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Dynamic information in proteins may provide valuable information for understanding allosteric regulation of
protein complexes or long-range effects of the mutations on enzyme activity. Experimental data such as X-ray
B-factors or NMR order parameters provide a convenient estimate of atomic fluctuations (or atomic auto-
correlated motions) in proteins. However, it is not as straightforward to obtain atomic cross-correlated motions
in proteins — one usually resorts to more sophisticated computational methods such as Molecular Dynamics,
normal mode analysis or atomic network models. In this report, we show that atomic cross-correlations can
be reliably obtained directly from protein structure using X-ray refinement data. We have derived an analytic
form of atomic correlated motions in terms of the original TLS parameters used to refine the B-factors of X-ray
structures. The correlated maps computed using this equation are well correlated with those of the method
based on a mechanical model (the correlation coefficient is 0.75) for a non-homologous dataset comprising
100 structures.Wehavedeveloped an approach to compute atomic cross-correlations directly fromX-ray protein
structure. Being in analytic form, it is fast and provides a feasibleway to compute correlatedmotions in proteins in a
high throughputway. In addition, avoiding sophisticated computational operations; it provides a quick, reliableway,
especially for non-computational biologists, to obtain dynamics information directly fromprotein structure relevant
to its function.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Protein dynamics is important for protein functions (Kubitzki et al.,
2009; Rasmussen et al., 1992). Studies for several well-known proteins,
such as myoglobin (Austin et al., 1975; Elber and Karplus, 1987; Parak
and Knapp, 1984), hemoglobin (Ansari et al., 1986; Case and Karplus,
1979) and lysozyme (Karplus and Post, 1996; Post et al., 1986;
Strynadka and James, 1996), indicate the significance of dynamics rela-
tion to functions. The B-factor, acquired from an X-ray crystal structure,
represents the fluctuation of an atom about its mean position. There
have been many reports of applying the B-factor to investigations into
protein functions (Altman et al., 1994; Carugo and Argos, 1998;
Parthasarathy and Murthy, 2000; Radivojac et al., 2004; Yuan et al.,
2003). In addition to atomic fluctuations in position, correlations
between the fluctuations of residues in proteins are important to
understanding the mechanisms of protein function. Examples include
M, Gaussian network model;
; NADPH, nicotinamide-adenine
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the gating mechanism of mechanosensitive channel (Valadie et al.,
2003), the anesthetic inhibition mechanism of the firefly luciferase
(Szarecka et al., 2007a), the anesthetics targeting of neuronal α4β2
nicotinic acetylcholine receptor (Szarecka et al., 2007b), the hinge
regions of human copper transporter 1 (Schushan et al., 2010), the
catalysis of α-chymotrypsin (Solá and Griebenow, 2006) and the
allosteric signaling in catabolite activator protein (Toncrova and
McLeish, 2010). However, correlations between the displacements
of atoms cannot be determined from the X-ray experimental data
(Winn et al., 2001). The Molecular Dynamics computational method
(Brooks et al., 1988; Levitt and Warshel, 1975; McCammon and
Harvey, 1986; McCammon et al., 1977; Rueda et al., 2007; Warshel,
1976, 2002) and normal mode analysis (Brooks and Karplus, 1983;
Kidera and Go, 1992; Levitt et al., 1985) are the most common ways
used to determine the correlated fluctuations between residues. These
approaches model protein structures that apply a mechanical force
field (Brooks et al., 1983; Jorgensen and Tirado-Rives, 1988; Ponder
and Case, 2003; Scott et al., 1999) to compute protein motions using
long-time trajectory integration or matrix diagonalization.

TLS refinement (Winn et al., 2001) is a B-factor refinement method
integrated in the REFMAC software program (Murshudov et al., 1997).
Optimization of the TLS (Translation/Libration/Screw) parameters
is the key to this method, because these are used for describing the
molecular motions in crystals, based on X-ray data (Cruickshank,
1956; Schomaker and Trueblood, 1968). The TLS parameters have
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been successfully used for modeling atomic displacements from ex-
perimental X-ray data (Sternberg et al., 1979). Here, we show that
correlated motions can be determined directly from refined X-ray
structures by using TLS parameters, without the need for additional
simulations.

Because of the difficulty of obtaining atomic cross-correlations ex-
perimentally, we evaluate our method using correlation maps com-
putation based on the Gaussian network model (GNM) (Bahar et al.,
1997; Ming et al., 2002; Tirion, 1996) — a coarse-grained version of
the normal model analysis approach, as a reference standard. In this
paper, we compare correlation maps calculated using our method
and those produced using normal mode methodologies, and discuss
several applications of our method in the context of protein function.

2. Methods

2.1. The empirical model for computing the atomic cross-correlation by
using TLS parameters

Based on the TLS model (Schomaker and Trueblood, 1968), we
represent the correlation between isotropic displacements of an
atom as a function of the spatial coordinated and the TLS parameters,
defined by Sternberg et al. (Sternberg et al., 1979) as:

Δri⋅Δri
� � ¼ 1

3
tr T þ ST � n−n� S−n� L � n
� �

; ð1Þ

Where, Δri refers to the isotropic displacements of an atom; T≡ttT,
L≡λλT and S≡λt represent the translation, libration and screwmatrixes,
respectively. We will refer to the atomic cross-correlation computed
based on Eq. (1) as BTLS. The translation matrix T is constructed from
the displacement correlations between translation vectors along three
directions tx, ty and tz. The libration matrix L contains the displacement
correlations between rotation vectors about three axes λx, λy and λz.
Correlations between the translation and rotation vectors are used to
build the screw matrix S. Each of T, L, and S is a 3×3 matrix, where T
and L are symmetric matrixes, and S is usually with arbitrarily specified
origin. Position relative to the origin of an atom is specified byn. In total,
10 TLS parameters are refined to obtain the required atomic fluctuation
(Sternberg et al., 1979).

Based on the atomic fluctuation equation derived from the TLS
parameters, it is not hard to present the cross-correlation between
isotropic displacements of atom i and atom j in the same TLS group as:

Δri⋅Δrj
D E

¼ 1
3
tr T þ ST � nT

j −ni � S−ni � L � nT
j

� �
: ð2Þ

Where, ni and nj are the positions of atom i and atom jwith regard
to an arbitrary origin O, respectively. We will refer to the atomic
cross-correlation computed based on Eq. (2) as CCTLS. Additionally, we
should note that the TLS parameters used in Eq. (2) are identical to
those in Eq. (1), and if i= j the CCTLS is equivalent to BTLS, which is the
same as the value given by Eq. (1). This means that we can use the
TLS parameters obtained from TLS refinement directly to compute
both CCTLS and BTLS by applying Eq. (2).

2.2. The TLS parameter refinement

TLS parameters are commonly optimized in one of the twoways: by
direct comparison with X-ray diffraction data (Driessen et al., 1989;
Howlin et al., 1993; Winn et al., 2001) and by fitting to an existing set
of refined temperature factors (He and Craven, 1993; Kuriyan and
Weis 1991; Sternberg et al., 1979). An entire protein molecule is treated
as a rigid body or as the combination of several rigid fragments (i.e., sev-
eral TLS group). Although a protein structure can frequently be
subdivided into multiple TLS groups, in this study we only consider the
situation that each chain of a given protein structure is treated as a TLS
group. Later, we discuss the effect of treating each domain in a pro-
tein as a separate TLS group. In refining TLS parameters based on
X-ray crystallography data, the protein coordinates and X-ray experi-
mental data are used as the initial input data for REFMAC software
program. In general, 10–15 cycles of the TLS refinement are followed
by 10 cycles of maximum likelihood restrained refinement. The
obtained TLS parameters can be used for computing dynamic
cross-correlations after the R/Rfree ratio becomes a stable function of
the refinement cycles, and of the TLS group parameters converge. Be-
cause the coordinates change as refinement processes (resulting from
restrained refinement), the final optimized coordinates obtained from
the TLS refinement are used as the input data for computing the dynam-
ic correlations in the X-ray spectral PDB file.

2.3. Similarity between correlation maps

For easy analysis, atomic correlations are usually presented as corre-
lation maps with the auto- and the cross-correlations at the diagonal
and the off-diagonal entries of the matrix, respectively. To compare
the correlation maps computed using our method (C) and the GNM
(G), we used Pearson's correlation coefficient tomeasure the similarity:

r ¼
∑
a
∑
b

cab−c
� �

gab−g
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
a
∑
b

cab−c
� �� �2

∑
a
∑
b

gab−g
� �� �2

s : ð3Þ

Where, cab and gab are elements in correlationmaps C and G; c andg
are the element's mean values.

2.4. Dataset

To evaluate our method, we choose 100 non-redundant X-ray
proteins with sequence identity ≤25% from PISCES (Wang et al.,
2003). The protein sizes for this set are between 100 and 600 residues
in a single chain, at a resolution≤2 Å. TLS refinement has been carried
out on all of the selected structures, assigning a single TLS group per
chain using the REFMAC software program. The dataset chains are listed
in Table S1 in the supplementary material. Hereinafter, we refer to this
dataset as “100-dataset”.

3. Results

3.1. Comparison of correlation maps and the slowest normal modes
computed using our method and the GNM

For convenience, atomic displacement correlations are usually
presented as correlation maps. Here, we compared several maps cal-
culated using our method with those determined using the GNM.
Comparisons of correlation maps calculated using our method and
the GNM for N-terminal actin depolymerizing factor homology do-
main of Human twinfilin-2 (PDB ID: 2VAC:A), bovine neurexin 1
alpha LNS/LG domain 4 (PDB ID: 2R16:A), aminomethyltransferase of
glycine cleavage system (PDB ID: 1VLO:A) and tyrosine phosphatase
1B (PDB ID: 2F71:A) are shown in Fig. 1. Each of these four pairs of
maps is in excellent agreement. The normal mode vectors and frequen-
cies can be calculated by diagonalizing the Hessian matrix. Because
the inverse correlation matrix is the Hessian matrix, we obtain the
normal mode vectors by simply inverting and diagonalizing the cor-
relation matrix. Many studies report that the lowest-frequency mo-
tions of the normal modes often relate to protein functions (Amadei
et al., 1993; Brooks and Karplus, 1983; Hinsen, 1998, 2000; Tama and
Sanejouand, 2001; Thomas et al., 1999). Fig. 2 shows that the compari-
sons between the slowest normal modes calculated by our method and



Fig. 1. Correlation maps for some of the proteins from the 100-dataset. For each protein case, the left panel is the map computed by our method and the right by the GNM. The colors
of the map ramp from red (positive correlation) to blue (negative correlation).

54 Y.-Y. Liu et al. / Gene 518 (2013) 52–58
the GNM for those structures examined in Fig. 1 are in excellent
agreement.
3.2. Large-scale evaluation of our method

For large-scale evaluation, we used Eq. (3) to measure the similarity
between the correlation maps. Fig. 3 shows the distribution of correla-
tion coefficients between pairs of the correlation maps produced by
our method and the GNM for the 100-dataset. The average correlation
coefficient is c=0.75 and the fraction of structures with the correlation
coefficient larger than 0.75 is 0.58.
Fig. 2. Comparison of normal mode displacements along the slowest mode. The proteins exam
our method on the left panel and the GNM on the right. The regions color-coded in red and bl
3.3. The breakdown analysis for the accuracy of our method

We tested seven protein characteristics to determine the accuracy of
ourmethod in computing atomic cross-correlations. Of these character-
istics, protein size, mean B-factor and function are related to protein
properties, while solvent contents and crystal lattices are used to de-
scribe the environmental condition of a crystalline protein molecule.
The remaining two characteristics, the R-value, and X-ray structure
resolution are applied to represent the quality of a crystal struc-
ture. Figs. 4A–C present performance profiles for our method as a
function of protein size, mean B-factor, and the top 5 quantity pro-
tein functions (hydrolase, transferase, oxidoreductase, lyase, and
ined in Fig. 1 are selected for demonstration. The corresponding diagrams are shownwith
ue indicate the opposite directions of the displacement of the modes.

image of Fig.�2


Fig. 3. Distribution of correlation coefficients between correlation maps produced by our
method and the GNM. The distribution of correlation coefficients between correlation
maps calculated based on our method and the GNM for the 100-dataset is shown.
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isomerase) of the 100-dataset. Figs. 4D and E showperformance distribu-
tions undermonoclinic, orthorhombic, tetragonal, trigonal crystal lattices,
and for various solvent contents, respectively. Figs. 4F and G present the
method's performances as functions of the structure resolution and
R-value. We excluded marginal fractions of less than five proteins.
The average performances in the examined ranges are comparable
for all characteristics, suggesting that atomic cross-correlations com-
puted using our method are not influenced by the diverse properties of
proteins.

3.4. The application of our method in protein functional studies

It is common to use normal mode motions for analyzing protein
functional dynamics. Here, we illustrate the applicability of our method
to protein functional studies using dihydrodipicolinate reductase (PDB
ID: 1ARZ) and ketoacyl–acyl carrier protein synthase (PDB ID: 1B3N)
structures.

3.5. Dihydrodipicolinate reductase

Dihydrodipicolinate reductase is to catalyze the NADH (or NADPH)-
dependent reduction (Scapin et al., 1997). We modeled the entire 1ARZ
chain D: 3-273 as a single TLS group, and optimized the parameters by
running 15 cycles of TLS refinement, followed by 10 restrained refine-
ment cycles. The resulting TLS parameters and the output coordinates
were used to compute a correlation map. The corresponding normal
mode vectors and frequencies were obtained through diagonalizing the
1ARZ:D dynamic correlations matrix. Analysis of the first three slow
modes showed that the normal motion computed using our method
was similar to that derived using theGNM(Fig. 5A, lower panel). A recent
study (Yang and Bahar, 2005), reported that the catalytic residues (H159,
H160, and K163) and the 1ARZ:D ligand-binding residues (R16, M17,
R81, G102, T104, A127, F129, K163, G169 and T170) (Fig. 5A, upper
panel)were immobilized because of their location at the crossover region
between two opposite substructures. Similar correlated motions are ap-
parent from our own analysis.

3.6. Ketoacyl–acyl carrier protein synthase 2

The major function of Ketoacyl–acyl carrier protein synthase is to
catalyze chain elongation in fatty acid biosynthesis (Moche et al.,
1999). The REFMAC program was applied to 1B3N chain A: 2-412. To
determine the TLS parameters, 15 cycles of TLS refinement, followed
by 10 restrained refinement cycles were performed, and output coordi-
nates were used for computing the correlation map. The slowest three
eigenvectors were calculated from diagonization of the resulting
correlation map. The lower part of Fig. 5B shows the eigen motions
computed using on our method and the GNM. The correlation between
these two eigenmotions is relatively high, with a correlation coefficient
of 0.80. Additionally, the catalytic residues (C163, F398, G399 and F400)
and the ligand-binding residues (G107, I108, C163, A193, G198, F202,
H303, H340 and L342), presented in the upper panel of Fig. 5B, are
also located at the crossover region, and undergo opposing correlated
motions as the case illustrated in Fig. 5A. These results demonstrate
the viability of our method for providing insight into the structure–
dynamics–function relationship.

4. Discussion

In this study, we found that correlations between fluctuations of
residues can be simply obtained from structure refinement data by
using TLS parameters, without the need for complicated simulations.
We conducted several comparisons between ourmethod and commonly
used GNM approach, and our findings indicated excellent agreement
between the two methodologies.

Because the TLS parameters are directly refined against X-ray exper-
imental data, the correlated motions derived from the TLS parameters
reflect real situations that exist within the protein molecule. Although
the rigid-body assumption of using TLS parameters to model protein
motions sacrificed detailed information, the large-scale dynamics
of the protein molecule are preserved. Hence, it is both practical
and reasonable to extract correlated motions between residues
from these TLS parameters. However, use of the rigid-body assumption
only allows the lowest-frequency motions to be captured. Fortunately,
many literature reports suggest that functional motions commonly
correspond to the slowest modes (Amadei et al., 1993; Hinsen, 1998,
2000; Tama and Sanejouand, 2001; Thomas et al., 1999). Aswe described
above, correlated motions derived using our method can successfully
explain the mechanisms of various protein functions. However, it
should be noted that Eq. (2) is an empirical relationship, determined
from results and not by derivation. Hence, further investigation is re-
quired to understand equation's physical basis.

Additionally, Eq. (2) uses the assumption that all atoms to be calcu-
lated are in the same domain (i.e., the same TLS group), however, there
are many proteins whose structures contain more than one domain.
According to our statistics for non-redundant protein structures in
SCOP 1.75 (Murzin et al., 1995), 20% of the proteins are multi-domain
structures, compared to 80% for single-domain structures. Therefore, it
is necessary to evaluate the effect of treating a multi-domain structure
as a single TLS group. Because the domain information for most protein
structures in our dataset is not defined in SCOP 1.75, we ran a Protein
Domain Parser (Alexandrov and Shindyalov, 2003), which is a domain
prediction program, to calculate number of protein domains for each
structure in our dataset. The results show that 65% of the proteins in
our dataset are single-domain structures while 35% are multi-domain
structures. We treat each protein chain in our dataset as a single TLS
group regardless ofwhether thereweremultiple domains in the protein
chain. The resulting average correlation coefficients for multi-domain
structures and single-domain structures are 0.76 and 0.74, respectively.
The student's t-test did not show significant difference between these
twodistributions (p>.05). This suggests that treatingmultiple domains
as a single TLS group may not significantly affect our model's atomic
cross-correlation computations, and implies that the dynamic properties
of a TLS group adequately describe those of a protein domain.

5. Conclusions

Atomic cross-correlations provide information of long-distance
dynamic couplings and collective motions of protein chains, and help
researchers to determine possible functional mechanisms. In this
study, we describe a novel approach to obtain correlated motions di-
rectly from X-ray structure refinement data by using X-ray spectral

image of Fig.�3


Fig. 4. Distributions of correlation coefficients between correlation maps as functions of various protein characteristics. The correlation coefficient between correlation maps based
on the our method and the GNM for the 100-dataset as a function of (A) the protein size, (B) the overall mean B-value, (C) the top five functions in quantity (i.e., I: Hydrolase, II:
Transferase, III: Oxidoreductase, IV: Lyase and VI: Isomerase), (D) the solvent contents, (E) the crystal lattices (i.e., I: Monoclinic, II: Orthorhombic, III: Tetragonal and IV: Trigonal),
(F) the x-ray structure resolution, and (G) the R-value.
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TLS parameters. Our results show that our approach is both practical
and plausible, and has potential for application in protein functional
studies. Because this method uses the same set of TLS parameters as
those used in general TLS refinement process, it is straightforward for
structure biologists to apply. In addition, because the correlation
map can be obtained directly along with a refined protein structure,
structure–dynamics–function relationships are easily constructed.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gene.2012.11.086.
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Fig. 5. The normal mode displacements of (A) dihydrodipicolinate reductase (1ARZ:A) and (B) ketoacyl–acyl carrier protein synthase (1B3N:A) are shown. The solid line presents
the displacement calculated using our method, and the dash line is based on the GNM. The upper panels of (A) and (B) show the slow modes computed based on our method with
the catalytic and binding residues shown in green spheres (only Cα atoms are shown). The regions colored in red and blue indicate the opposite directions of the displacement of
the modes.
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