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Meta-heuristic algorithms have been widely used in solving scheduling problems; previous studies

focused on enhancing existing algorithmic mechanisms. This study advocates a new

perspective—developing new chromosome (solution) representation schemes may improve the

performance of existing meta-heuristic algorithms. In the context of a scheduling problem, known as

permutation manufacturing-cell flow shop (PMFS), we compare the effectiveness of two chromosome

representation schemes (Sold and Snew) while they are embedded in a meta-heuristic algorithm to solve

the PMFS scheduling problem. Two existing meta-heuristic algorithms, genetic algorithm (GA) and ant

colony optimization (ACO), are tested. Denote a tested meta-heuristic algorithm by X_Y, where X

represents an algorithmic mechanism and Y represents a chromosome representation. Experiment

results indicate that GA_ Snew outperforms GA_Sold, and ACO_Snew also outperforms ACO_Sold. These

findings reveal the importance of developing new chromosome representations in the application of

meta-heuristic algorithms.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In the past two decades, meta-heuristic algorithms have been
widely used in solving complex space-search problems, which are
mostly of NP-hard and cannot be solved easily by exact algo-
rithms. A meta-heuristic algorithm is composed essentially of two
parts: (1) algorithmic mechanism and (2) solution representation
(also known as chromosome representation). In meta-heuristic
applications, previous studies focused on enhancing existing
algorithmic mechanisms to improve their performance. Yet,
developing methods to improve chromosome representation has
been rarely noticed.

This study advocates a new perspective—developing new
chromosome representation may improve the performance of
existing meta-heuristic algorithms. Such a research claim is based
on experiment findings obtained from solving a scheduling
problem, known as permutation manufacturing-cell flow shop
(PMFS). We compare the effectiveness of two chromosome
representation schemes (Sold and Snew) while they are embedded
in a particular meta-heuristic algorithm to solve the scheduling
problem.
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In this study, we tested two existing meta-heuristic algo-
rithms: genetic algorithm (GA) and ant colony optimization
(ACO). The tested meta-heuristic algorithms are denoted by X_Y,
where X represents an algorithmic mechanism and Y represents a
chromosome representation. The experiment results reveals that
GA_Snew outperforms GA_Sold and ACO_Snew also outperforms
ACO_Sold. This finding sheds a light on the track of developing
new chromosome representations in the application of meta-
heuristic algorithms.

The remainder of this paper is organized as follows. Section 2
describes the PMFS scheduling problem and reviews relevant
literature. Section 3 presents the two solution representation
scheme (Sold and Snew). Section 4 describes the commonality and
distinction of the two ACO algorithms (ACO_Snew and ACO_Sold).
The commonality and distinction of GA_Snew and GA_Sold are
presented in Section 5. Section 6 presents the numerical experi-
ments and results. In Section 7, we propose some conjectures for
explaining why GA_Snew outperforms GA_Sold, and why ACO_Snew

outperforms ACO_Sold. Concluding remarks are in the last section.
2. Problem and literature review

The scheduling context is a flow shop in which each job must
go through the same process sequence. In the process sequence,
there is only one machine at each stage and one buffer is
equipped for each machine. Four distinct features of the flow
shop are introduced below.
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First, the shop follows a family-based scheduling paradigm, due
to the adoption of manufacturing cell concept (also known as
grouped technology). That is, all jobs are pre-grouped into various
families. Jobs within a family are similar in process requirements;
therefore, no setup time is required if two jobs of the same
families are consecutively processed. However, significant setup
times are required if the two jobs are in different families.
Therefore, each job family is processed in a group manner. Once
a job family starts processing in a stage, we cannot switch to
process any other family unless all jobs in the present family have
completed their operations.

Second, each job is individually transported. Noticeably, the
jobs of a family are not transported in a group manner. That is,
when a job completes its operation at a stage, it is immediately

and individually transported to the buffer in the next stage.
Third, setup times among families are sequence-dependent. The

setup time required to switch to process a new family depends
upon the difference between the two consecutive families. The
greater the difference between the two families, the longer the
setup time that is required, and vice versa.

Fourth, the shop is a permutation flow shop with no breakdown.
That is, while jobs traveling through each stage of the flow shop,
the job sequence within each family and the sequence among
families keep the same. Each machine is reliable and has no
breakdown in the scheduling horizon.

The scheduling problem leads to two sequencing decisions:
among-family sequencing and within-family sequencing. Within-
family sequencing is the sequence of jobs within each family.
Among-family sequencing is the sequence of families. Noticeably,
the within-family sequencing decision is essential only when
the individual-transportation feature is strictly imposed in the
scheduling context. That is, the within-family sequencing decision
would not be needed if jobs are transported in a group manner
because in that case changing sequencing decision within a family
would not change the scheduling performance.

An actual example of this scheduling context is the SMT
(surface mounting machine) process for printed circuit board [1].
On a printed circuit board (PC board), many electronic parts need
to be mounted on the surface of the board. A flow shop, involving
a sequence of SMT machines, is typically designed for the surface
mounting tasks. Each SMT machine is a workstation responsible
for mounting a particular group of electronic parts on the PC
board, and the group of parts can be changed by a setup. A PC
board is a job, which shall pass through each workstation of the
flow shop to complete all its part mountings. Two jobs with the
same or highly similar part profiles can consecutively pass
through the flow shop without requiring any setup. Therefore,
PC boards are grouped into families and the family-based
scheduling paradigm is usually adopted. For a workstation, a
significant setup time is required if switching to process a new
family. The greater the difference between two consecutive
families, the longer the setup time that is required. Therefore,
family setup time is sequence-dependent.

In previous studies, this scheduling problem is NP-hard in the
strong sense [2,3]. Exact optimization procedures can only be
f3 f2 f1 J1 J3 J2 J7
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Fig. 1. Sold chromosom
used to solve small-size problem, but are not suitable for solving
realistically sized problems because they require extensive com-
putational efforts. Therefore, previous studies developed approx-

imation algorithms for finding a near-optimum solution at lower
computational expense. Approximation algorithms for solving
this scheduling problem are either heuristic approach [1,4–6] or
meta-heuristic approach. The meta-heuristic approach includes
genetic algorithm [7], tabu search [8,9], memetic algorithm [7],
and simulated annealing algorithm [10].

These prior meta-heuristic algorithms are distinct in develop-
ing various evolutionary mechanisms for generating better solu-
tions, but their chromosome representation schemes are
essentially the same. Aside from the traditional track, this study
examines the effect of using new chromosome representation
while we apply existing meta-heuristic algorithms to solve the
scheduling problem.
3. Chromosome representations

As stated, two chromosome representation schemes are used
to solve the PMFS scheduling problem. One (called Sold) is adopted
from previous studies [3,7,11], and the other (called Snew) is
developed by this study. Before introducing Sold and Snew, readers
are reminded that the PMFS scheduling problem includes two
decisions—job sequencing within each family and sequencing
among families. Therefore, a chromosome representation must be
eligible for accommodating the two sequencing decisions.

3.1. Sold chromosome representation

To accommodate the two sequencing decisions, Sold chromo-
some representation has two distinct features: clustering and
multiple-segments. Consider a scheduling context with n jobs
ði:e:, J1,J2,..., JnÞ that have been grouped into q job families
ði:e:, f 1,f 2,..., f qÞ. The multiple-segments feature indicates that a
chromosome includes qþ1 segments. The clustering feature
indicates that the qþ1 segments are categorized into two
clusters. The first cluster involves only one segment, which
represents the sequence among the q families. The second
cluster involves q segments, each of which represents the job
sequence within a particular family.

Sold chromosome representation is explained by an example
problem with 10 jobs and 3 families. See Fig. 1, the chromosome
involves two clusters. The first cluster involves only one segment,
which implies that the sequence among families is f3-f2-f1. The
second cluster involves three segments; the first segment indi-
cates that family f1 has 3 jobs and their processing sequence is
J1-J3-J2. Accordingly, the second and the third segments
respectively represent the job sequence within family f2 and f3.

3.2. Snew chromosome representation

In contrast, Snew has two other distinct features: single segment

and decoding mechanism. That is, an Snew chromosome is a single
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Fig. 2. Snew chromosome representation.
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Fig. 3. An example ACO network, with C (N, 2) paths in total.
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segment which comprises a sequence of jobs. By decoding the Snew

chromosome, we can obtain the two scheduling decisions—job
sequence within each family and the sequence among families.

Consider a scheduling context with n jobs ði:e:, J1,J2,..., JnÞ that
are grouped into q families ði:e:,f 1,f 2,..., f qÞ. The Snew chromosome is
a single segment that has a sequence of n jobs. To obtain the
among-family sequence decision, the decoding mechanism is
designed by traveling through the Snew chromosome (i.e., the
job sequence) and reviewing each job’s affiliated family. While
traveling through the chromosome, a particular family may
appear several times. Each family is only recorded when it
appears the first time. As a result, the recorded sequence of these
families shows an among-family sequence. Alternatively, for jobs
within a particular family, their sequencing decision is deter-
mined by the appearing sequence of each job in the Snew

chromosome.
As shown in Fig. 2, an example with 10 jobs and 3 families is

used to explain Snew chromosome representation scheme. The
Snew chromosome indicates that the sequence of the first four jobs
is J8-J7-J4-J1 and their affiliated family sequence is f3-f2-

f2-f1. This implies that the resulting family sequence is f3-f2-

f1. By conforming to the job precedence relationships of the Snew

chromosome, the job sequence within each family can be easily
obtained. Namely, the job sequence within familyf3 is J8-J9-J10,
that within f2 is J7-J4-J6-J5, and that within f1 is J1-J3-J2.
4. ACO algorithms

As stated, the two ACO algorithms (ACO_Sold and ACO_Snew) are
distinct in using different chromosome representations. Yet, their
algorithmic mechanisms are essentially the same. Herein, we first
describe ACO_Snew, and proceed to the required embellishments
for developing ACO_Sold.

4.1. ACO_Snew algorithm

Consider a problem with N jobs to be scheduled. See Fig. 2, an
Snew chromosome is a single segment, which represents a
sequence of the N jobs. The chromosome, by a decoding method,
can be used to obtain two sequencing decisions—job sequence
within each family and the sequence among families. A better
chromosome means that it results in a smaller makespan
(scheduling performance).

The purpose of ACO_Snew algorithm is to obtain a good
chromosome (i.e., a good job sequence). To do so, finding a good
job sequence is considered as a traveling salesman problem (TSP).
Given a virtual start node (say, Node_0), we have to travel
through N existing nodes. The purpose is to find a good traveling
route (i.e., a traveling sequence of these N nodes), which also
denotes a good chromosome (a sequence of N jobs).

To illustrate the generation of a traveling route, we model the
Nþ1 nodes (including Node_0) as a network. In the network,
there exists a path between any two nodes; this yields C (N, 2)
paths in total as shown in Fig. 3. Each path has an aggregate

attribute (also called preference index), which denotes the degree
of preference for traveling through the path. Let lij denote the
preference index on the path that connects node i and j. The larger
is lij, the higher is the probability of traveling through the path.
Noticeably, lij, an aggregate attribute, is the combination of two
other attributes tij and Zij that shall be explained later in this
section.

Given such an ACO network, the procedure of generating a
traveling route is explained below. Consider that a salesman is
now at node i, and there are m remaining nodes to be traveled
through. This implies that the salesman has m alternatives (paths)
for choosing the next node. In ACO_Snew, we use the tournament
method [12] to select the next node; that is, the probability of
choosing node k as the next node is pik ¼ lik=ðR

j ¼ m
j ¼ 1 lijÞ. Starting

from Node_0, a salesman, by repeatedly following the above path

selection method, could ultimately find a traveling route. Suppose
there are S salesmen designated to travel the network, we very

likely generate S different traveling routes, due to the probabilistic

nature of the tournament method. In literature, such a salesman
is also called an ant, which explains why such an algorithm is
named ACO (ant colony optimization).

In ACO_Snew, the aggregate attributes ðlijÞ on the network are
iteratively updated. We denote the updated ACO network by Wt,
where W0 represents the initial network and t represents total
number of network updating. Notice that Wt and Wtþk are of the
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same network architecture but are different in path attribute (lij).
Given Wt, the idea for generating Wtþ1 is based on the feedback of
multiple travelers. That is, we first send S ants (salesmen) to
travel through the Wt network. This yields S different traveling
routes; each route is very likely with different performance
(makespan). Then, the performances of these S traveling routes
are aggregated to change lij for obtaining Wtþ1 as explained
below.

As stated, lij is the combination of two other attributes tij and
Zij. The attribute Zij is a static attribute, which denotes the relative
importance of path ij and shall not be changed during the update
of Wt. In ACO_Snew, we define Zij¼1/(sijþpj) where pj denotes the
processing time of job j, and sij denotes the setup time required
for the transition from processing job i to job j. That is, if jobs i and
j are of the same family, then sij¼0.

In contrast, tij is a dynamic attribute, which shall be dynami-

cally changed during the update of Wt. Denote the performance
of sth traveling route by Ls. By the inclusion of Ls, the attribute
tij (also called pheromone) is updated as follows.

tijðtþ1Þ ¼ ð1�rÞtijðtÞþ
XS

s ¼ 1

Dts
ij

where

Dts
ij ¼

Q
Ls

when s-th traveler passes through path ij

0 otherwise

(

Q: a constant (parameter, Q40); r: evaporation rate (parameter,
14r40).

In the above formulation, tij(tþ1) denotes the pheromone on
path ij in network Wtþ1. Notice that the pheromone on each path
of Wt shall evaporate with a certain percentage (r) while we
transit from Wt to Wtþ1. The term (1�r)tij(t) denotes the
remaining pheromone after such evaporation. The term
Dts

ij denotes the feedback of s-th ant about the preference path
ij. While sth ant did travel through path ij, the ant suggests the
pheromone on path ij shall be increased by this amount
Dts

ij ¼Q=Ls. The smaller is Ls (smaller makespan), the larger is
Dts

ij. In contrast, if sth ant did not travel through path ij, then the
pheromone on path ij shall not be increased (Dts

ij¼0).
The above formula for updating tij(t) is essentially a recursive

form. To carry out the recursive form, we need to define tij(0), the
initial value of pheromone on path ij. In ACO_Snew, we use the
criterion of SPT (shortest processing time) to generate a job
sequence. That is, in sequencing N jobs, the shorter is the
processing time, the higher is the sequence priority. We call such
a chromosome the initial chromosome o0, denote its makespan by
L0, and set tij(0)¼1/(S � L0) where S is the total number of ants
(travelers).

Given tij(t) and Zij, the aggregate attribute lij(t) is defined as
follows.

lij(t)¼[tij(t)]a[Zij]
b, where a, b are positive integers.

Given Wt, in which lij(t) is available, an ant travels through the
network in a probabilistic manner. As stated, while s-th ant is now
at node i, its probability of proceeding to node k can be defined
N_0 N_1 

N_2 N_3 

N_0 N_1 

N_2 N_3 

Fig. 4. A composite
below.

ps
ikðtÞ ¼

likðtÞP
j A Js

lijðtÞ
if node kA Js

0 if node k=2Js

8<
:

where Js denotes the set of nodes that have not been travelled
through by sth ant. Due to the probabilistic feature of the
tournament method, for any two ants s and q, we would find
that Jsa Jq in most cases; in turn, this leads to ps

ikðtÞapq
ikðtÞ. The

variable ps
ik is also called transition probability for ant s.

While Wt is obtained in the ACO network updating process, the
best chromosome ever found must be recorded. We denote such a
chromosome obest(t) and its makespan Lbest(t). The ACO updating
process shall terminate while the best solution keeps unchanged
for Tf generations; that is, Lbest(tn)¼Lbest(tnþ1)¼y¼Lbest(tnþTf).

The components of the ACO_Snew have been comprehensively
presented above. To facilitate readers understand the algorithmic
architecture, the procedure of ACO_Snew is summarized below.

Procedure ACO_Snew

Step 1: Initialization
� Input parameters r,a,b,S, Tf;
� Set t¼0.
N

N_2

AC
Step 2: Compute tijð0Þ
� Generate initial chromosome o0;
� Compute its makespan L0; Set tij(0)¼1/S � L0;
� Create ACO network W0.
Step 3: Update ACO network Wt

� Send S ants to travel through network Wt;
� Obtain S traveling routes (chromosomes) and their makespans;
� Obtain Wtþ1 by using the ACO network updating method;
� Record the best chromosome obest(t) and its makespan Lbest(t).
Step 4: Termination Check
� If Lbest(tn)¼Lbest(tnþ1)¼y¼Lbest(tnþTf), STOP;
� Else, Go to Step 3.
4.2. ACO_Sold algorithm

See Fig. 1, an Sold chromosome is a Fþ1 segment. Of these
segments, the first one represents the sequence among families,
and each of the remaining F segments represents the job sequence
with a particular family.

In ACO_Sold, a chromosome is modeled by a composite ACO
network, which is composed of Fþ1 sub-networks. That is, we
model each segment by a sub-network; the resulting Fþ1 sub-
networks are then connected together to yield a composite ACO
network. Taking the chromosome in Fig. 1 as an example, its
composite ACO network involves four sub-networks (see Fig. 4).
Each sub-network (representing a segment of the chromosome) is
obtained by adopting the aforementioned method for creating a
network in ACO_Snew. That is, each sub-network starts with a
virtual node; a traveler is requested to travel through the sub-
network. The traveling route in turn represents the node
sequence of the segment.
N_0 N_1 

N_2 N_3 
N_4 

N_3 

_0 N_1 

 

O network.
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In ACO_Sold, a chromosome is obtained by requesting an ant
travel through the composite ACO network. That is, the ant has to
travel through all sub-networks in order. Once traveling through a
sub-network, the ant is automatically sent to the start node of the
next sub-network. Therefore, the ultimate traveling route of the
composite ACO network represents a solution.

As stated, ACO_Sold and ACO_S_new are essentially the same in
their algorithmic mechanisms, but are distinct in including
different chromosome representations,. That is, Procedure
ACO_Sold is exactly the same as Procedure ACO_Snew except that
we shall consider Wt as a composite ACO network. In ACO_Sold, we
also set Zij¼1/(sijþpj) and set tij(0) for each sub-network based
on the SPT criteria (i.e., the smaller is pj, the higher is the
sequence priority). Noticeably, for sub-network 1, pj denotes the
total processing times of jobs in a family.
J1 J2 J3 J4 J5 J6 J7 J8 J9 J10Parent

Swap
5. Genetic algorithms

As stated, the two genetic algorithms (GA_Sold and GA_Snew) are
distinct in using different chromosome representations. Yet, their
algorithms are essentially the same. In fact, GA_Snew is a special
case of GA_Sold. Therefore, we first describe the GA-Sold algorithm,
and proceed to the required embellishments for developing
GA-Snew.

5.1. GA_Sold algorithm

The GA_Sold algorithm is adapted from Lin et al. [3]. Like the
two above ACO algorithms, the scheduling objectives in the two
GA algorithms are defined as makespan. The smaller is makespan,
the better is the solution.

5.1.1. Three genetic operators

In GA_Sold, three types of genetic operators are used to create
new chromosomes (called off-springs) from existing chromosomes
(called parents). To obtain a parent chromosome, the binary

tournament selection method [13] is applied, which denotes that
we randomly select two chromosomes from a set of chromo-
somes and pick the better one of the two as a parent.

Of the three types of genetic operators, the position-based

crossover operator [14] is a 2-to-1 operator; that is, two parents
are used to create one offspring. The other two types, the swap

and the insertion operators [15], are both 1-to-1 type; that is, one
offspring is created by only one parent. Both the swap and
insertion operators are regarded as the mutation operator.

An example of the position-based crossover operator—for a
particular chromosome segment is shown in Fig. 5. In the figure,
there are two parents (Parent 1 and Parent 2) and each parent
comprises a distinct sequence of 10 jobs, where the location for
accommodating a job is called a gene. Three steps are carried out.
First, a binary number (0 or 1) is randomly generated for each
gene of Parent 1, and the resulting sequence of generated binary
J1 J2 J3 J4 J5 J6 J7 J8 J9 J10Parent1

Offspring J3 J2 J7 J4 J5 J6 J8 J1 J9 J10

J3 J7 J6 J2 J8 J1 J4 J9 J5 J10Parent2

0 1 0 1 1 1 0 0 1 0Mask

Fig. 5. Position-based crossover operator.
numbers is called Mask. Second, the offspring inherits the genes
(jobs) of Parent 1 that have ‘‘1’’ as binary numbers in the Mask.
Third, for the jobs in Parent 2 that have not been assigned to the
offspring, we assign each of them sequentially to the remaining
genes of the offspring.

The swap operator—for a particular segment is a single step
procedure as shown in Fig. 6. Of the segment, two genes are
randomly selected and their jobs (J4 and J7) are exchanged. The
insertion operator—for a particular segment is a two-step proce-
dure as shown in Fig. 7. First, we randomly select two genes
(J4 and J7). Second, of the two jobs, place the latter one
(J7) immediately before the preceding one (J4).

5.1.2. Procedure of GA_Sold

The procedure of GA_Sold is listed below. As stated, an
Sold chromosome involves Fþ1 segments. To generate a new
chromosome, each of these Fþ1 segments is independently

manipulated by applying genetic operators; in turn, the resulting
new Fþ1 segments are combined together to obtain a new
chromosome.

Procedure GA_Sold
Offs

Pa

Offs
pr

ren

pr
Step 1: Initial setting
� Input parameters Tf, Psize, 0rPcr1, 0rPmr1;

� Set t¼0; (t denotes the age of population Pt)

� Form a population P0 by randomly generating Psize

chromosomes.
Step 2: Record the best solution in Pt
� Find obest(t); (i.e., the best solution in Pt)

� Denote Lbest(t) as the makespan of obest(t).

Step 3: Apply crossover operation to update Pt
� Skip check: Generate a random number r, if r4pc then skip
the crossover operation and go to Step 4;

� Select parents: Carry out the binary tournament section

method twice to pick two chromosomes from Pt as a pair of
parents, which are respectively called Xp1 and Xp2 (Xp2

denotes the inferior one in terms of fitness values). Each
segment i (1r irFþ1) in Xp1 and Xp2 is, respectively called
Si,p1 and Si,p2.

� Create new chromosome
J Create offspring for each segment i
For segment i¼1, y, Fþ1
Apply the position-based crossover operator on Si,p1

and Si,p2 to create one new segment Si.

Endfor
J Combine Si (1r irFþ1) to form a new chromosome
Xoffspring
ing J1 J2 J3 J7 J5 J6 J4 J8 J9 J10

Fig. 6. Swap operator.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10t

ing J1 J2 J3 J7 J4 J5 J6 J8 J9 J10

Insertion

Fig. 7. Insertion operator.
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� Update population Pt
Experiment results of GAs.
Scenario Makespan Computation
time
J If Xp2 is inferior to Xoffspring, then Xp2 is removed from Pt

and Xoffspring is placed into Pt; else go to Step 4.
Step 4: Apply mutation operation to update Pt
N NwþNe Ne Nw Lnew Lold c (%) Tnew Told
� Skip check: Generate a random number r, if r4pm then skip
the mutation operation and go to Step 5;
SSU33 30 30 30 0 134.47 134.47 0.00 14.88 18.54
SSU34 30 28 25 3 150.98 150.99 0.01 16.84 20.50

SSU44 30 28 24 4 185.64 185.64 0.00 21.17 24.56

SSU55 30 29 19 10 241.94 242.11 0.07 30.63 32.30
� Select parent: Use the binary tournament selection method
to pick one parent, denoted by Xparent and each of its
segment is denoted by Si,p.
SSU56 30 28 12 16 253.36 253.71 0.14 31.95 34.81
SSU65 30 28 15 13 285.78 285.96 0.06 36.41 37.27

SSU66 30 28 13 15 294.90 295.14 0.08 40.16 40.03
� Select operator: Of the swap and insertion operators,
randomly determine which one to use—each one is with
the same probability (0.5).
SSU88 30 22 7 15 402.60 403.14 0.12 67.49 58.19

SSU108 30 16 0 16 481.76 481.94 0.04 95.61 72.24
� Create new chromosome
SSU1010 30 23 1 22 521.90 522.45 0.10 107.94 83.84
J Create offspring for each segment i

MSU33 30 30 30 0 160.00 160.00 0.00 13.75 17.91
For segment i¼1, y, Fþ1

MSU34 30 30 29 1 184.68 184.69 0.01 15.70 19.59
MSU44 30 30 28 2 237.60 237.61 0.00 21.01 24.23

MSU55 30 29 24 5 306.09 306.16 0.02 29.64 31.42
Apply the swap/insertion operator on Si,p to create one
new segment Si.
MSU56 30 30 24 6 317.47 317.68 0.06 30.04 32.98
Endfor

MSU65 30 28 23 5 362.63 362.66 0.01 35.92 36.68
MSU66 30 28 19 9 380.02 380.07 0.02 38.55 39.33
J Combine Si (1r irFþ1) to form a new chromosome
Xoffspring
MSU88 30 21 7 14 510.39 510.44 0.01 65.15 56.55
MSU108 30 14 2 12 623.95 623.51 (0.08) 89.16 70.74

MSU1010 30 21 1 20 655.17 655.52 0.05 99.95 79.66

LSU33 30 30 30 0 228.03 228.03 0.00 15.44 18.79

LSU34 30 30 30 0 239.00 239.00 0.00 14.94 18.96
� Update Population Pt: If Xparent is inferior to Xoffspring, then
Xparent is removed from Pt and Xoffspring is placed into Pt;
else go to Step 4.

Step 5: Termination check

LSU44 30 29 29 0 323.44 323.43 (0.00) 19.99 23.81
� IfLbestðtÞ ¼ Lbestðtþ1Þ ¼ . . .¼ LbestðtþTf Þ, Then STOP;

LSU55 30 29 28 1 415.97 415.97 (0.00) 28.00 30.95

LSU56 30 30 24 6 436.97 437.17 0.04 30.72 33.24
LSU65 30 30 27 3 491.92 492.02 0.02 35.95 36.48

LSU66 30 28 24 4 514.32 514.34 0.00 36.37 38.44

LSU88 30 23 10 13 701.63 701.11 (0.08) 60.78 54.90

LSU108 30 16 3 13 847.62 847.36 (0.04) 85.85 68.94

LSU1010 30 22 1 21 907.13 908.67 0.17 101.14 78.04

Average 30 26.27 17.97 8.30 393.25 393.37 0.03 44.37 41.13
� Else, go to Step 2.

5.2. GA_Snew algorithm

The procedure GA_Snew can be easily obtained because it is
essentially a special case of GA_Sold. As stated, a scheduling
solution in GA_Snew is represented by a single-segment chromo-
some, while that in GA_Sold is represented by Fþ1 segments.
To adapt to the single-segment scenario, we can easily develop
GA_Snew by only setting F¼0 in the procedure GA_Sold.
6. Numerical experiments

Numerical experiments are carried out to compare the effec-
tiveness and efficiency of the aforementioned meta-heuristic
algorithms. In the following, we first describe the experiment
scenarios. Second, we define three indices for comparing the
performance between two algorithms. Third, we compare the
experiment results of the two GA algorithms, and finally compare
that of the two ACO algorithms.

6.1. Experiment scenarios

The four meta-heuristic algorithms are coded in Cþþ program-
ming languages, running on personal computers equipped with
AMD Athlon(tm) II n4640 3.0 GHz CPU and 4 G RAM.

Data sets for the experiments are adopted from prior studies
[1,3,7,9]. The data sets are categorized into 30 scenarios, and each
scenario includes 30 problem instances. In total, there are 900
(30�30) problem instances; each problem instance essentially
denotes a unique scheduling problem.

Of the 30 scenarios, each one is designated by X-F-m, where X

denotes the type of setup times (LSU, MSU, SSU), F is the number of
families, and m is the number of machines. In addition, SSU denotes
small setup times, MSU denotes medium setup times, and LSU
denotes large setup times. For example, as shown in Table 1, LSU33
denotes a scenario with large setup times, 3 families, and 3 machines.

Of the 30 problem instances in a scenario, each one is varied by
randomly changing the following types of parameters: the number
of jobs per family(nf), processing times, and family setup times. These
parameters are so designed: nf is randomly generated from a
discrete uniform distribution U [1,10]. The processing times at
each stage are randomly generated from U [1,10]. Three different
cases of setup times were randomly generated, where U [1,20] is
used to model SSU, U [1,50] is used to model MSU, and U [1,100]
is used to model LSU.

Noticeably, in each problem instance, 15 experiments runs are
carried out. Using a different random number, each run generates
a different initial solution. In turn, the finally obtained solution in
each run may be different. Therefore, in each problem instance,
the average of its 15 experiment runs is taken as the performance
of the instance. Furthermore, in each scenario, the average of its
30 problem instances is taken as its ultimate performance measure.
In summary, to compare the two algorithms, we totally carry out
27,000 experiment runs (2 algorithms�30 scenarios/algorithm�
30 instances/scenario�15 runs/instance).

6.2. Performance measures

Consider that the experiment results of two algorithms X_Sold

and X_Snew are to be compared, where X denotes either GA or ACO.
We use three alternative indices (g, NwþNe, t0) to compare the
performance of the two algorithms.

The first index g is defined below. Consider that the experi-
ment results of two algorithms X_Sold and X_Snew are to be
compared, where X denotes either GA or ACO. The average
performance (makespan) of a particular scenario obtained from
X_Sold is denoted by Lold and that obtained from X_Snew is denoted
by Lnew; accordingly, the computation times are respectively
denoted by Told and Tnew. The performance difference between
X_Sold and X_Snew is denoted by g¼(Lold�Lnew)/Lold. Given a
scenario, while we are comparing the two ACO algorithms, g40



Table 2
Experiment results of ACOs.

Scenario Makespan Computation
time

N NwþNe Ne Nw Lnew Lold c (%) Tnew Told

SSU33 30 25 4 21 134.96 136.27 0.97 3.35 0.64

SSU34 30 28 1 27 152.56 154.46 1.26 5.15 1.28

SSU44 30 28 0 28 187.63 190.84 1.71 9.77 2.14

SSU55 30 24 0 24 246.79 250.53 1.45 19.49 4.69

SSU56 30 25 1 24 259.57 262.97 1.32 21.03 6.70

SSU65 30 27 0 27 292.51 297.35 1.64 31.09 7.36

SSU66 30 27 0 27 302.18 308.71 2.14 31.67 7.72

SSU88 30 24 0 24 418.97 424.28 1.24 57.37 18.29

SSU108 30 25 0 25 506.84 512.10 1.01 100.11 25.48

SSU1010 30 22 0 22 551.92 554.87 0.56 98.01 29.51

MSU33 30 26 6 20 160.76 162.74 1.23 3.38 0.51

MSU34 30 28 4 24 185.23 187.42 1.18 5.13 0.97

MSU44 30 26 0 26 239.03 242.31 1.32 12.76 2.16

MSU55 30 28 0 28 309.46 315.96 2.07 31.04 5.66

MSU56 30 29 0 29 321.72 329.32 2.32 30.41 4.90

MSU65 30 28 0 28 367.47 375.24 2.07 49.92 7.51

MSU66 30 28 0 28 386.52 396.05 2.42 49.08 8.39

MSU88 30 29 0 29 529.09 546.14 3.08 102.58 20.49

MSU108 30 29 0 29 655.03 667.53 1.88 175.06 39.82

MSU1010 30 25 1 24 687.61 698.20 1.52 164.46 40.30

LSU33 30 22 5 17 228.67 229.98 0.56 4.98 0.80

LSU34 30 27 5 22 239.38 241.19 0.76 5.50 0.83

LSU44 30 28 4 24 324.13 327.27 0.93 16.36 1.95

LSU55 30 28 0 28 419.19 426.50 1.70 48.32 4.75

LSU56 30 27 0 27 440.70 449.42 1.95 50.98 5.80

LSU65 30 29 0 29 496.02 507.07 2.17 92.34 6.75

LSU66 30 27 0 27 518.88 531.96 2.48 87.37 8.96

LSU88 30 29 0 29 715.14 736.53 2.90 180.73 22.54

LSU108 30 27 0 27 883.67 905.50 2.40 328.03 64.14

LSU1010 30 29 0 29 947.02 972.93 2.66 295.34 61.76

Average 30 26.80 1.03 25.77 403.62 411.39 1.70 70.36 13.76
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implies that ACO_Snew outperforms ACO_Sold. Likewise, g40
implies that GA_Snew outperforms GA_Sold while the two GA
algorithms are compared in this scenario.

The second index NwþNe is explained below. Since there are
30 scenarios, N¼30 is used to denote the total number of
instances in a scenario. In turn, Ne denotes the number of
instances with g¼0 and Nw denotes the number of instances
with g40. As a result, NwþNe denotes the number of instances
that X_Snew either outperforms or performs equally well as X_Sold.
The higher is NwþNe, the better is X_Snew comparing against
X_Sold.

The third index t0 is explained below. To compare the
performance difference between X_Snew and X_Sold, we carried
out a paired t-test for the 900 problem instances (30 scenarios�
30 instances/scenario). For each problem instance, the test statis-
tic for modeling the performance difference is defined as
d¼ ðLold�Lnew Þ=Lold , where Lold and Lnew , respectively denotes the
average performance of the 15 runs of the two algorithms. The t-
value is t0 ¼ d=ðSd=

ffiffiffi
n
p
Þ where d is the mean and Sd is the standard

deviation of the 900 problem instances. The obtained t-value can
be used to justify if X_Snew outperforms X_Sold, in the sense of
statistical significance.

6.3. Experiment results comparison

In the experiments, we set the parameters of the two GA
algorithms as follows: Psize¼1000, pc¼0.95, pm¼0.10, Tf¼4000,000.
And the parameters of the two ACO algorithms are set as follows:
r¼0.8, S¼C(N,2), where N is the total number jobs, a¼1, b¼2, and
Tf¼10,000.

Table 1 shows a comparison between the experiment results of
GA_Snew and GA_Sold. The first index g ranges from �0.08% to
0.17%, and its average is 0.03%. The second index NwþNe ranges
from 14 to 30, and its average is 26.27. These two indices indicate
that GA_Snew on average outperforms GA_Sold. The third index
t0¼3.164t0.025,899¼1.96, which implies that GA_Snew also out-
performs GA_Sold in the sense of statistical significance. The
average of Told is 41.13 s., and the average of Tnew is 44.37 s. Both
the two GA algorithms appear to be computationally inexpensive.

Table 2 shows a comparison between the experiment results of
ACO_Snew and ACO_Sold. The first index g ranges from 0.56% to 3.08%,
and its average is 1.70%. The second index NwþNe ranges from 22
to 29, and its average is 26.80. These two indices indicate that
ACO_Snew on average outperforms ACO_Sold. The third index
t0¼30.884t0.025,899¼1.96, which implies that ACO_Snew also out-
performs ACO_Sold in the sense of statistical significance. The average
of Told is 13.76 s., and the average of Tnew is 70.36 s. Likewise, the two
ACO algorithms are computationally inexpensive.

In summary, in terms of solution quality, Tables 1 and 2 reveal
that chromosome representation Snew outperforms Sold while they
embedded in a particular meta-heuristic algorithm (either GA or
ACO). Thus, the choice of chromosome representation could have a
significant effect on the performance of meta-heuristic algorithm.
This advocates the value of developing new chromosome repre-
sentation scheme in the application of meta-heuristic algorithms.
7. Analyses of experiment result

In this section, we endeavor to explain why GA_Snew outper-
forms GA_Sold and why ACO_Snew outperforms ACO_Sold. To reveal
the underlying reasons, we extensively trace and analyze the
intermediate and resulting outcomes for each of the four evolu-
tionary processes. Based on some interesting findings, we propose
some conjectures on the underlying reasons of why GA_Snew and
ACO_Snew are superior to their counterparts.
7.1. GA_Snew vs GA_Sold

Our conjectures on why GA_Snew outperforms GA_Sold are
two-fold. The first conjecture is that the first segment of the
Sold chromosome, which models a sequencing decision among
families, is a dominant segment. Namely, the first segment appears
to have much more influence on the solution quality than the
other segments. By reviewing the GA_Sold algorithm presented in
Section 5.1.2, the chromosome population is continually updated
by replacing inferior chromosomes by relative superior ones. Such
a replacement mechanism leads to that the chromosomes in the
dominant segment tend to approach a homogeneous state. That is,
in GA_Sold, most chromosomes in the population ultimately tend
to have the same dominant segment, as illustrated in Fig. 8 which
is obtained from tracing a problem instance in scenario MSU9.
Notice that this problem instance is referred for all experiment
discussions of this section.

In Fig. 8, the horizontal axis denotes Tf (the parameter for
program termination); and of the two vertical axes, the right one
denotes makespan (solution quality) and the left one denotes the
percentage of dominant segments that have become homogeneous
(i.e., with exactly the same appearance); herein such a percentage is
denoted by yh. Notice that while Tf increases (i.e., we relax the
program termination condition), the solution quality initially
improves but gradually tends to approach a steady state (i.e., cannot
be further improved). In addition, while Tf increases, yh gradually
increases and reaches toward almost 100%. This implies that the
dominant segment now has very rare probability to change. That is,
if the dominant segment of the GA_Sold is by chance trapped into a
local optimum solution too early, the GA_Sold would be very likely
trapped there and could not be further improved.

The second conjecture on why GA_Snew outperforms GA_Sold is
that the chromosome representation of Snew is essentially



Fig. 9. A comparison of solution quality between GA_Sold and GA_Snew at various Tfonone4 .o/none4 .

Fig. 8. Tracing results of GA_Sold in a problem instance of MSU9 at various Tf : (a) QUOTE of the first segment moves toward 100%, (b) average QUOTE of the other segments

moves toward 40%, (c) histogram of solution quality.
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redundant; that is, one scheduling decisions can be modeled by
more than one chromosomes. This one-to-many feature has two
pros and cons impacts. The search of GA_Snew is less efficient due
to redundancy representation. Yet it tends to be more effective
due to flexibility in representation, because the Snew chromo-
somes in the population tend not to be homogenized. Fig. 9
compares the solution quality of GA_Sold and GA_Snew. The figure
reveals that GA_Snew is inferior to GA_Sold while at lower Tf, and
GA_Snew becomes superior while at higher Tf,. This implies that if
we provide enough computational time resources, GA_Snew could
keep improving solution quality yet GA_Sold would tend to be
trapped into a local optimum and cannot be improved further.
Therefore, GA_Snew tend to outperform GA_Snew while we have
enough computation time resources.

7.2. ACO_Snew vs ACO_Sold

Our conjectures on why ACO_Snew outperforms ACO_Sold are two-
fold. The first conjecture is that the sequencing decision among
families is a dominant decision. That is, the sequencing decision
among families is much more important than the sequencing
decisions of jobs within each family. In fact, this conjecture has
been proposed and well supported by the empirical tracing results
illustrated in Fig. 8, at the time we endeavor to explain why GA_Snew

would outperform GA_Sold. We therefore adopt this conjecture in the
context of explaining why ACO_Snew outperforms ACO_Sold. Such a
conjecture adoption implies that we shall pay attention to the
analysis of the dominant decision.

The second conjecture is that the average ant traffic intensity on
an ACO_Sold network is much higher than that on an ACO_Snew

network. For ACO_Sold, consider a simple scheduling problem as
an example in which there are 4 families and 20 jobs. Then we
have five sub-networks in ACO_Sold and the first sub-network
(i.e., the dominant decision or the sequencing decision among
families) is as shown in Fig. 3. In this sub-network, the number of
travelling paths is C (5, 2)¼10. The number of ants to be selected
in each evolutionary iteration is C (20, 2)¼190. Then the average
traffic intensity for the ACO_Sold is 190/10¼19 ants per path. In
contrast, for the ACO_Snew counterpart, we have only one big
network which involves 21 nodes (i.e., 20 job nodes and 1 starting
nodes). In each evolutionary iteration, the number of paths is C
(21, 2)¼210; and the number of ants is likewise C (20, 2)¼190. As
a result, the average traffic intensity for the ACO_Snew is 190/210¼
0.90 ants per path, which is far less than that of ACO_Sold.

Before explaining why ant traffic intensity is an appropriate
conjecture, we define two ACO network attributes ðt̂ij and tijÞ as
pre-requisites. For an ACO program, while its evolutionary process is
terminated, the resulting pheromone (tij) on each travelling path (a
path connecting node i and node j) can be recorded. Define
t̂ij ¼ tij=Rka i=kAStik where S denotes the set of all nodes in the
concerned ACO network. The higher is t̂ij, the higher probability is
the path selected by travelling ants. For the problem instance of
MSU9, we can obtain a from-to-matrix as shown in Table 3. Based
on the from-to-matrix, we define a dominant route by sorting t̂ij in
descending order. Then, out of the C (N, 2) paths, we select N distinct
paths as the dominant route (refer to the highlighted paths in
Table 3). For the dominant route, we further define an aggregate
attribute tij ¼Rt̂ij ADt̂ij=N where D denotes a set that includes all
paths of the dominant route. Notice that tij essentially denotes the
traffic intensity of the dominant route.

We now justify the second conjecture by analyzing tij on the
ACO_Sold and ACO_Snew networks. As shown in Fig. 10, tij of
ACO_Sold and ACO_Snew are compared while they are used to solve
the problem instance of MSU9. From the figure, we could see that
tij of ACO_Sold is around 50% and that of ACO_Snew is around 20%.
This implies that the composing paths on the dominant route in



Table 3
From-to-matrix of ACO_Sold in a problem instance of MSU9 scenario.

From-to-matrix To

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

From
FStarting node 99.97% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00%

F1 – 0.07% 0.00% 0.00% 68.94% 12.22% 11.22% 7.25% 0.25% 0.04%

F2 0.09% – 89.74% 1.98% 3.01% 0.40% 4.49% 0.02% 0.00% 0.27%

F3 0.00% 49.79% – 50.21% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

F4 0.00% 1.10% 50.12% – 48.79% 0.00% 0.00% 0.00% 0.00% 0.00%

F5 49.97% 1.66% 0.00% 48.37% – 0.01% 0.00% 0.00% 0.00% 0.00%

F6 12.60% 0.31% 0.00% 0.00% 0.01% – 38.30% 48.51% 0.23% 0.04%

F7 10.50% 3.18% 0.00% 0.00% 0.00% 34.77% – 50.34% 1.01% 0.19%

F8 6.62% 0.02% 0.00% 0.00% 0.00% 42.96% 49.11% – 0.28% 1.02%

F9 0.51% 0.00% 0.00% 0.00% 0.00% 0.44% 2.17% 0.62% – 96.25%
F10 0.08% 0.41% 0.00% 0.00% 0.00% 0.08% 0.42% 2.26% 96.74% –

Fig. 10. A comparison of QUOTE between ACO_Sold and ACO-Snew at various Tf.

Fig. 11. A comparison of solution quality between ACO_Sold and ACO_Snew at various Tf.
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ACO_Sold, compared against that of ACO_Snew, have higher prob-
ability of being travelled. That is, ACO_Snew is more divergent than
ACO_Sold in creating new scheduling solutions. Suppose the
dominant route is a local optimum solution, ACO_Sold shall have
a lower probability than ACO_Snew in an attempt to generate a
new solution better than the local optimum. Such a local
optimum conjecture can be empirically supported by comparing
Tables 1 and 2, in which GA-based algorithms significantly out-
performs ACO-based algorithms; this implies that ACO-based
algorithms tend to be trapped into a local optimum.

We further have empirical findings to support the aforementioned
conjecture—ACO_Snew is more divergent than ACO_Sold in creating new
scheduling solutions and more likely to generate a new solution
better than the current local optimum. See Fig. 11, while Tf increases,
ACO_Snew keeps improving in the obtained optimum solution. In
contrast, the obtained optimum solution of ACO_Sold tends to quickly
become stable; that is, the optimum solution obtained at Tf¼1k is
close to that obtained at Tf¼40k. This implies that ACO_Sold may have
been trapped into a local optimum in a very early stage.
8. Concluding remarks

This paper attempts to highlight the importance of developing
new chromosome representation in the application of meta-heur-
istic algorithms. Such a research claim is justified by solving a
scheduling problem, called permutation manufacturing-cell flow
shop (PMFS). We compare the effectiveness of two chromosome
representation schemes (Sold and Snew) while they are embedded in a
particular meta-heuristic algorithm to solve the scheduling problem.

We first compare the effectiveness of Sold and Snew while they
are embedded in a GA algorithmic mechanism, which in turn yields
two algorithms GA_Snew and GA_Sold. Experiment results indicate
that GA_Snew outperforms GA_Sold. Second, we proceed to compare
the effectiveness of Sold and Snew while they are embedded in ACO
algorithmic mechanism. Experiment results indicate that ACO_Snew

also outperforms ACO_Sold. These findings reveal that chromosome
representation Snew appears to be better than Sold. This also implies
that developing appropriate chromosome representations might be
very important in the application of meta-heuristic algorithms.
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In addition, we propose some conjectures for explaining why
GA_Snew outperforms GA_Sold, and why ACO_Snew also outperforms
ACO_Sold. These conjectures are supported by empirical findings.
The three main conjectures are summarized here. First, the
sequencing decision among families is a dominant decision.
Second, in the dominant decision, GA_Sold tends to generate a
homogeneous chromosome population and is likely be trapped
into a local optimum. Third, in the dominant decision, ACO_Sold

tend to have a higher traffic intensity which in turn reduces the
probability of generating a new better solution.

Some possible extensions of this research are being consid-
ered. First, we attempt to compare the effectiveness of some other
meta-heuristic algorithms while they are embedded with Sold and
Snew. Second, we attempt to analyze the underlying reasons why
Snew-based algorithms and Sold-based algorithms would be differ-
ent in their obtained solutions. Third, we attempt to use these
underlying reasons as a guide to modify and enhance existing
meta-heuristic algorithms.
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