ECM is
given by

Θε ¼ s2
ε

1
r1 1
r2 r1 1
r3 r2 r1 1

2664
3775 ; ð8Þ

where s2
" denotes the common variance of εt; t = 1, 2, 3, 4;

and ρk denotes their autocorrelation coefficient at lag k,

given by r1 ¼ ðf1�q1Þð1�f1q1Þ
ð1�2f1q1þq21Þ

, rk ¼ f1rk�1; k = 2, 3; with the

constraints of jf1j < 1 and jq1j < 1. Program 1 in
Appendix A demonstrates how to use PROC CALIS for
modeling LGM with the ARMA(1,1) covariance structure
for Level-1 errors and the unstructured covariance for
Level-2 errors for four equally spaced time points. The
UCOVand AUG options are specified to analyze the mean
structures in an uncorrected covariance matrix. The data
set to be analyzed is augmented by an intercept variable
INTERCEPT that has constant values equal to 1. The
LINEQS statement given below is used to specify the
Level-1 model (the restricted CFA model) shown in
Equation 1 and the Level-2 model shown in Equation 2.

LINEQS
Y1 ¼ 1 F Alphaþ 0 F Betaþ E1;
Y2 ¼ 1 F Alphaþ 1 F Betaþ E2;
Y3 ¼ 1 F Alphaþ 2 F Betaþ E3;
Y4 ¼ 1 F Alphaþ 3 F Betaþ E4;
F Alpha ¼ GA00 INTERCEPTþ GA01Xþ D0;
F Beta ¼ GA10 INTERCEPTþ GA11Xþ D1;

where F_ALPHA and F_BETA represent latent factors hai
and

hbi . Factor loadings are fixed values (in Λ
»

y). Level-1 errors ε1
– ε4 are named E1–E4, and Level-2 errors zha and zhb are

named D0 and D1. GA00, GA01, GA10, and GA11 represent
estimates of growth parameters g00, g01, g10, and g11.

1 Although PROC NLMIXED could be used to fit linear or nonlinear
LGM for constructs (e.g., Blozis, 2006), no option is available in the
procedure for specifying types of ECM. Relevant coding is laborious.
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Table 1 SAS statements in PROC CALIS for specifying different types of the Level-1 error covariance structure with four occasions

Structure (Θε) and ECM Statements in PROC CALIS

AR(1): STD

"t ¼ f1"t�1 þ nt; jf1j < 1; E1=VARE, E2=VARE, E3=VARE, E4=VARE,

D0 =VARD0, D1 =VARD1;

s2
"

1
r1 1
r2 r1 1
r3 r2 r1 1

2664
3775; COV

E1 E2=COV_lag1, E2 E3=COV_lag1, E3 E4=COV_lag1,

E1 E3=COV_lag2, E2 E4=COV_lag2, E1 E4=COV_lag3,

D0 D1=CD0D1;

PARAMETERS PHI1;rk ¼ fk1; k > 0:
COV_lag1= PHI1*VARE; COV_lag2=(PHI1**2)*VARE; COV_lag3= (PHI1**3) *VARE;

BOUNDS

–1. < PHI1 < 1. ;

MA(1): STD

"t ¼ nt � q1nt�1; jq1j < 1; E1=VARE, E2=VARE, E3=VARE, E4=VARE,

D0 =VARD0, D1 =VARD1;

s2
"

1
r1 1
0 r1 1
0 0 r1 1

2664
3775; COV

E1 E2=COV_lag1, E2 E3=COV_lag1,

E3 E4=COV_lag1, D0 D1=CD0D1;

PARAMETERS THE1;

COV_lag1= (−THE1/(1+ THE1**2))*VARE;r1 ¼ �q1
ð1þq21Þ

; rk ¼ 0; k > 1:
BOUNDS

–1. < THE1 < 1. ;

ARMA(1,1): STD

"t ¼ f1"t�1 þ nt � q1nt�1;
jf1j < 1; jq1j < 1;

E1=VARE, E2=VARE, E3=VARE, E4=VARE,

D0=VARD0, D1=VARD1;

COV

E1 E2=COV_lag1, E2 E3=COV_lag1, E3 E4=COV_lag1,

s2
"

1
r1 1
r2 r1 1
r3 r2 r1 1

2664
3775,

r1 ¼ ðf1�q1Þð1�f1q1Þ
ð1�2f1q1þq21Þ

;

E1 E3=COV_lag2, E2 E4=COV_lag2, E1 E4=COV_lag3,

D0 D1=CD0D1;

PARAMETERS PHI1 RHO1;

COV_lag1=RHO1*VARE; COV_lag2=PHI1* COV_lag1; COV_lag3=PHI1* COV_lag2;

BOUNDS

–1. < PHI1 < 1.;rk ¼ f1rk�1; k > 1:

AR(2): STD

"t ¼ f1"t�1 þ f2"t�2 þ nt; E1-E4=4*VARE, D0=VARD0, D1=VARD1;

COVjf2j < 1; f2 þ f1 < 1; f2 � f1 < 1;
E1 E2=COV_lag1, E2 E3=COV_lag1, E3 E4=COV_lag1,

E1 E3=COV_lag2, E2 E4=COV_lag2, E1 E4=COV_lag3,

s2
"

1
r1 1
r2 r1 1
r3 r2 r1 1

2664
3775; D0 D1=CD0D1;

PARAMETERS PHI1 PHI2;

RHO1= PHI1/(1–PHI2); COV_lag1=RHO1*VARE;

COV_lag2=PHI1*COV_lag1+ PHI2 *VARE;

COV_lag3=PHI1*COV_lag2+PHI2*COV_lag1;
r0 ¼ 1;

LINCON

PHI2 + PHI1 < 1., PHI2 –PHI1 < 1.;

r1 ¼ f1=ð1� f2Þ;
rk ¼ f1rk�1 þ f2rk�2; k > 1:

BOUNDS

–1. < PHI2 < 1.;

Behav Res (2012) 44:765–787 769



Table 1 (continued)

Structure (Θε) and ECM Statements in PROC CALIS

MA(2): STD

"t ¼ nt � q1nt�1 � q2nt�2, E1=VARE, E2=VARE, E3=VARE, E4=VARE,

D0=VARD0, D1=VARD1;jq2j < 1; q2 þ q1 < 1; q2 � q1 < 1;

s2

1
r1 1
r2 r1 1
0 r2 r1 1

2664
3775;

COV

E1 E2=COV_lag1, E2 E3=COV_lag1, E3 E4=COV_lag1, E1 E3=COV_lag2, E2 E4=COV_lag2,

D0 D1=CD0D1;

PARAMETERS THE1 THE2;

COV_lag1=((−THE1+THE1*THE2)/(1+THE1**2+THE2**2))*VARE;
COV_lag2=(−THE2/(1+THE1**2+THE2**2))*VARE;r1 ¼ �q1þq1q2

ð1þq21þq22Þ
; r2 ¼ �q2

ð1þq21þq22Þ
;

LINCON
rk ¼ 0; k > 2:

THE2+ THE1 < 1., THE2 –THE1 < 1.;

BOUNDS

–1. < THE2 < 1. ;

ARH(1) (heterogeneous AR(1)): STD

s2
"1

s"2s"1r s2
"2

s"3s"1r
2 s"3s"2r s2

"3

s"4s"1r
3 s"4s"2r

2 s"4s"3r s2
"4

26664
37775

E1=VARE1, E2=VARE2, E3=VARE3, E4=VARE4,

D0=VARD0, D1=VARD1;

COV

E1 E2=COVE1E2, E1 E3=COVE1E3, E1 E4=COVE1E4, E2 E3=COVE2E3,

E2 E4=COVE2E4, E3 E4=COVE3E4, D0 D1=CD0D1;

PARAMETERS RHO;

COVE1E2=SQRT(VARE1)*SQRT(VARE2)*RHO;

COVE1E3=SQRT(VARE1)*SQRT(VARE3)*RHO**2;

COVE1E4=SQRT(VARE1)*SQRT(VARE4)*RHO**3;

COVE2E3=SQRT(VARE2)*SQRT(VARE3)*RHO;

COVE2E4=SQRT(VARE2)*SQRT(VARE4)*RHO**2;

COVE3E4=SQRT(VARE3)*SQRT(VARE4)*RHO;

TOEPH (heterogeneous Toeplitz): STD

s2
"1

s"2s"1r1 s2
"2

s"3s"1r2 s"3s"2r1 s2
"3

s"4s"1r3 s"4s"2r2 s"4s"3r1 s2
"4

26664
37775

E1=VARE1, E2=VARE2, E3=VARE3, E4=VARE4,

D0=VARD0, D1=VARD1;

COV

E1 E2=COVE1E2, E1 E3=COVE1E3, E1 E4=COVE1E4, E2 E3=COVE2E3, E2 E4=COVE2E4,

E3 E4=COVE3E4, D0 D1=CD0D1;

PARAMETERS RHO1 RHO2 RHO3;

COVE1E2=SQRT(VARE1)*SQRT(VARE2)*RHO1;

COVE1E3=SQRT(VARE1)*SQRT(VARE3)*RHO2;

COVE1E4=SQRT(VARE1)*SQRT(VARE4)*RHO3;

COVE2E3=SQRT(VARE2)*SQRT(VARE3)*RHO1;

COVE2E4=SQRT(VARE2)*SQRT(VARE4)*RHO2;

COVE3E4=SQRT(VARE3)*SQRT(VARE4)*RHO1;

UN: STD

s2
"1

s"2"1 s2
"2

s"3"1 s"3"2 s2
"3

s"4"1 s"4"2 s"4"3 s2
"4

26664
37775

E1=VARE1, E2=VARE2, E3=VARE3, E4=VARE4,

D0=VARD0, D1=VARD1;

COV

E1 E2=COVE1E2, E1 E3=COVE1E3, E1 E4=COVE1E4,

E2 E3=COVE2E3, E2 E4=COVE2E4, E3 E4=COVE3E4,

D0 D1=CD0D1;

The Level-2 ECM, Ψzη ¼
s2
zha

szha zhb
s2
zhb

" #
, is estimated with type = UN. ρk denotes the autocorrelation coefficient at lag k. SAS PROC MIXED

provides only the options of ARMA(1,1) and AR(1) for the ARMA family.
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By Equation 8, Level-1 error variances are equal, their
autocovariances at lag 1 are equal, and their autocovariances
at lag 2 are equal as well. Level-2 error variances/covariances
are unstructured, as shown in Equation 7. Therefore, the STD
and COV statements are given as follows:

STD
E1 ¼ VARE;E2 ¼ VARE;E3 ¼ VARE;E4 ¼ VARE;
D0 ¼ VARD0;D1 ¼ VARD1;

COV
E1 E2 ¼ COV lag1;E2 E3 ¼ COV lag1;E3 E4 ¼ COV lag1;
E1 E3 ¼ COV lag2;E2 E4 ¼ COV lag2;
E1 E4 ¼ COV lag3;
D0 D1 ¼ COVD0D1;

in which VARE represents the estimate of the common
variance s2

" of the four Level-1 errors, and VARD0 and

VARD1 represent the estimates of the variances, s2
zha

and

s2
zhb

, of the two Level-2 errors. COV_lag1 and COV_lag2

represent, respectively, the common Level-1 error autocovar-
iance estimates at lag 1 and lag 2. COV_lag3 is the estimate
of the error autocovariance at lag 3. CD0D1 is the estimate
of szha zhb

, the covariance of zha and zhb .

Since there exist extra parameters in ECM, they need to
be defined, and the work can be achieved by using the
PARAMETERS statement given by

PARAMETERS
PHI1 RHO1;
COV lag1 ¼ RHO1»VARE;
COV lag2 ¼ PHI1»COV lag1; =»i:e:;COV lag2 ¼ PHI1»RHO1»VARE; »=
COV lag3 ¼ PHI1»COV lag2; =»i:e:;COV lag3 ¼ PHI1»»2ð Þ»RHO1»VARE; »=

in which PHI1 and RHO1 represent the estimates of ρ1

and f1, defined through their relationships with the
autocovariances shown in Equation 8. COV_lag1 =
RHO1*VARE corresponds to the requirement that the
common autocovariance at lag 1 be equal to s2

"r1. The
syntax corresponding to the requirements for the autoco-
variances at lag 2 (=s2

"f1r1) and lag 3 (=s2
"f1r2 ¼ s2

"f
2
1r1)

is given in a similar way.
The constraint of jf1j < 1 is specified by the following

BOUNDS statement:

BOUNDS
�1: < PHI1 < 1:

Example 2: TOEPH The ECM resulting from heteroge-
neous Toeplitz is given by

Θε ¼
s2
"1

s"2s"1r1 s2
"2

s"3s"1r2 s"3s"2r1 s2
"3

s"4s"1r3 s"4s"2r2 s"4s"3r1 s2
"4

26664
37775 ; ð9Þ

where s"t denotes the standard deviation for εt, t = 1, 2, 3,
4; and ρk the autocorrelation at lag k; k = 1, 2, 3. The Level-
1 error variances are unequal, but the autocorrelations at the
same lag are equal. The STD and COV statements are
given as follows:

STD
E1 ¼ VARE1;E2 ¼ VARE2;E3 ¼ VARE3;E4 ¼ VARE4;
D0 ¼ VARD0;D1 ¼ VARD1;

COV
E1 E2 ¼ COVE1E2;E1 E3 ¼ COVE1E3;E1 E4 ¼ COVE1E4;
E2 E3 ¼ COVE2E3;E2 E4 ¼ COVE2E4;E3 E4 ¼ COVE3E4;
D0 D1 ¼ COVD0D1;

in which VARE1–VARE4 represent the estimates of the four
Level-1 error variances, and VARD0 and VARD1 represent
those of the two Level-2 error variances. COVE1E2–
COVE3E4 represent the corresponding Level-1 error autoco-
variance estimates, and COVD0D1 represents the Level-2
error autocovariance estimate. Since the error covariances
s"t"t0 of εt and εt’ are given by s"t"t0 ¼ s"ts"t0r"t"t0 and the

autocorrelations at the same lag are constrained to be equal,
the following PARAMETERS statement needs to be added:

PARAMETERS
RHO1 RHO2 RHO3;
COVE1E2 ¼ SQRT VARE1ð Þ»SQRT VARE2ð Þ»RHO1;
COVE2E3 ¼ SQRT VARE2ð Þ»SQRT VARE3ð Þ»RHO1;
COVE3E4 ¼ SQRT VARE3ð Þ»SQRT VARE4ð Þ»RHO1;
COVE1E3 ¼ SQRT VARE1ð Þ»SQRT VARE3ð Þ»RHO2;
COVE2E4 ¼ SQRT VARE2ð Þ»SQRT VARE4ð Þ»RHO2;
COVE1E4 ¼ SQRT VARE1ð Þ»SQRT VARE4ð Þ»RHO3;

where RHO1, RHO2, and RHO3 are estimates of ρ1, ρ2, and
ρ3. The LINEQS statement used for this example is the same
as that given in Example 1.
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Example 3: AR(2) It is not possible to model AR(2) for
Level-1 errors by using PROC MIXED, but the task can be
done by using PROC CALIS, with the statements shown in
Table 1. The AR(2) process, given by "t ¼ f1"t�1þ
f2"t�2 þ nt, where f1 and f2 are autoregressive parameters
and vt an i.i.d. process (Box et al., 1994, p. 54), leads to the
following Level-1 ECM:

s2
"

1
r1 1
r2 r1 1
r3 r2 r1 1

2664
3775; ð10Þ

where s2
" denotes the common variance of εt, t = 1, 2, 3, 4,

and ρk denotes their autocorrelation at lag k, given by r0 ¼
1; r1 ¼ f1=ð1� f2Þ, and rk ¼ f1rk�1 þ f2rk�2; k ¼ 2; 3;
with the constraints of jf2j < 1, f2 þ f1 < 1, and
f2 � f1 < 1. It follows that the autocovariances at lags 1,
2, and 3, denoted respectively by σ1, σ2, and σ3, are given
b y s1 ¼ r1s

2
", s2 ¼ r2s

2
" ¼ f1r1s

2
" þ f2s

2
" ¼ f1s1 þ

f2s
2
"; and s3 ¼ r3s

2
" ¼ f1r2s

2
" þ f2r1s

2
" ¼ f1s2 þ f2s1.

Note that the last two constraints are specified by using
the LINCON statement. Relevant SAS statements are
given as follows:

STD
E1� E4 ¼ 4»VARE; =»i:e:;E1 ¼ VARE;E2 ¼ VARE;

E3 ¼ VARE;E4 ¼ VARE»=
D0 ¼ VARD0;D1 ¼ VARD1;

COV
E1 E2 ¼ COV lag1; E2 E3 ¼ COV lag1; E3 E4 ¼ COV lag1;
E1 E3 ¼ COV lag2; E2 E4 ¼ COV lag2; E1 E4 ¼ COV lag3;
D0 D1 ¼ CD0D1;

PARAMETERS PHI1 PHI2;
RHO1 ¼ PHI1=ð1� PHI2Þ;
COV lag1 ¼ RHO1»VARE;
COV lag2 ¼ PHI1»COV lag1þ PHI2»VARE;
COV lag3 ¼ PHI1»COV lag2þ PHI2»COV lag1;

LINCON
PHI2þ PHI1 < 1:; PHI2� PHI1 < 1:;

BOUNDS
�1: < PHI2 < 1:;

In addition to those presented in Table 1, more Level-1
error covariance structures for equally spaced data, includ-
ing ARMA(p, q) [autoregressive moving average of order
(p, q)], CS (compound symmetry), TOEP(q) (Toeplitz with
q bands, q = 1,…, 4, in which the first q bands of the matrix
are to be estimated, setting all higher bands equal to zero),
CSH (heterogeneous CS), TOEPH(q) (heterogeneous
Toeplitz with q bands, q = 1, …, 4), and UN(q) (UN with

q bands, q = 1, …, 4), are summarized in Appendix B. In
particular, TOEP(1) indicates i.i.d. Level-1 errors. SAS
statements in PROC CALIS for each of them can be
obtained in a similar way as shown in Table 1.

The Level-1 error covariance structures displayed in
Table 1 and Appendix B are frequently seen in the LGM
literature (e.g., Beck & Katz, 1995; Blozis, Harring, &
Mels, 2008; Dawson, Gennings, & Carter, 1997; Eyduran
& Akbas, 2010; Ferron et al., 2002; Goldstein, Healy, &
Rasbash, 1994; Heitjan & Sharma, 1997; Keselman,
Algina, Kowalchuk, & Wolfinger, 1998; Kowalchuk &
Keselman, 2001; Kwok et al., 2007; Littell, Henry, &
Ammerman,1998; Littell, Rendergast, & Natarajan, 2000;
Mansour, Nordheim, & Rutledge, 1985; Murphy & Pituch,
2009; Orhan, Eyduran, & Akbas, 2010; Rovine &
Molennaar, 1998; 2000; Singer & Willett, 2003; Chap. 7;
Velicer & Fava, 2003; West & Hepworth, 1991; Willett &
Sayer, 1994; Wolfinger, 1993, 1996; Wulff & Robinson,
2009). The SAS statements provided can facilitate the
implementation of their specification.

Illustration

An illustration is given based on the data set generated from
the linear growth model shown in Fig. 1 with the ARH(1)
Level-1 error covariance structure and the UN Level-2 error
covariance structure. Population parameters are given in
Table 2. The sample size of 300 was used (Muthén &
Muthén, 2002). The RANDNORMAL function in SAS
PROC IML was used to generate multivariate normal data
based on the population model-implied mean vector μ,
shown in Equation 4, and the population model-implied
variance–covariance matrixΣ, shown in Equation 5, of y and
x. The population mean vector and covariance matrix, as
well as sample mean and covariance, are reported in Table 2.

The parameter estimates resulting from fitting ARH(1)
with PROC CALIS (the SEM approach) and PROC
MIXED (the HLM approach), given in Table 3, are very
close and verify each other. Furthermore, the fit results
from PROC CALIS (chi-square = 11.076 with df = 6,
p = .086; CFI = .998; NNFI = .996; RMSEA = .05)
indicate good model fit.

Second-order latent growth models

A second-order latent growth model can be a curve-of-
factors model or a factor-of-curves model (e.g., Duncan,
Duncan, & Strycker, 2006, Chap. 4; Hancock, Kuo, &
Lawrence, 2001). The curve-of-factors model is used to
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investigate the growth trajectory of a construct over time. It
incorporates the multiple indicators (items) representing the
latent construct observed at different time points into the
model. Repeated latent constructs are termed the first-order
factors, and growth factors (i.e., random intercept and
slope) are termed the second-order factors. The factor-of-
curves model includes higher order common factors for
random intercepts and random slopes associated with
manifest variables used in LGM. In this model, growth
factors are the first-order factors and the underlying
common intercept and common slope are the second-
order factors, accounting for common developmental
patterns. Both the curve-of-factors model and the
factor-of-curves model can be well handled by using
PROC CALIS.

In this section, the second-order demonstration is given
for the curve-of-factors model. The model has several
advantages (Blozis, 2006; Preacher et al., 2008; Sayer &
Cumsille, 2001). First, the model explicitly recognizes the
presence of measurement errors in repeated measures and

captures the growth of repeated constructs adjusted for the
presence of these errors. Second, the model allows the
separation of variation due to departure from the trajectory
(temporal instability) and unique variation due to measure-
ment error (unreliability). Third, the model permits the test
of longitudinal factorial invariance.

For example, let latent construct F be measured by
three indicators, observed at four occasions, denoted by
y1t–y3t, t = 1, 2, 3, 4. The latent constructs F1–F4 at the
four occasions are the first-order factors, and the growth
factors, denoted by ηα and ηβ, are the second-order
factors. Let ξ, measured by indicators x1 – x3, be a time-
invariant latent predictor for the growth factors. The
second-order curve-of-factors, LGM, is pictorially pre-
sented in Fig. 2, and can be expressed in matrix form as

y ¼ ΛyF þ ε;
x ¼ Λxξþ δ;
F ¼ Λ

»

yηþ ζF;
η ¼ Γ0 þ Γξξþ ζη;

ð11Þ

Table 2 Population parameters of the model in Fig. 1 with the Level-1 error covariance structure of ARH(1) and the sample covariance matrix of
y1–y4 and X resulting from a data set of size 300 generated from the model

Λ
»

y ¼
1 0
1 1
1 2
1 3

2664
3775; Γx ¼ g10

g11

� �
¼ 4

6

� �
; Σxx ¼ s2

X ¼ 1;
Ψzη ¼

s2
zηa

szηa zηb
s2
zηb

" #
¼ 15

7 10

� �

mx ¼ mX ¼ 0; Γ0 ¼ g00
g01

� �
¼ 10

4

� �
;

Θε ¼
s2
"1

s"2s"1r s2
"2

s"3s"1r
2 s"3s"2r s2

"3

s"4s"1r
3 s"4s"2r

2 s"4s"3r s2
"4

26664
37775;

s2
"1
¼ 36; s2

"2
¼ 25; s2

"3
¼ 49; s2

"4
¼ 64;

,

ρ = .7

Population model-implied mean vector and covariance matrix (Equations 4 and 5)

y1 y2 y3 y4 X

y1 67.000

y2 83.000 164.000

y3 113.580 240.500 388.000

y4 140.464 312.600 501.200 695.000

X 4.000 10.000 16.000 22.000 1.000

Mean 10.000 14.000 18.000 22.000 .000

Sample mean vector and covariance matrix

y1 y2 y3 y4 X

y1 66.557

y2 80.505 157.888

y3 109.910 233.411 385.350

y4 140.643 307.945 501.530 703.510

X 3.103 8.685 14.137 19.714 .855

Mean 9.834 14.098 17.524 21.167 –.001
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where y ¼ ½y11 y21 y31 y12 y22 y32 y13 y23 y33 y14 y24 y34�0, x ¼
½x1 x2 x3�0, F ¼ ½F1 F2 F3 F4�0, η ¼ ½ha hb�0, e ¼ ½"11 "21 "31
"12 "22 "32 "13 "23 "33 "14 "24 "34�0, δ ¼ ½δ1 δ2 δ3�0, ζF ¼
½zF1

zF2
zF3

zF4
�0, and ζη ¼ ½zhazhb �0. Λy and Λx in the

measurement model denote the loading matrices showing
the relations of indicators to their underlying constructs.
One of the indicators for each construct is selected as the
reference indicator, and its loading is fixed to 1 at each
time point for scaling purpose (Blozis, 2006; Chan, 1998;

Sayer & Cumsille, 2001). Λ
»

y denotes the loading matrix

(with fixed values) ofF on η. Γ0 and Γξ denote, respectively,
the vector of intercepts and slopes of the regressions of the
growth factors η on the latent predictor ξ. ε and δ denote,
respectively, the measurement errors for F and ξ. ζF and
ζη denote, respectively, the errors reflecting the departure
of the repeated latent constructs from the trajectory and
the errors associated with the random intercept and slope.
ε and ζF are Level-1 errors, and δ and ζη are Level-2
errors. The assumptions include the following: (a) ε, ζF, δ,
and ζη are uncorrelated; (b) zF1

, zF2
, zF3

, and zF4
are

uncorrelated; (c) the measurement errors associated with
different indicators are uncorrelated. However, those
associated with the same indicator at different points in
time are allowed to covary; (d) zha and zhb are correlated

(see, e.g., Blozis, 2006; Bollen & Curran, 2006, p. 249;
Preacher et al., 2008, p. 63; Sayer & Cumsille, 2001). The
correlated measurement errors are depicted in Fig. 2 by the
linkage of three solid lines with four arrowheads, one line
for each indicator. On the basis of the aforementioned
assumptions, the structures of ΨζF and Θd are both
TOEPH(1), the structure of Ψζη is UN, and the covariance

structure of the correlated measurement errors needs to be
identified.

Weak factorial invariance is usually assumed in the
second-order LGM to allow meaningful interpretations of
growth trajectories. Weak factorial invariance requires the
equality of the loadings in the measurement model for the
same indicator across time (Blozis, 2006; Bollen & Curran,
2006, p. 255; Chan, 1998; Hancock et al., 2001; Preacher et
al., 2008, p. 63; Sayer & Cumsille, 2001).

Program 2 in Appendix A demonstrates using PROC
CALIS to fit a second-order linear trajectory model for four
equally spaced time points, in which AR(1) is specified for
three series:ε1t, ε2t, and ε3t, t = 1, 2, 3, 4; TOEPH(1) is
specified for ζF and δ, and UN is specified for ζη. The
LINEQS statement, based on Equation 11, is given below.
It is an extended version from that in Program 1 by
incorporating the measurement models for F and the latent
predictor ξ.

Table 3 Summary of the results by fitting ARH(1) for Level-1 errors and UN for Level-2 errors based on the sample covariance matrix shown in
Table 2 by using PROC CALIS and PROC MIXED

Assessment of model fit by

PROC CALIS PROC MIXED

Chi-square df Pr > chi-square CFI NNFI RMSEA AIC BIC
11.076 6 .086 .998 .996 .050 7825.5 7870.0

Parameter estimates by fitting ARH(1) for Θε and UN for Ψzη

Parameters Estimates by using PROC CALIS Estimates by using PROC MIXED

Θ" ¼
s2
"1

s"2s"1r s2
"2

s"3s"1r
2 s"3s"2r s2

"3

s"4s"1r
3 s"4s"2r

2 s"4s"3r s2
"4

26664
37775

40:56
»»

25:47
»

29:37
»

27:68
»

31:93
»

63:84
»»

24:48 28:24 56:46
»

91:79
»»

2664
3775

br ¼ :74
»»»

:

40:43
»»

25:37a 29:27
»

27:59a 31:83a 63:63
»»

24:40a 28:15a 56:27a 91:49
»»

2664
3775

br ¼ :74
»»»

:

Ψzη ¼
s2
zha

szha zhb
s2
zhb

" #
14:53
9:21

»»»
8:85

»»»

� �
14:48
9:18

»»»
8:82

»»»

� �
g00 g01
g10 g11

� �
10:18

»»»
3:86

»»»

3:68
»»»

6:48
»»»

� �
10:17

»»»
3:86

»»»

3:68
»»»

6:47
»»»

� �
a Test for significance cannot be achieved. * p < .05, ** p < .01, *** p < .001
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LINEQS
Y11 ¼ 1 F1þ EY11;Y21 ¼ LY21F1 F1þ EY21;Y31 ¼ LY31F1 F1þ EY31;
Y12 ¼ 1 F2þ EY12;Y22 ¼ LY22F2 F2þ EY22;Y32 ¼ LY32F2 F2þ EY32;
Y13 ¼ 1 F3þ EY13;Y23 ¼ LY23F3 F3þ EY23;Y33 ¼ LY33F3 F3þ EY33;
Y14 ¼ 1 F4þ EY14;Y24 ¼ LY24F4 F4þ EY24;Y34 ¼ LY34F4 F4þ EY34;
X1 ¼ 1 F7þ EX1;X2 ¼ LX2F7 F7þ EX2;X3 ¼ LX3F7 F7þ EX3;
F1 ¼ 1 F Alphaþ 0 F Betaþ EZF1;
F2 ¼ 1 F Alphaþ 1 F Betaþ EZF2;
F3 ¼ 1 F Alphaþ 2 F Betaþ EZF3;
F4 ¼ 1 F Alphaþ 3 F Betaþ EZF4;
F Alpha ¼ GA00 INTERCEPTþ GA10 F7þ EZF5;
F Beta ¼ GA01 INTERCEPTþ GA11 F7þ EZF6;
F7 ¼ F7 int INTERCEPTþ EZF7;

where F1−F4 are the first-order factors at the four
occasions, and F_ALPHA and F_BETA represent the

second-order latent factors, hai
and hbi . Yjt denotes the

observed score on the jth indicator for F at occasion t, j = 1,

Intercept
    ( )αη

Slope
 ( )βηαηζ

βηζ
η ηα βζ ζσ

11y

1F

11ε 21ε 31ε

21yλ
31yλ

1Fζ

21y 31y 12y

2F

12ε 22ε 32ε

22yλ
32yλ

2Fζ

22y 32y 13y

3F

13ε 23ε 33ε

23yλ
33yλ

3Fζ

23y 33y 14y

4F

14ε 24ε 34ε

24yλ
34yλ

4Fζ

24y 34y

11γ10γ

1 1 1 1 0 1 2 3

11yλ
12yλ

13yλ
14yλ

ξμξ

1x
1δ 2δ 3δ

2x 3x

2xλ
3xλ

1x
λ

2
ξσ

00γ

1

01γ

Time 1 Time 2 Time 3 Time 4

Fig. 2 A second-order linear
latent growth model with one
time-invariant latent predictor
and four repeated latent con-
structs, each measured by three
indicators (adapted from Chan
[1998] and Preachers et al.
[2008, p. 63])
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2, 3; t = 1, 2, 3, 4. Xj (j = 1, 2, 3) denotes the observed
score on the jth indicator for construct ξ, named F7. The
loadings of Y1t on Ft (t = 1, 2, 3, 4) are fixed to 1. LYjtFt
represents the estimate of the first-order loading of Yjt on
Ft, j = 2, 3; t = 1, 2, 3, 4. EYjt denotes the corresponding

measurement error. Similarly, the loadings of X1, X2,
and X3 on F7 are 1, LX2F7, and LX3F7, respectively.
EX1−EX3 are the corresponding measurement errors.

Second-order factor loadings are fixed values (inΛ
»

y).
Level-1 errors zF1

;zF2
;zF3

, and zF4
are named EZF1–

EZF4, and Level-2 errors zha and zhb are named EZF5 and
EZF6. F7_int denotes the mean of F7, and EZF7 is the
deviation of F7 from its mean.

The parameters in AR(1) for εjt, j = 1, 2, 3, include error
variance s2

"j
and the autocorrelation at lag 1 f1"j . The

resulting ECM for ε is given by

Θε ¼ Cov½"11 "21 "31 "12 "22 "32 "13 "23 "33 "14 "24 "34�0

¼

s2
"1

0 s2
"2

0 0 s2
"3

f1"1s
2
"1

0 0 s2
"1

0 f1"2s
2
"2

0 0 s2
"2

0 0 f1"3s
2
"3

0 0 s2
"3

f21"1s
2
"1

0 0 f1"1s
2
"1

0 0 s2
"1

0 f21"2s
2
"2

0 0 f1"2s
2
"2

0 0 s2
"2

0 0 f21"3s
2
"3

0 0 f1"3s
2
"3

0 0 s2
"3

f31"1s
2
"1

0 0 f21"1s
2
"1

0 0 f1"1s
2
"1

0 0 s2
"1

0 f31"2s
2
"2

0 0 f21"2s
2
"2

0 0 f1"2s
2
"2

0 0 s2
"2

0 0 f31"3s
2
"3

0 0 f21"3s
2
"3

0 0 f1"3s
2
"3

0 0 s2
"3

2666666666666666666664

3777777777777777777775

; ð12Þ

which can be reexpressed as follows to facilitate
readability:

Θε ¼ Cov½"11 "12 "13 "14 "21 "22 "23 "24 "31 "32 "33 "34�0

¼

s2
"1

f1"1s
2
"1

s2
"1

f21"1s
2
"1

f1"1s
2
"1

s2
"1

f31"1s
2
"1

f21"1s
2
"1

f1"1s
2
"1

s2
"1

0 0 0 0 s2
"2

0 0 0 0 f1"2s
2
"2

s2
"2

0 0 0 0 f21"2s
2
"2

f1"2s
2
"2

s2
"2

0 0 0 0 f31"2s
2
"2

f21"2s
2
"2

f1"2s
2
"2

s2
"2

0 0 0 0 0 0 0 0 s2
"3

0 0 0 0 0 0 0 0 f1"3s
2
"3

s2
"3

0 0 0 0 0 0 0 0 f21"3s
2
"2

f1"3s
2
"3

s2
"3

0 0 0 0 0 0 0 0 f31"3s
2
"3

f21"3s
2
"2

f1"3s
2
"3

s2
"3

2666666666666666666664

3777777777777777777775

; ð13Þ

where fk1"j is the autocorrelation at lag k forεjt; k = 1, 2, 3;
t = 1, 2, 3, 4; j = 1, 2, 3, with the constraints of jf1"j j < 1.

For each indicator, their error variances at different time
points are equal, their error autocovariances at lag 1 are
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equal, and their error autocovariances at lag 2 are equal as well.
Therefore, the STD and COV statements are given as follows:

STD
EY11� EY14 ¼ 4»VARE1;EY21� EY24 ¼ 4»VARE2;EY31� EY34 ¼ 4»VARE3;
EX1 ¼ VAREX1;EX2 ¼ VAREX2;EX3 ¼ VAREX3;
EZF1 ¼ VARZF1;EZF2 ¼ VARZF2;EZF3 ¼ VARZF3;EZF4 ¼ VARZF4;
EZF5 ¼ VARE Intercept;EZF6 ¼ VARE Slope;EZF7 ¼ VARZF7;

COV
=»for the Level�1 measurement errors associated with indicator1 »=

EY11 EY12 ¼ COV1 lag1; EY12 EY13 ¼ COV1 lag1; EY13 EY14 ¼ COV1 lag1;
EY11 EY13 ¼ COV1 lag2; EY12 EY14 ¼ COV1 lag2; EY11 EY14 ¼ COV1 lag3;

=»for the Level�1 measurement errors associated with indicator2»=
EY21 EY22 ¼ COV2 lag1; EY22 EY23 ¼ COV2 lag1; EY23 EY24 ¼ COV2 lag1;
EY21 EY23 ¼ COV2 lag2; EY22 EY24 ¼ COV2 lag2; EY21 EY24 ¼ COV2 lag3;

=»for the Level�1 measurement errors associated with indicator3»=
EY31 EY32 ¼ COV3 lag1; EY32 EY33 ¼ COV3 lag1; EY33 EY34 ¼ COV3 lag1;
EY31 EY33 ¼ COV3 lag2; EY32 EY34 ¼ COV3 lag2; EY31 EY34 ¼ COV3 lag3;

=»for the Level�2 errors associated with growth factors»=
EZF5 EZF6 ¼ CZF5ZF6;

in which VARE1, VARE2, and VARE3 represent,
respectively, the estimates of the common variances
s2
"1
, s2

"2
, and s2

"3
. VAREX1−VAREX3 represent the

estimates of variances of d1 � d3. VARZF1−VARZF4
represent the estimates of variances of zF1

� zF4
.

VARE_Intercept, VARE_Slope, and CZF5ZF6 repre-
sent, the estimates of variances and covariance of the
second-order factor errors zha and zhb . VARZF7
represents the estimate of variance of the latent

predictor ξ. COV1_lag1, COV1_lag2, and COV1_lag3
represent, respectively, the estimates of common auto-
covariance at lags 1, 2, 3 for ε1t. Similarly, COV2_lag1,
COV2_lag2, and COV2_lag3 represent those for ε2t, and
COV3_lag1, COV3_lag2, and COV3_lag3 represent
those for ε3t.

The following PARAMETERS statement is needed to
bring three additional parameters, f1"1 , f1"2 , and f1"3 , based
on Equation 13:

PARAMETERS PHI1 PHI2 PHI3;

=»for the Level�1 measurement errors associated with indicator1 »=

COV1 lag1 ¼ PHI1»VARE1; COV1 lag2 ¼ ðPHI1»»2Þ»VARE1;
COV1 lag3 ¼ ðPHI1»»3Þ»VARE1;

=» for the Level�1 measurement errors associated with indicator2 »=

COV2 lag1 ¼ PHI2»VARE2; COV2 lag2 ¼ ðPHI2»»2Þ»VARE2;
COV2 lag3 ¼ ðPHI2»»3Þ»VARE2;

=» for the Level�1 measurement errors associated with indicator3 »=

COV3 lag1 ¼ PHI3»VARE3; COV3 lag2 ¼ ðPHI3»»2Þ»VARE3;
COV3 lag3 ¼ ðPHI3»»3Þ»VARE3;

in which PHI1, PHI2, and PHI3 represent the estimates of
f1"1 , f1"2 , and f1"3 . COV1_lag1 = PHI1*VARE1 corre-
sponds to the requirement that the common autocovariance

at lag 1 for ε1t be equal to f1"1s
2
"1
. COV1_lag2 = (PHI1**2)

*VARE1 corresponds to the requirement that the common
autocovariance at lag 2 be equal to f21"1s

2
"1
. COV1_lag3 =
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(PHI1**3)*VARE1 corresponds to the requirement that the
autocovariance at lag 3 be equal to f31"1s

2
"1
. The relevant

statements for ε2t and ε3t are given similarly.
The constraints of jf1"1 j < 1, jf1"2 j < 1,jf1"3 j < 1 are

specified by the following BOUNDS statement:

BOUNDS
�1: < PHI1 < 1:;�1: < PHI2 < 1:;�1: < PHI3 < 1:;

Under the assumption of weak factorial invariance,
the LINCON statement should be added to equalize the

loadings for the same indicator across occasions as
follows:

LINCON
LY21F1 ¼ LY22F2;LY21F1 ¼ LY23F3;LY21F3 ¼ LY24F4;
LY31F1 ¼ LY32F2;LY31F1 ¼ LY33F3;LY31F3 ¼ LY34F4;

Illustration

Another illustration is given with another data set of size
300 generated from the second-order LGM in Fig. 2. The

Table 4 Population parameters of the model in Fig. 2 with the Level-1 error covariance structure of AR(1) and the sample covariance matrix
resulting from a data set of size 300 generated from the model

x
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population parameters with the AR(1) covariance structure
for Level-1 error processes ε1t, ε2t, and ε3t and the sample
covariance matrix of y and x resulting from the simulated
data set are presented in Table 4. The RANDNORMAL
function in PROC IML was used again to generate
multivariate normal data based on the population model-
implied mean vector and variance–covariance matrix of y

and x in Fig. 2 (see Appendix C for the derivation). The
parameter estimates by fitting AR(1) for ε1t, ε2t, and ε3t are
summarized in Table 5. The resulting parameter estimates
are all close to the corresponding population values
specified in Table 4, and the model fit is excellent
(chi-square = 90.49 with df = 109, p = .9009; CFI =1.0;
NNFI =1.0; RMSEA < .0001).

Table 4 (continued)
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Conclusion

In the present article, we presented a systematic coding
for various Level-1 error covaraince structures in LGM
by using SAS PROC CALIS. The joint use of the STD,
COV, PARAMETERS, LINCON, and BOUNDS state-
ments in PROC CALIS can be extended for other types
of ECM in a similar way to meet analysts’ needs. The
advantages to use PROC CALIS include its flexibility
in specifying ECM and its capabilities to better assess
model fit for balanced complete data and to deal with
latent constructs. A tutorial on the syntax has been
provided for manifest variables and latent constructs. It
is our hope that the coding provided will help applied
researchers with LGM studies.

Although our demonstration is based on linear
growth models, SAS statements in PROC CALIS for
specifying Level-1 ECM are applicable for quadratic
and polynomial growth models. Theory may suggest

appropriate growth models. As was mentioned previ-
ously, misspecification of the growth model can lead to
incorrect selection of the error covariance structure. The
coding provided is useful when the growth model has
been well determined and the Level-1 error covariance
structure is to be identified. Although the guidelines
given in Littell et al. (2006, Chap. 5) for selecting
appropriate Level-1 error covariance structures are help-
ful, more research work on this issue is needed. How to fit
Level-1 error covariance structures based on multivariate
error processes deserves future research as well.

Author note The authors are grateful to Ira Bernstein, the action
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NSC 98-2410-H-009-010-MY2 from the National Science Council of
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addressed to C. G. Ding, Institute of Business and Management,
National Chiao Tung University, 118 Chung-Hsiao West Road,
Section 1, Taipei, Taiwan (e-mail: cding@mail.nctu.edu.tw).

Table 5 Summary of the results by fitting AR(1) for Level-1 errors ε1t, ε2t, and ε3t and UN for Level-2 errors based on the sample covariance
matrix shown in Table 2 by using PROC CALIS

Assessment of model fit

Chi-square df Pr > chi-square CFI NNFI RMSEA
90.49 109 .9009 1.0 1.0 <.0001

Parameter estimates by fitting AR(1) for ε1t, ε2t, and ε3t
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bf1"1 ¼ :508
»»»

; bs2
"1
¼ :271

»»»
; bf1"2 ¼ :693

»»»
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:

* p < .05, ** p < .01, *** p < .001
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APPENDIX A

Sample SAS programs for LGM by using PROC CALIS

Program 1
A SAS program for the LGM shown in Figure 1 by

fitting ARMA(1,1) for Level-1 error covariance structure

/* The dataset used for PROC CALIS should be a multi-variable dataset rather than a 

multi-record dataset (Singer, 1998) */ 

PROC CALIS UCOV AUG; 

LINEQS 

      Y1 = 1 F_Alpha + 0 F_Beta + E1, 

      Y2 = 1 F_Alpha + 1 F_Beta + E2, 

      Y3 = 1 F_Alpha + 2 F_Beta + E3, 

      Y4 = 1 F_Alpha + 3 F_Beta + E4, 

      F_Alpha = GA00 INTERCEPT + GA01 X + D0, 

      F_Beta = GA10 INTERCEPT + GA11 X + D1; 

STD 

      E1=VARE, E2=VARE, E3=VARE, E4=VARE, X=VARX, 

D0=VARD0, D1=VARD1; 

COV 

E1 E2=COV_lag1, E2 E3=COV_lag1, E3 E4=COV_lag1,  

E1 E3=COV_lag2, E2 E4=COV_lag2, E1 E4=COV_lag3,  

D0 D1=COVD0D1; 

PARAMETERS PHI1 RHO1; 

      COV_lag1=RHO1*VARE;  

COV_lag2=PHI1* COV_lag1; 

      COV_lag3=PHI1* COV_lag2; 

BOUNDS 

–1. < PHI1 < 1.; 

VAR Y1 Y2 Y3 Y4 X; 

TITLE ‘Linear Growth Modeling with Four Occasions by Specifying’; 

TITLE2 ‘ARMA(1,1) for Level-1 Error Covariance Structure’; 

RUN; 
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Program 2
A SAS program for the second-order LGM shown in

Figure 2 by fitting AR(1) for the Level-1 error covariance
structure associated with each indicator

PROC CALIS UCOV AUG;  

   LINEQS 

     Y11 = 1 F1 + EY11,  Y21 = LY21F1 F1 + EY21,  Y31 = LY31F1 F1 + EY31,

     Y12 = 1 F2 + EY12,  Y22 = LY22F2 F2 + EY22,  Y32 = LY32F2 F2 + EY32,

     Y13 = 1 F3 + EY13,  Y23 = LY23F3 F3 + EY23,  Y33 = LY33F3 F3 + EY33,

     Y14 = 1 F4 + EY14,  Y24 = LY24F4 F4 + EY24,  Y34 = LY34F4 F4 + EY34, 

     X1 = 1 F7 + EX1,    X2 = LX2F7 F7 + EX2,     X3 = LX3F7 F7 + EX3, 

     F1 = 1 F_Alpha + 0 F_Beta + EZF1,  

F2 = 1 F_Alpha + 1 F_Beta + EZF2,  

     F3 = 1 F_Alpha + 2 F_Beta + EZF3,  

     F4 = 1 F_Alpha + 3 F_Beta + EZF4,  

     F_Alpha = GA00 INTERCEPT + GA10 F7 + EZF5, 

     F_Beta = GA01 INTERCEPT + GA11 F7 + EZF6, 

     F7 = F7_int INTERCEPT + EZF7; 

STD 

     EY11−EY14=4*VARE1, EY21−EY24=4*VARE2, EY31−EY34=4*VARE3, 

     EX1=VAREX1, EX2=VAREX2, EX3=VAREX3, 

     EZF1=VARZF1, EZF2=VARZF2, EZF3=VARZF3, EZF4=VARZF4, 

EZF5=VARE_Intercept, EZF6=VARE_Slope, EZF7=VARZF7; 

COV 

/* for the Level-1 errors associated with indicator 1 */ 

     EY11 EY12=COV1_lag1, EY12 EY13=COV1_lag1, EY13 EY14=COV1_lag1,  

     EY11 EY13=COV1_lag2, EY12 EY14=COV1_lag2, EY11 EY14=COV1_lag3, 

/* for the Level-1 errors associated with indicator 2 */ 

     EY21 EY22=COV2_lag1, EY22 EY23=COV2_lag1, EY23 EY24=COV2_lag1,

     EY21 EY23=COV2_lag2, EY22 EY24=COV2_lag2, EY21 EY24=COV2_lag3, 

/* for the Level-1 errors associated with indicator 3 */ 

EY31 EY32=COV3_lag1, EY32 EY33=COV3_lag1, EY33 EY34=COV3_lag1,  

     EY31 EY33=COV3_lag2, EY32 EY34=COV3_lag2, EY31 EY34=COV3_lag3, 

/* for the Level-2 errors associated with growth factors */

EZF5 EZF6=CZF5ZF6; 

PARAMETERS  PHI1  PHI2  PHI3; 

/* for the Level-1 errors associated with indicator 1 */ 

COV1_lag1=PHI1*VARE1; COV1_lag2= (PHI1**2)*VARE1;  

COV1_lag3=(PHI1**3)*VARE1; 
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APPENDIX B

More types of Level-1 error covariance structures with four
equally spaced occasions

/* for the Level-1 errors associated with indicator 2 */ 

COV2_lag1=PHI2*VARE2; COV2_lag2=(PHI2**2)*VARE2;  

COV2_lag3=(PHI2**3)*VARE2; 

/* for the Level-1 errors associated with indicator 3 */ 

     COV3_lag1=PHI3*VARE3; COV3_lag2=(PHI3**2)*VARE3; 

     COV3_lag3=(PHI3**3)*VARE3; 

BOUNDS 

     –1.< PHI1<1.,  –1.< PHI2<1.,  –1.< PHI3<1. ;  

LINCON  /* Weak factorial invariance across time is assumed */ 

      LY21F1=LY22F2, LY21F1=LY23F3, LY21F3=LY24F4, 

LY31F1=LY32F2, LY31F1=LY33F3, LY31F3=LY34F4; 

TITLE ‘Second-Order Linear Growth Modeling for a Construct Measured by’; 

TITLE2 ‘Three Indicators at Four Occasions by Fitting AR(1) for the’; 

TITLE3 ‘Level-1 Error Covariance Structure Associated with Each Indicator’; 

VAR Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X1 X2 X3; 

RUN; 

Structure (Θε) ECM

ARMA(p, q):

s2
"

1
r1 1
r2 r1 1
r3 r2 r1 1

2664
3775"t ¼ f1"t�1 þ � � � þ fp"t�p þ vt � q1vt�1 � � � � � qqvt�q

ARMA(1,2):

"t ¼ f1"t�1 þ vt � q1vt�1 � q2vt�2;

jf1j < 1; jq2j < 1; q1 þ q2 < 1; q2 � q1 < 1;

r0 ¼ 1; r1 ¼ ð�q1þq1q2Þþ½f1ð1þq22Þþf1ðq21�q2Þ�f21q1ð1�q2Þ�f31q2 �
ð1þq21þq22Þ�½2f1ðq1�q1q2þf1q2Þ� ;

r2 ¼ �q2�½f1q1ð1�q2Þþf21ð1þq21þq22Þ�f31q1ð1�q2Þ�f41q2 �
ð1þq21þq22Þ�½2f1ðq1�q1q2þf1q2Þ� ;

rk ¼ f1rk�1;k > 2:

ARMA(2,1):

"t ¼ f1"t�1 þ f2"t�2 þ vt � q1vt�1;

jf2j < 1; f2 þ f1 < 1; f2 � f1 < 1; jq1j < 1;

r0 ¼ 1; r1 ¼ ½ðf1 � q1Þð1� f1q1Þ þ f22q1�=½ð1� f2Þð1þ q21Þ � 2f1q1�;
rk ¼ ðf1rk�1 þ f2rk�2Þ; k > 1:

CS:
s2
"

s1 s2
"

s1 s1 s2
"

s1 s1 s1 s2
"

2664
3775s2

" ½r1ðt 6¼ t0Þ þ 1ðt ¼ t0Þ�;
rk ¼ r ¼ s1=s2

"; k > 0:
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(continued)

Structure (Θε) ECM

TOEP(q) (Toeplitz with q bands, q = 1,…,4): TOEPð1Þ TOEPð2Þ
s2
"

0 s2
"

0 0 s2
"

0 0 0 s2
"

2664
3775;

s2
"

s1 s2
"

0 s1 s2
"

0 0 s1 s2
"

2664
3775;

TOEPð3Þ TOEPð4Þ
s2
"

s1 s2
"

s2 s1 s2
"

0 s2 s1 s2
"

2664
3775;

s2
"

s1 s2
"

s2 s1 s2
"

s3 s2 s1 s2
"

2664
3775

s jt�t0 j1ðjt � t0j < qÞ;s0 ¼ s2
";sk ¼ rks

2
"; k > 0:

CSH (heterogeneous CS): s2
"1

s"2s"1r s2
"2

s"3s"1r s"3s"2r s2
"3

s"4s"1r s"4s"2r s"4s"3r s2
"4

26664
37775s"ts"t0 ½r1ðt 6¼ t0Þ þ 1ðt ¼ t0Þ�;

rk ¼ r; k > 0:

TOEPH(q) (heterogeneous Toeplitz with q bands, q = 1, …,4): TOEPHð1Þ TOEPHð2Þ
s2
"1

0 s2
"2

0 0 s2
"3

0 0 0 s2
"4

26664
37775;

s2
"1

s"2s"1r1 s2
"2

0 s"3s"2r1 s2
"3

0 0 s"4s"3r1 s2
"4

26664
37775;

s"ts"t0 rjt�t0 j1ðjt � t0j < qÞ

TOEPHð3Þ
s2
"1

s"2s"1r1 s2
"2

s"3s"1r2 s"3s"2r1 s2
"3

0 s"4s"2r2 s"4s"3r1 s2
"4

26664
37775;

TOEPHð4Þ
s2
"1

s"2s"1r1 s2
"2

s"3s"1r2 s"3s"2r1 s2
"3

s"4s"1r3 s"4s"2r2 s"4s"3r1 s2
"4

26664
37775:

UN(q) (UN with q bands, q = 1, …,4): UNð1Þ UNð2Þ
s2
"1

0 s2
"2

0 0 s2
"3

0 0 0 s2
"4

26664
37775;

s2
"1

s"2"1 s2
"2

0 s"3"2 s2
"3

0 0 s"4"3 s2
"4

26664
37775;

UNð3Þ UNð4Þ
s2
"1

s"2"1 s2
"2

s"3"1 s"3"2 s2
"3

0 s"4"2 s"4"3 s2
"4

26664
37775;

s2
"1

s"2"1 s2
"2

s"3"1 s"3"2 s2
"3

s"4"1 s"4"2 s"4"3 s2
"4

26664
37775

s"t"t0 1ðjt � t0j < qÞ

1(A) equals 1 when A is true. For example, 1ðjt � t0j < qÞ= 1 when jt � t0j < q and 0 otherwise, q � 1. ρk denotes the autocorrelation coefficient

at lag k. ρ0 = 1. TOEP(4) = TOEP; TOEPH(4) = TOEPH; UN(4) = UN; TOEPH(1) = UN(1)
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APPENDIX C

Derivation of the population model-implied mean vector μ
and variance–covariance matrix Σ of y and x for the
second-order LGM (Fig. 2)
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»
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