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Nonstationary Source Separation Using
Sequential and Variational Bayesian Learning

Jen-Tzung Chien, Senior Member, IEEE, and Hsin-Lung Hsieh

Abstract— Independent component analysis (ICA) is a popular
approach for blind source separation where the mixing process
is assumed to be unchanged with a fixed set of stationary source
signals. However, the mixing system and source signals are non-
stationary in real-world applications, e.g., the source signals may
abruptly appear or disappear, the sources may be replaced by
new ones or even moving by time. This paper presents an online
learning algorithm for the Gaussian process (GP) and establishes
a separation procedure in the presence of nonstationary and
temporally correlated mixing coefficients and source signals. In
this procedure, we capture the evolved statistics from sequential
signals according to online Bayesian learning. The activity of
nonstationary sources is reflected by an automatic relevance
determination, which is incrementally estimated at each frame
and continuously propagated to the next frame. We employ
the GP to characterize the temporal structures of time-varying
mixing coefficients and source signals. A variational Bayesian
inference is developed to approximate the true posterior for esti-
mating the nonstationary ICA parameters and for characterizing
the activity of latent sources. The differences between this ICA
method and the sequential Monte Carlo ICA are illustrated. In
the experiments, the proposed algorithm outperforms the other
ICA methods for the separation of audio signals in the presence
of different nonstationary scenarios.

Index Terms— Bayes procedure, blind source separation (BSS),
Gaussian process (GP), independent component analysis (ICA),
online learning, variational method.

I. INTRODUCTION

LIND source separation (BSS) attempts to recover the

independent source signals s; = [51,,,...,5M,,]T at
frame ¢ under the situations that we only observe the
mixed signals x;, = [xl,,, ... ,xN,,]T, and the actual mix-
ing process, expressed by x;, = As;, with a N x M
mixing matrix A, is unknown. The source signals are
assumed to be stationary and determined by s; = Wx;
where the demixing matrix W or the mixing matrix A is
also assumed to be stationary and can be estimated by
an independent component analysis (ICA) procedure. The
conventional ICA methods were developed by maximizing
the kurtosis or minimizing the mutual information between
demixed signals [3], [10], and [13]. A BSS algorithm [46]
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was established to find the demixing matrix by maximizing
the temporal predictability where the covariances between
signal mixtures are computed. More recently, BSS methods
[4], [36], [47], and [49] were developed by conducting matrix
factorization based on the time-frequency analysis [50] or
using the regularized priors [20], [21]. The single-channel
BSS problem was also extensively studied [14], [19], [42]. In
addition, ICA was employed to conduct independent vector
analysis for joint BSS over multiple datasets [2]. In [51],
a sparse component analysis was introduced to deal with the
nonnegative BSS where the demixing matrix was estimated via
a quadratic programming technique. All of these methods did
not consider the nonstationary conditions, the effect of noise
signal, and the uncertainty of parameters in the ICA or BSS
generative model.

In real-world applications, the mixing system may involve
various nonstationary scenarios due to the moving sources,
the sudden presence or absence of sources, or even the
original source being replaced by a new one. Since the mixing
coefficients are affected by the distance between source and
sensor, the nonstationary source separation turns out to deal
with the nonstationary source signals and mixing coefficients.
To solve such a complicated circumstance, we may detect
the status of source signals and adapt the source distributions
at each frame. Several methods have been proposed to cope
with dynamic sources and a nonstationary mixing system by
investigating the following two scenarios separately. First, the
sources or sensors are moving. For this scenario, an adaptive
BSS algorithm was used to compensate the variations of a
mixing matrix. A Markov process was applied to capture the
variations by tracking the mixtures of temporally correlated
sources [18]. Also, a 3-D tracker was used to detect the status
of sources [38]. If the sources were moving, a beamforming
algorithm was applied for BSS. The source distributions and
the number of sources were assumed to be fixed. In the
second scenario, the sources may suddenly appear, disappear
or even be replaced by new ones at different frames. The
time-varying source distributions should be characterized. The
scheme of automatic relevance determination (ARD) [25],
[33], [48] was employed to reflect the activity of source sig-
nals. The abrupt presence and absence of sources was captured
by an indicator variable in a switching ICA (S-ICA) [23].
A hidden Markov model (HMM) was constructed to represent
the status of the source signals while the generative model
was assumed to be fixed. The replacement of source signals
was tackled [15]. Further, an online variational Bayesian (VB)
learning [24] was performed in an ICA procedure where the
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source signal was a time-dependent parameter but the mixing
matrix was time independent. The source distributions were
updated incrementally with a fixed number of sources by
disregarding the sudden presence and absence of sources.
A non-Gaussianity-based piecewise stationary ICA [30] was
proposed to explore the varying distribution of non-Gaussian
signals for the separation of audio signals.

This paper presents online Bayesian learning for nonstation-
ary source separation in which two scenarios were investigated
simultaneously [25], [26]. Unlike the sequential Monte Carlo
ICA [1], [6] based on sequential importance sampling proce-
dure, we develop a new online learning algorithm by character-
izing the temporally correlated mixing coefficients and source
signals. The ICA model is constructed by marginalizing the
uncertainty of model parameters via VB inference [8]. We
propose an ICA algorithm based on online GP and apply
it to dynamic source separation. The temporally correlated
mixing coefficients and source signals are characterized by GP
where the posterior statistics are accumulated and propagated
frame-by-frame according to a recursive Bayesian algorithm
[9], [11], [12], [45]. The GP prior is merged to represent the
temporal structures of the mixing process and source signal.
The online Bayesian learning is performed by combining
the prior distribution updated from previous frames and the
likelihood function calculated by using the current frame. The
updated posteriors act as new priors for the prediction of the
next frame. A compensation parameter is introduced to adjust
the distribution of the mixing matrix for an ARD scheme. The
temporally correlated mixing coefficients and source signals
are estimated by maximizing the marginal likelihood so as
to achieve the highest temporal predictability. The proposed
ICA is investigated by the experiments on source separation
of audio signals under different nonstationary scenarios.

The remainder of this paper is organized as follows. In the
next section, we survey several source separation methods.
The proposed methods are overviewed. Section III presents
the online GP for nonstationary source separation in the pres-
ence of temporally correlated mixing coefficients and source
signals. Section IV addresses the sequential and variational
inference for ICA methods. Section V reports a series of
experiments on separation of speech and music signals in
nonstationary environments. The conclusions drawn from this
paper are given in Section VI

II. NONSTATIONARY SOURCE SEPARATION

Standard ICA assumes that the observations are mixed
by a fixed set of independently and identically distributed
sources. No noise signal is considered. These assumptions are
not realistic in nonstationary environments. Two categories of
nonstationary source separation methods are surveyed.

A. Separation Based on a Nonstationary Source Model

In many applications, the status of source signals is changed
at different time frames. A nonstationary model was built to
meet the changing distributions of source signals. An HMM
was incorporated to catch the temporal information of source

signals according to a noisy ICA model [15], [29], [43]
Xr = As; + & (D

with a noise signal &;. The mth source signal s, ; was modeled
by a mixture of Gaussians (MoG) in

M T K
ps10) =[] [Z Tk N (S| ome, ym‘,})] )
m=1 Lk=1

where ©® = {7Tmk, Umk, Yymk} denotes the state-dependent
Gaussian mixture parameters consisting of mixture weights
{mmi}, means {xnr}, and precisions {y,,x} from K Gaussian
components. Equation (2) was obtained due to M mutually
independent sources. The temporal information of source sig-
nals was characterized by HMM states. This method captured
the nonstationary source variables via VB learning.

To relax the assumption of a fixed set of source signals at
different time frames, a S-ICA [23] was proposed to overcome
the circumstance that source signal s, was dynamically
active or inactive. The status was indicated by a switching
variable with z,, = 0 indicating an inactive source and
Zm,r = 1 indicating an active source. The source signal in
state z,,, = 1 was modeled by p(sy,¢|zm,; = 1) using

TN G 110, yrd) + (1 = )N (510, 7,5) ()

where m, denotes the mixture weight and {y;4, Ymp}
denotes the precisions of two Gaussians. The source signal
was set to be zero when switching to state z,, = O.
A Markov process was used to represent the dynam-
ics of switching variable. The initial state probability
p(zm,1) and the state transition probability p(zm.:|zm,i—1)
were estimated. The key idea of S-ICA was to iden-
tify the Markov state of switching variable. The computa-
tion highly depended on the number of states, which was
expanded exponentially by the number of sources M.

B. Separation Based on Temporal Structure

The sources from speaker and music signals are temporally
correlated. The correlation information is crucial for signal
reconstruction in nonstationary environments. The autoregres-
sive (AR) process [22], [27], [28], and the GP [39] were
used to discover temporal structure of source signals for
nonstationary source separation. Using an AR process, a new
sample s, ; at time ¢ was predicted by using its past p samples

Smt—1 = [Sm—1»---» sm,,_p]T via a latent function

p
f( §m,t—l) = th,rsm,t—z 4)

=1
where h,, . denotes the AR coefficients. In contrast with AR
prediction using a linear parametric model, GP was employed
to build a nonlinear nonparametric regression model where
sm,r was predicted according to a zero-mean Gaussian prior
by using a kernel-function-based covariance parameter [39]

N(f@m,tfl)ma K@m,tflagm,rfl)) 5)

where f(-) denotes a latent function for GP. Any subset of
source signals has a joint Gaussian distribution. The temporal
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Fig. 1. Evolution of ICA methods for nonstationary source separation.

structure of the mth source was characterized by a regression
function

Sm,t = f@m,tfl) + Em,t (6)

where ¢,,; denotes a white Gaussian noise with zero mean
and unit variance. The GP model was flexible by working on
a high dimensional kernel space with a L x L positive definite
Gram matrix K, given by [40]

[Ks,,,]tr = K(Em,tfla Em,rfl) + 01z @)

where d;; = 1 at t = 7 and d;; = O otherwise.

C. Overview of Proposed Methods

The previous methods are developed for batch learning
where the model parameters are estimated from a batch data
collection with L samples. Although the nonstationary source
signals were characterized by Markov chain [15], [23], [29],
[43], AR [27], [28], and GP [39], a single set of model para-
meters is insufficient to elaborately compensate the temporally
correlated source signals under nonstationary environments.
Detecting the status of source signals and adaptively chang-
ing their distributions at each frame are useful approaches.
Besides, the real-world mixing system may contain active or
inactive sources, the moving sources or even the replacement
of a new source. Considering the temporally correlated mixing
coefficients is beneficial to improve BSS performance. In
this paper, we evolve the nonstationary source separation
methods by two stages as shown in Fig. 1. First of all, the
mixing coefficients are assumed to be distributed by a fixed
Gaussian distribution within a frame, but the distribution is
varied frame-by-frame. The source signal is distributed by an
MoG. An online Bayesian learning procedure is presented
to continuously update the variational posteriors and their
hyperparameters. A VB procedure is established to fulfill this
nonstationary Bayesian ICA (denoted by NB-ICA) algorithm.
In the second stage, the mixing coefficients are not only dis-
tributed differently across frames but also treated as temporally
correlated variables within a frame. We tackle the temporally
correlated mixing coefficients and source signals for dynamic
source separation. The temporal structures are characterized
by GP. The ICA algorithm based on online GP (denoted by
OLGP-ICA) is developed through a VB procedure.
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ITI. ONLINE LEARNING AND THE
GAUSSIAN PROCESS

A. Online Bayesian Learning

Bayesian approaches are important to build the regularized
model and avoid the overfitting problem [5]. Bayesian ensem-
ble learning for ICA has been studied in [16], [34], [35], and
[41]. In general, conventional ICA methods assumed that the
source signals were independently and identically distributed,
and the mixed signals were generated from a fixed mixing
system. These assumptions are not fitted to the nonstationary
conditions. A second-order Markov process was proposed for
nonstationary ICA [34]. Also, the online learning procedure
can be applied to solve nonstationary BSS by incremen-
tally estimating the dynamic sources via the ICA algorithm
[1], [6], [25], [26]. Using the recursive Bayesian learning
[91, [12], [41], [45], the sufficient statistics from previous
frames are combined with the likelihood of the current frame.
The resulting posterior distribution is then propagated to the
next learning epoch for adaptive BSS. The distributions of
source signals and mixing coefficients are adapted to meet the
changing environments at different frames. Let X = {x,(l)}
denote a set of mixed signals at frame / with L samples. The
signals are mixed by a linear combination of M unknown
source signals SO = {S,(l)} using a mixing matrix AY

x = AOsD 4 &0 ®)

where EV) = {et(l)} denotes the noise signals. The distribution
and the activity of sources are assumed to be unchanged within
a frame but varied across frames. We attempt to incrementally
characterize the variations of A®) and ) from the observed
frames XY@ = (XM, X® . XD} through the stages of
prediction and correction. First, the ICA model parameters
O" at frame [ are predicted according to the posterior
distribution given the previous frames X¢~1 [18]

p(®(l)|X(l_l))

:/p(9(1)|®(l_1))p(®(1_1)IX(I—l))d(a(l_l) ©

which is obtained by integrating over the uncertainty of previ-
ous parameters e!-b, Equation (9) is known as the predictive
distribution, which is essential in full Bayesian framework [5].
The prediction stage is performed in a VB procedure for
ICA model inference, which will be addressed in Section IV.
Optimizing the predictive distribution is fulfilled to establish
a noisy ICA model of (8).

Second, when a new frame with the mixed samples X =
{x,(l)} is observed, the posterior distribution is corrected by
[45]

p(X(l) |@(1))p(@(l) |X(l’1))
f p(X(l) |@(1))p(@(1) |X(l—1))d®(l)

which is proportional to the product of a likelihood function
of current frame X and a posteriori distribution given
the previous frames X'¢~1. At each learning epoch I, the
posterior distribution p(®@®|XU=D) is seen as a prior dis-
tribution p(®"|®¢~1) with hyperparameters @/~ which
are updated from the previous data X¢~1. We choose the

p(@V1x0) = (10)
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Fig. 2. Three layers of variables in online Bayesian learning.

conjugate prior so that the updated posterior p(®(1) |X D) has
the same distribution form as its prior density p(®(1) |@(=Dy,
The reproducible prior/posterior distribution pair is formed
for incremental learning of the posterior distribution or the
prior density with hyperparameters 20 - o) -
& With the updated hyperparameters, the ICA parameters
correspond to the modes of posterior distribution and can be
realized by an online manner ©© — @) — - o0,
The newest environments are characterized for nonstationary
source separation. A recursive Bayesian algorithm with three
layers of variables is depicted in Fig. 2. Unlike batch learning
[15], [23], we present an online learning approach to detect
the activities of source signals and estimate the distributions
of reconstructed sources frame-by-frame. After updating the
hyperparameters, the current frame X" is abandoned and only
the sufficient statistics ®) are stored and propagated to the
next learning epoch / + 1.

B. Nonstationary Bayesian ICA

First of all, we conduct online learning without considering
the temporal structures of the mixing process and source
model. The distributions of mixing matrix A®) and source
signals s,(l) are fixed within a frame /. The NB-ICA algorithm
[25] is proposed. Considering the noisy ICA model in (8), the
source signals s, are distributed by a MoG with K Gaussians

I I I I
ps IO = (20}, MO = (13}, RO = (7))
l i l i
H[Zn"N(s,‘n), 1 o) 1)] (11)
m=1
The noise vector (l) is assumed to be Gaussian

N (e(l) 10, BD)~1) w1th zero mean and diagonal precision
matrix B® = dlag{ﬁ(l) }. The resulting likelihood function of
observation frame X, is written by

p(X(l)|A(l) SEZ), (0] B(l)) ZN(X(Z)|A(1)S(Z) (B(l))—l) (12)

The prior density of N x M mixing matrix A®) = {a(l,z,} is
distributed by

pA") =] [H N (@10, (@) ‘)}

n=1 Lm=1

o (13)
= [[N@DI0, (@) "Ty)
m=1

where o) = {a( )} and Iy is a N-dimensional identity matrix.
Each column a(l) of AY) has an isotropic Gaussian distribution
with zero mean and precision a,(,,) Importantly, if the precision
a,(,{) in (13) is gamma distributed, the marginal distribution of
mixing coefficient anl,z, over gamma prior of a,(,{) turns out to
be a Student’s ¢ distribution, which is peaky around zero and is

/pular for sparse Bayesian learning [48]. The hyperparameter
am is known as an ARD [33], [48], which reveals the activity
of a source signal s,(nl), in ICA model. The matrix A? is
prone to be sparse with near zero entries at the mth column

(l) {a,(ll,z,} — 0 if the estimated ARD a,(,,) is large. The mth
source is likely inactive at frame /. The redundant sources
are disregarded automatically. This ARD a,, () is similar to the
indicator variable z,, ; in the S-ICA [23].

However, each coefficient a,(l,z, reflects the mixing corre-
lation between source m and sensor n, which is continuously
varied in nonstationary environments. A single ARD parameter
a,(,? is not sufficient to indicate the relevance between source
m and N different sensors. To compensate this weakness, the
precision matrix of prior density of ai,? is adapted by using a
transformation matrix HS,?. The prior density of A® in (13)
is modified as

M
pADO HY) = [T N@D 0, @PHDY™ (4
m=1

where HO = {HS,?}. Figure 3 displays the graphical rep-
resentation of NB-ICA model. The parameter set is formed
by @0 = {AD «OHO EO BO O 11O MO RO} The
online Bayesian learning is developed by specifying the con-
jugate priors for individual components of n®, M® and RO,
which are Dirichlet, Gaussian, and gamma distributions with
hyperparameters <I>(l 1) <I>(l 1) and <I>(l b , respectively. The
precision parameter (8 is generated by a gamma prior with
hyperparameters {u B } The new hyperparameters
®O are estimated from current frame X and previous hyper-
parameters ®¢~1). The detarled solutron to @0 = (u® =
{u(l)} 0! = {a)(l)} <I>(l) <I>f,l,), <I> } has been derived in [16].
Nevertheless the proposed NB-ICA has twofold novelties.
One is the online learnm% and the other is the compensation
of precision matrix of a,, by a,(,i)IN — a,S?Hi,?. A Wishart
distribution is used as the conjugate prior to characterize the
ARD parameter by

(-1

paDHD | p0=D_ =Dy o | OFO o =N=1)/2

(15)
X exp [—ETr[(Vgl))laﬁ)Hf,?]} .

The h{perparameters oU=D = (pl=D = {pﬁf*l)},V(l’l) =
{V(l }} from previous data X (l 1) are applied. The solution
to hyperparameters o0 = {(p", VY should be formulated
for NB-ICA. Notably, the marginal distribution of mixing
parameter a;,l,) over Wishart prior of a,$1 Hf,l,) is formed by a
multivariate Student’s ¢ distribution. The nth diagonal entry of
the precision matrix a,(n)H,(n) reveals the relevance information

about source m appearing in sensor n.
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Graphical representation of the NB-ICA model.

C. OLGP for ICA

Next, online learning algorithm is introduced by combining
the temporally correlated mixing coefficients and source sig-
nals. As we know, the mixing coefficient a,(,l,L represents the
mixing relation between source m and sensor n. The mixing
matrix is time-varying A® — A;l) in presence of moving
sources or sensors. Correspondingly, the mixing coefficients
{a ,(11,2, .} of L samples at frame [ are temporally correlated
and thelr temporal structure is continuously changed across
frames [26]. A flexible ICA model should be established by
simultaneously performing the online learning and exploring
the temporal structure of mixing coefficients and source sig-
nals. This paper presents an ICA algorithm based on online
GP. The online Bayesian learning is undertaken to update
system parameters e or hyperparameters 30 frame-by-
frame. Unlike NB-ICA using a ﬁxed A®, OLGP-ICA applies
the time-varying mlxmg matrlx A . The temporal structure
in L samples of {anm ;) and {s ,} is represented by GP and
is merged in online Baye51an learning.

Model construction is addressed as follows. The noisy ICA
model with time-varying mixing matrix A,(l) is considered. The
temporally correlated mixing coefficients and source signals
are generated by the distributions of nonparametric latent
functions. Regarding the mixing coefficient, GP could flexibly
explore the unknown temporal structure of a,(,lgl,,. A latent
function f(-) is e (ployed to connect the relation between
current coefficient a,,, , and its past p coefficients a() =

l l
@, 1voal 1T by
1 -(l [
al, = r@0 ) +el, (16)

where 8,(11,2, , denotes the white noise. This function is generated

from a zero-mean Gaussian

N(r@?h

nmt 1

INCAPRTE SCAN)

nmt 1> nmr 1

a7)

l =(1
()t 1° 51317 1) glvenby

(l 1) j’Ellnm "(l)
ianm T nm 7—1 H (18)

which is an exponentlal quadratic kernel function with para-
(-1

with a variance x(a

5(1)

nm,t—1

meters {4 Gom > anml)} Therefore, the Gaussian prior over a set
of latent functions { f (amil ,—1)} at frame [ is used to determine

@ 1, (=1) RY-D

the GP prior p(ay;,|®a,,, > Rg,, ') for the mixing coefficients
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Fig. 4. Graphical representation of the OLGP-ICA model.
l ! !
aly = [a ,(,,31 1rene (,,)1 17 written by
l -1 I—1)\— -1
N(a’gr)" ‘(lnm ) = O’ (R‘(Jnm )) K((Jnm )) (19)

which is a Gaussian with zero mean and an L x L covariance
matrix KV~ with the (t, 7)th entry

Anm
K K¢~ 1)] ) -'(1)
nm,t—1° nm 7—1

Anm

=x(a )+ Oz (20)

Regarding the source signals, we could similarly incor-
porate a GP prior to represent the temporal structure
of time-varying source samples {sﬁl ,} within a frame. A

latent function f (S m), | £n)t 1

= [r(,f)t 1oeees ,(nl), p]T is employed to predict the cur-
rent source sample sﬁ?, and is distributed by a zero-
mean Gaussian prior N'(f (S D) 510,k gl) $O 1)) where

m,t—1 t—1>Sm,c—1
k(S f,ll), 1,*(1) ;) denotes the variance calculated by the

exponential- quadratlc kernel function given in (18) but sub-
stituting the corresponding kernel parameters {l(l 1), s(,ln 1)}
The GP prior den51ty p(s(l)msm b R(l 1) of L source
samples s(l) = [s 1)1,..., nf L]T is similarly obtained
by NP pl 0, RY-Dy-1 K'™) with the
(t, 7)th entry of covariance matrix given by [K(l 1)],, =
K(_frlz),tfl’qfl?r 1)+5”'

Fig. 4 displays the graphical representation of the
OLGP-ICA model. The noisy ICA model is wused
with a noise vector e,(l), which is assumed to be
Gaussian distributed N (e,l)|0 BD)~1) with Zero mean
and diagonal precision matrix BO = diag{8"}. The
precision parameter ,B,(Zl) is generated by a gamma
prior given by  gamma(f, )Iu(l 1), (- 1)) Hence,
the OLGP-ICA model parameters are formed by
00 = (AO ED BD SO} and their hyperparameters &) =

) of previous p samples s

{M(l) R(l) A(l) = (1) (l) , (l) , M(l) , R( x(l) ggl)} consist
of  Gaussian parameters of mixing coefficients
MY = g{fm 1, RY {Ry,l)m }} and source signals

MY = {ms O R R = {R(l)}} gamma parameters of noise

Sm
signals {u® = {u(l) ), 0! = {w }} and kernel parameters of
mixing coefficients {A(l) {2

anm} = = {étgl) }} and source
signals {x§” = ,1§f3} E(l) = {fs(,i)}}. This paper highlights
the nonstationary and temporally correlated source separation
by using online GP. The proposed OLGP-ICA differs from
the GP factor analysis (GP-FA) [32], which was developed
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TABLE 1
SEQUENTIAL AND VARIATIONAL BAYESIAN LEARNING ALGORITHM

Initialize With ®© and @@

For Each Data Segment xD = {xgl)}
for each VB-EM iteration
VB-E step: update variational distributions

for each time sample xy), t=1,...,L

| accumulate sufficient statistics
find g(@D|®D) and update ® «— ¢-D
VB-M step: estimate model parameters

| find distribution mode and update @D — @0
check if [O@UFD — @D is small enough
[l <—1+1

for spatiotemporal data modeling. The factor loading matrix
and the common factors in GP-FA were time invariant.
Notably, the scaling hyperparameter lg?m in OLGP-ICA
considerably affects the representation of temporal structure
of af,l,zl. If the estimated A s very small, it implies that

Anm
the associated 5,(31 .1 have little effect on the prediction of
0] ;

.- Bstimating ,153,,, is equivalent to performing the ARD
scheme [5] or reflecting the activities of source signals. When
the source signal is abruptly inactive, the corresponding
mixing coefficients turn out to be zero. The previous mixing
coefficients have little impact on the prediction of current
mixing coefficient. The status of source signals at different
frames is determined according to the updated scaling
parameter 20

Anm *

IV. SEQUENTIAL AND VARIATIONAL ICA ALGORITHMS

We present an online Bayesian learning procedure for
NB-ICA and OLGP-ICA algorithms by maximizing likelihood
function p(X®|®Y~D), which is marginalized over latent
variables or model parameters ©D . As summarized in Table 1,
at each sequential learning epoch I/, we perform the varia-
tional Bayesian expectation-maximization (VB-EM) iteration
by using data segment X®. For each VB-EM iteration, the
variational distributions of individual parameters are updated
to find new hyperparameters or variational parameters ®) in
VB-E step. New model parameters @*1) are then estimated
in the VB-M step. The learning procedure is detailed in the
following.

A. Sequential VB Inference for NB-ICA

First of all, the sequential VB inference procedure
is developed for NB-ICA with model parameters
00 = (AD ¢OHO EO BO SO m® MO RO} and
hyperparameters o0 = {p(l),V(l),u(l),w(l), <I>§,l), <I>£,?, <I>$l)}.
NB-ICA parameters O are all latent variables.
Since the exact inference using posterior distribution
p(OD XD ®U=D) is intractable due to coupling among
latent variables, the VB-EM procedure [8], [31], [52] is
applied to conduct approximate inference by maximizing the
negative free energy or the lower bound of the logarithm of
marginal likelihood. The marginal likelihood p(X®|®!~D)
is calculated by taking multiple integrals over different latent

variables in @) by using L data samples X = {xgl)}

L

] 1 1
[T/ P10, ) p a1, 1O)
=1

x<plaHO D, V) p(e ) [BY)
Xp(B(l) |u(l_1), w(l—l))p(st(l”r[(l)’ M(l), R(l))
x p(M 100~ pM?D|8{~D) pRD B! D)
dADd(@PHD)dePdBOasPam®am®@ar?D.  (21)

The updated hyperparameters ®/~!) from previous frames
XU=D are given in VB-EM procedure. A variational distri-
bution ¢(®") is used to approximate the true posterior dis-
tribution p(®@®V|X® ®U=D) at each frame. Maximizing the
lower bound of log p(X|®(~1) is equivalent to maximizing
the expectation of log likelihood E,[log p(XD100, U=y
over ¢(®®) or minimizing the Kullback—Leibler divergence
between ¢(®?) and p(O@D XD, ®U~D). Considering the
factorized variational inference using

(@) = [[4(0) = ¢(A")q(«"H")g (E®)
J

xg(BN)g(SD)gMMgMPD)gRD)  (22)

the lower bound of log p(X(l)|<I>(l_1)) is expanded as

E, [logp(X(l)IA(l), S(l), E(l))]
+Eq[log p(AD e, HD)] + 5(q(AD))
+Ey[log p@PHY |p=D VD) 4 (g (@PH?D))
+Eq[log p(EDBD)] + 5(g(ED))
+Eq[log pBD 1=, 0=D)] + 5(g(BD))
+E,[log p(SV1IO, MO, RD)] + 5(q(S?V))
+E4[log p(MP[®{~D)] + S(q(mD))
+E,4[log pMP @5~ )] + S(g(M D))
+Eq[log pRV|®"D)] + 5(qRD)) (23)

where S(g(-)) denotes the entropy of a distribution ¢(-).
By taking partial differential of (23) with respect to the
Jjth variational distribution q(®§l) ) and setting it to zero, the
optimal variational distribution 1s derived and expressed in a
general form [5], [31]

10g3(0) o Ego20,)llog pX", 100" (24)
where the expectation is taken with respect to all of the other
factors of previous estimates ¢(@() # 9;1)). Finding the
variational distributions, c}(@m) is equivalent to updating the
hyperparameters ®!-D - U in VB-E step. The solutions to
hyperparameters {u(l), w(l), <I>§Tl), <I>f,l,), <I>£l)} have been derived
in [16]. Here, the solution to hyperparameters {p®, V®} is
obtained according to (24) by applying the prior densities of
(14) and (15). The optimal variational distribution is derived
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by

M
log [ ] 4(@%HD) o Eq(A(/))[Ing(A(’)m(l), HO)]
m=1
+log p(aPH®D | =D yvi-D)

M
= Z{Eq(a%))[log p(@) oy, H))I

m=1
+log p(aVHD | pl=D, vi-D))

M h_ Dy
n =N jog oV HY|
3

A [IE, o a9 @)1+ (VD) H] [
(35)

The variational distribution (}(a,(,? H,(,l,) | pﬁf) s V,(,l,) ) is seen as a

new Wishart distribution with the updated hyperparameters

P = 1 (26)
Vi) = (B o [ @) 1+ vim)TH @

which are used for online learning of individual mixing vector
a%il) — af,?. The NB-ICA procedure is implemented by
continuously applying current frame X" to refresh the hyper-
parameters @'~ = (o[ ViTV) > @0 = (p0, V),
which are used at next learning epoch when new frame X!+
is enrolled. In the VB-M step, the model parameters are
accordingly updated via ol - @!+h by using the updated
modes of variational distributions, namely, 08

B. Sequential VB Inference for OLGP-ICA

In NB-ICA approach, the mixing matrix and source signals
are generated by Gaussian distribution and MoG distri-
butions, respectively. The OLGP-ICA algorithm is devel-
oped by exploring the time structures of mixing matrix
A;l) and source signals s,(l) through the GP, which is
a generalization of Gaussian distribution for time-varying
random variables. The latent functions of {A,(l),s,(l)} are
expressed by Gaussian priors using the kernel parame-
ters. Based on OLGP-ICA approach, the system parame-
ters @0 = {A(l),E(l),B(l),S(Z)} and their hylg)erparameters
o0 = MP R AD, 20 w0 O MP RP AP DY at
each frame are inferred by a VB-EM procedure. Again, the
lower bound of marginal likelihood p(X®|®¢~1) is maxi-
mized to find the optimal variational distribution GOV with
the updated hyperparameters ®/~1 — @®U. VB-E step is
performed. The solution to hyperparameters {u), @} for
noise signals has been derived in [16]. In this paper, we
formulate the variational distributions of mixing coefficients
aE,I,L and source signals s,(,? at frame [ based on the Gaussian
process. According to the general solution of (24), the optimal
variational distribution of mixing coefficients is yielded by

logG(a)) o« Eyoxallog p(XP(al) sD D))

+log p(al) |l D RE D) (28)
where ef,l) = [5';(11,)1» .. .,eg)L]. In (28), the first term is an

expectation function operated over all variational distributions
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q(@m = A;l)) except that of A;l) and the second term is
a Gaussian prior given by (19). The first term should be
manipulated as a quadratic function of aE,I,L so that two terms
in right-hand side (RHS) of (28) can be combined into an
exponent of a new Gaussian with the updated hyperparameters

Efn;‘) , RE,{;‘) } — ;L,(lln)m, RE,?,”}. To do so, a new expression
of Gaussian distribution is arranged as [32]

exp{Eq(o-4)llog p(XP[al) 1) &)}
o N (D YTIZD 190 (gD =1y

Anm Aapm "M > Anm

(29)

where ig}?’ . denotes an L dimensional vector with the 7th entry
~( ! !
Famt = Eq(024) I::Br(z,)t] Eqe#a) [Sﬁl?z]

M
/ / /
x | x) = D Eqoza I:aISk)t:I Eq@#4) [Szf)t] (30)
k#m

and \Il(l)

Anm

entry

denotes an L x L diagonal matrix with ¢th diagonal

I !
wh, = Eq(@;ﬁA)[,Br(z,)t]Eq(('D;éA)[(S;(n?[)z]-

Anm

€1V

Equation (29) is a Gaussian likelihood function of the trans-
formed observation vector (\Ilgl,?,”)_li((l{l)m, which is expressed
as a quadratic function of a%. By substituting the likelihood
function of (29) and the prior density of (19) into (28), the
two exponents of quadratic functions of anlm are summed up to
achieve the optimal variational distribution ¢ (aﬁ,l,z1 |u§fn)m , Ré”m),
which acts as a posterior distribution and is expressed as a new

Gaussian distribution with the updated hyperparameters

R =@ RS H™H7 (33)

Following the perspective of online Bayesian learning, the
OLGP-ICA procedure is established by combining a Gaussian
likelihood and a GP prior and reproducing a variational
posterior c}(a% |;L£,l,3m , Raln)m), which is also Gaussian. The evo-
lution of hyperparameters is performed by {Mfll_l), Rfll_l)} —
{Mg), Rg)}. The Appendix addresses the updating formulas
for the remaining OLGP-ICA hyperparameters {Mgl),Rg)}
and {Ag) , Eg) ,x§’) ,Sgl)}. Finally, an online learning algo-
rithm is implemented by continuously applying current

frame X to update the hyperparameters @®¢~D
! ! D =0 l D 4
o0 = MO, RY, AL, 2P 00,00, M, RP, AL, £0)

and propagate them to next learning epoch by applying X+,

When implementing the OLGP-ICA procedure, we start from
the initial hyperparameters ®© and iteratively update them
in turn and replace the hyperparameters by new estimates
-1 . @O At each re-estimation iteration, the lower
bound is increased until the variational posterior reaches its
maximum. New hyperparameters ®) at frame [ are propa-
gated to the next frame [/ + 1 and act as new statistics of
the priors for sequential and VB learning. Again, given the
new hyperparameters, the model parameters of OLGP-ICA are
estimated in VB-M step.
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C. Sequential Monte Carlo ICA

In addition to the deterministic inference using VB, the
stochastic inference based on MC method and importance
sampling was developed to establish ICA model for image
separation [44]. Typically, VB and MC inferences are algo-
rithmically similar but theoretically different [7]. The greedy
algorithm, such as VB and the local algorithm, such as MC
share similar local updating strategy for Bayesian learning and
can get trapped in a local mode of the posterior, depending
upon the starting configuration. In general, VB converges
quickly to a nearby mode while MC is advantageous with
good generality and robustness. In [7], VB performed slightly
better than MC in terms of different performance criteria.
The prior of source signal using Student’s ¢ distribution was
introduced. In [37], MC inference was developed to construct
the nonnegative matrix factorization algorithm for nonnegative
source separation. All of these MC methods were designed
for batch learning. This paper investigates the online learning
strategy. In [17], the sequential importance sampling was
employed in the jump Markov linear systems (JMLS) where
the time-varying state parameters were recursively computed
by particle filters. JMLS were exploited to build generic
systems in presence of continuous-state process as well as
discrete-state process [17]. Nevertheless, ICA system only
involved the continuous-state process. The sequential MC-
based ICA (SMC-ICA) algorithm was accordingly developed
[1], [6]. In [22], the particle filtering was performed for non-
Gaussian AR process but without dealing with ICA problem.
In [41], the MC method was employed for Bayesian learning
by using conjugate priors while the temporally correlated
source separation was not considered.

Using SMC-ICA, the ICA model in (8) is rewritten in terms
of a continuous-state equation and an observation equation

a® = g(=D 4 yO
0 _ cOg® 4 0

(34)
(35)

where a¥ = vec{A"} denotes an NM x 1 vector consisting of
mixing coefficients so that [a( N Non—l)y4n = a,SQ,, v(D denotes
a vector of zero-mean Gaussian noise and C (s,l))T Iy
denotes an N x NM matrix of source signals. The source
signals are modeled by a mixture of Gaussians as given in
(11) where the transition probability from mixture variables
Z,n;l) =jto Z,(,l,, =k with 1 < j,k < K are additionally
defined by p(zf,ll), = klz(l D~ =j)= r,gj)k. This probability is
used to indicate which Gaussian component is active at time
t for source s )%nal m. We construct the SMC-ICA parameters
as ©0) = {{S, | {Z(l) }s {/l(l)} {y(l)} {r(l)k}} In this particle
filter, the particles contain {aq (-)(l) 1 < g < Q}, which are
sampled from X0 = x0 = X(gl) , X(l)} according to
the posterior density

O, @O x(1:D)y

pla
(36)

Given an approximation of p(@©D|X(:0)  the mixing
coefficients are determined by p(a)|@), X(3D)  which is
a Gaussian distribution and can be recursively estimated in

closed form by using the Kalman filter based on (34), (35). The
particle filtering is then performed according to the posterior
p(®(0;1)|X(1;l)), which is recursively calculated via a sub-
optimal method using the importance distribution [1], [6]

T (@(01) |X(1 l))

1
— 71-(@(0)) H n-(@(j)|@)(01j—1), X(lij)).
j=1

(37)

The prior importance function z " |®(l_1)) is expressed by

PN gk D ity D
<P D P Ui o). ()

< p({z D (38)
where { ,u } and {logy } are drawn at each frame [/ from
Gaussian dlstrlbutlons w1th the means at previous value of
the respective particles at frame / — 1 and the variances as
determined in [1]and [6]. The particle filtering algorithm is
implemented for ICA using the following two steps [1], [6],
and [17].

Sequential Importance Sampling Step

1) Forg = 1,..., Q, sample ®(l) from the distribution
7[(®(l)|®(01 D X(D) and set @)‘0” e, 6.

2) For g = 1,..., Q, evaluate the importance weights up
toa normalized constant

p(XD1&F, XU1~0) p( @167 )

0]
w,’ — : 39)
! 7(®P 18PV, x(1D)
3) Forg =1,..., Q, normalize the importance weights by

-1

Mo 0
Wy’ Wy’ (40)

(9]
> !
o

Selection Step

1) Discard/multiply particles with low/high normalized
importance weights to obtain particles {@((]0:1) ,q =

, O

Given these particles and normalized importance weights, the
SMC-ICA parameters ®Y) or the source signals {s,(l) } are
estimated by calculating the expectations

Y
E, oo xtn[fP@O1=>" rO@D)a.
qg=1

(41)

If f D is an identify function, (41) is used to obtain the
minimum mean square estimate of @), Notably, SMC-ICA
incrementally compensates the variations of mixing coeffi-
cients as well as source signals. In the implementation, we
refer to the experimental conditions as given in [1] and [6].
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V. EXPERIMENTS

A. Experimental Setup

In the experiments, the proposed NB-ICA and OLGP-ICA
algorithms are evaluated for nonstationary source separation
by using real-world audio signals. The speech and music
signals were sampled from the ICA’99 Test Sets, which are
available at: http://sound.media.mit.edu/ica-bench/. Different
scenarios are simulated by using dynamic mixing coefficients
and dynamic source signals. Fig. 5(a) shows an example of two
waveforms of dynamic source signals with 5 s containing two
different speakers and one music source. In the first channel,
a male speaker was speaking and inactive at 1.5 s and then
replaced by a music source at 2.5 s. In this scenario, the distrib-
ution of source signal was changed. The switching and moving
sources were simulated. In the second channel, a different male
speaker was speaking and inactive at 2.5 s and then speaking
again at 3.5 s. The presence and absence of the same speaker
was simulated. In addition, the nonstationary environments
were simulated by using a time-varying mixing matrix A, =
[[cosx fit) —sinx fit)]T [sin(27 f>t) cos(2x f>1)]7 ] where
f1 and f> denote the changing rate of mixing coefficients. The
entries of the mixing matrix revealed the spatial information
about the relation between sources and sensors. The first and
the second columns of A; reflected the relation of the first
and the second source signals to the sensors, respectively. The
changing rates f; = 1/20 Hz and f> = 1/10 Hz were used.

We conducted a comparison between the proposed NB-ICA
and OLGP-ICA and the other seven ICA methods, including
VB-ICA [31], BICA-HMM [15], S-ICA [23], GP-ICA [39],
online VB-ICA [24], NS-ICA [18] and SMC-ICA [1], [6]. The
VB-ICA [31] performed the batch learning and did not deal
with the nonstationary signals. The Bayesian ICA with hidden
Markov sources (BICA-HMM) [15] was a batch learning
method by applying an HMM to represent the switching
sources. The S-ICA [23] was a batch learning method, tackling
the scenario of abrupt active and inactive sources. The scenario
of moving sources was not considered in [15], [23]. The GP-
ICA [39] explored the temporal structure of source signals
but conducted the batch learning and without considering the
temporal structure of mixing system. The online VB-ICA
(OVB-ICA) [24] performed the online VB learning where the
time-varying source signals were characterized but the mixing
system was assumed to be fixed. The nonstationary ICA
(NS-ICA) [18] performed an online learning of time-varying
mixing system. No online tracking of source signals was done.
The SMC-ICA [1], [6] conducted the particle filtering and
online Bayesian learning via sequential importance sampling.
The temporally correlated source signals and mixing matrix
were not investigated. However, the proposed NB-ICA and
OLGP-ICA methods perform the online learning strategy and
deal with the temporally correlated source signals and mixing
coefficients. The nonstationary source signals and mixing
coefficients are compensated simultaneously.

In implementation of online ICAs, including NS-ICA,
SMC-ICA, NB-ICA, and OLGP-ICA, the frame size was
fixed to be 0.25 s. The prediction order was set at p = 6
when implementing GP-ICA and OLGP-ICA. In the follow-
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ing evaluation, the demixed signals, the ARD parameters,
and the mixing matrix were realized from the correspond-
ing variational parameters or the modes of the variational
distributions. The computation times of running MATLAB
codes of different methods were investigated by a personal
computer with Intel Core 2 Duo 2.4-GHz CPU and 4-GB
RAM. In our investigation, the computation times for the
example set of mixed signals were measured as 2.1, 2.8, 4.7,
4.1, and 5.8 min by using sequential ICAs, including OVB-
ICA, NS-ICA, SMC-ICA, NB-ICA, and OLGP-ICA, respec-
tively. SMC-ICA is computationally expensive because of the
sampling process and calculation of posterior distributions and
importance weights. The additional computation of running
OLGP-ICA was caused by the implementation of GP for
mixing coefficients and source signals.

B. Effects of the ARD Parameter and Mixing Matrix

First of all, we investigated the effect of compensation
of the ARD parameter in NB-ICA method by a,(,i)IN —
a,(,i)Hf,l,) as given in (13) and (14). This compensation attempts
to strengthen the effectiveness when generating the mixing
matrix A? for nonstationary source separation. Fig. 6 shows
the negative-free energy calculated by the VB procedure of
NB-ICA algorithm. The same mixed audio signals in Fig. 5(a)
are used. The results with and without transformation matrix
H,(,? were compared. Higher negative-free energy implies bet-
ter goodness-of-fit between model and demixed signals. The
energy was elevated by applying the compensation scheme via
a full precision matrix for mixture coefficients. This scheme
provided a good prediction of the mixing matrix for the next
learning epoch. Fig. 7 displays two diagonal components of
a,(,{)H,(,l,) (or ARD parameters) estimated from the same mixed
signals. The estimated parameters reflected the activity of
latent sources at different time frames. The irrelevant sources
were deemphasized. The ARD parameters did effectively
indicate the activities of time series of source signals. During
the period between 1.5 s and 2.5 s, the first source had a silence
segment and was clearly reflected by the ARD parameter of the
first demixed signal. During the period between 2.5 s and 3.5
s, the second source had a silence segment and was reflected
by the ARD of the second demixed signal. The activity of
sources was detected. In addition, Fig. 8 shows the square
error between the true mixing matrix A; and the estimated
mixing matrix A by using NS-ICA, SMC-ICA, NB-ICA,
and OLGP-ICA. The square error is accumulated over different
mixing coefficients and different samples in a frame. NB-ICA
and OLGP-ICA obtained lower square errors than NS-ICA
and SMC-ICA at different frames. The OLGP-ICA had more
accurate Afl) than NB-ICA at most frames.

C. Evaluation of Signal-to-Interference Ratios

The waveforms of the demixed signals using NB-ICA
and OLGP-ICA algorithms are displayed in Fig. 5(b). In
this example, the demixed signals using OLGP-ICA are
better than those using NB-ICA. The waveforms of source
signals, mixed signals, and the demixed signals using
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Fig. 5. Waveforms of (a) source signals and mixed signals and (b) demixed
signals by using NB-ICA and OLGP-ICA algorithms.

VB-ICA, S-ICA, BICA-HMM, GP-ICA, OVB-ICA, NS-
ICA, SMC-ICA, NB-ICA, and OLGP-ICA are accessible at:
http://chien.cm.nctu.edu.tw/~nb-olgp-ica. To conduct a statis-
tically meaningful evaluation, we further prepared five other
sets of mixed signals by applying the same scenarios as
mentioned in Section V-A but using different speech signals,
music signals, and mixing coefficients {a, } with different
changing frequencies f; and f>. The length of these test
signals was 5 s in average. The investigation over six various
sets of mixed signal is performed. A quantitative comparison
over different ICA methods is conducted by measuring the
signal-to-interference ratios (SIRs) in decibels for all samples
in different frames of source signals s,, = {s,,;} and demixed

0.4

—+— NB-ICA with ARD compensation
—S— NB-ICA without ARD compensation

-0.6
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Negative Free Energy

Il
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Fig. 6. Comparison of the negative-free energy by using NB-ICA with and
without compensation of ARD parameter.
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Fig. 7. Comparison of the ARD parameters of the first and the second source
signals estimated by using NB-ICA.

signals §, = {S,,.;} by using

> lsmelI?

Z[ ||§m,t - sm,t ”2

and is reported in Fig. 9. The SIRs are averaged over six test
sets. In this comparison, VB-ICA had the worst performance
of SIRs because VB-ICA did not deal with nonstationary mix-
ing problems. BICA-HMM and S-ICA presented the solutions
to nonstationary source separation. Consistent with the result
in [23], S-ICA performed better than BICA-HMM. This is
because that S-ICA effectively recovers the source signals that
abruptly appear or disappear. GP-ICA obtained higher SIRs
than BICA-HMM and S-ICA due to the modeling of temporal
correlation, which worked well but with higher computational
cost. The performance of using online learning (OVB-ICA,
NS-ICA, SMC-ICA, NB-ICA, and OLGP-ICA) was better
than that of batch learning (VB-ICA, BICA-HMM, S-ICA,
and GP-ICA). The proposed NB-ICA and OLGP-ICA attained
higher SIRs than the other ICAs. Among these ICAs, the
highest SIRs were achieved by OLGP-ICA.

SIR(db) = 10logy, (42)
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Fig. 8. Comparison of the square errors between the true and the estimated

mixing coefficients by using NS-ICA, SMC-ICA, NB-ICA, and OLGP-ICA.
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Fig. 9. Comparison of the SIRs of demixed signals by using different ICA
methods.

D. Evaluation of Signal Predictability

The audio source signals are temporally correlated. The
mixture of these source signals is even more complex than its
constituent source signals. The BSS problem was treated by
seeking the minimally complex source signals obtained from
a set of signal mixtures [46]. It is meaningful to evaluate
the performance of demixed signals according to the signal
complexity, which is analogous to the contrast function of
non-Gaussianity or independence in standard ICA. A simple
measure of complexity is formulated in terms of temporal
predictability. If a signal value is easy to predict on the basis
of previous signal values, that signal has high predictability
or equivalently low complexity. The temporal structure can
be quantitatively evaluated by the predictability of a signal
Sm = {Sm,;} measured by [46]

2 = 5)®

F =1
(Sm) o8 Zt(sm,t - Em,t)z

(43)
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Fig. 10. Comparison of the absolute errors of the predictability between
source signals and demixed signals by using different ICA methods.

where 5, = 75n + (1 — #)sp,, with # = 0.99 and §,,;, =
78m,t +(1—7)sm,; with 77 = 0.5. The numerator is a measure of
overall variance of extracted signal. The denominator reflects
the extent to which s,, ; is predicted by a short-term moving
average Sy, of previous values in s,. The demixed signals
have high predictability when a large overall signal variance
in numerator and a low prediction error in a smooth signal
in denominator are obtained. Fig. 10 compares the absolute
error of the predictability |F(s,) — F(Sy,)| between source
signals s, and the demixed signals §,, estimated by using
different ICA methods. The errors of two demixed signals are
calculated and averaged over six test signal sets. The lower
error implies the better performance that the predictability of
demixed signals is closer to that of source signals. Similar to
the results of SIRs, the online learning methods using OVB-
ICA, NS-ICA, SMC-ICA, NB-ICA, and OLGP-ICA perform
better than the batch learning methods using VB-ICA, BICA-
HMM, S-ICA, and GP-ICA in terms of signal predictability.
Among different ICA methods, the lowest predictability error
is achieved by OLGP-ICA. This is because OLGP-ICA does
not only deal with the issue of complicated scenarios in
nonstationary source separation but also characterizes the
temporal correlation existing in source signals and mixing
coefficients.

VI. CONCLUSION

This paper presented two Bayesian learning algorithms
NB-ICA and OLGP-ICA for dynamic source separation under
nonstationary scenarios and environments. These algorithms
were developed by jointly tackling the nonstationary and
temporally correlated mixing coefficients and source signals
through the online GP. The online learning was built based
on a noisy ICA model according to a recursive Bayesian
formula based on a reproducible prior/posterior distribution
pair. The proposed algorithms adaptively captured the statistics
of source signals and the activities of individual sources. The
NB-ICA employed an ARD model and efficiently character-
ized the latent sources by online learning. The sequential
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inference procedure was exploited to infer the variational
parameters corresponding to different model parameters. The
estimated variational parameters served as new hyperpara-
meters of prior density for the next learning epoch when
applying a new frame of mixed signals. The demixed signals,
mixing matrix, and ARD parameter were realized from the
corresponding variational distributions. In addition, the tem-
poral structures of the mixing matrix and source signals were
characterized by the GP, and the GP priors were incrementally
traced through the reproducible Gaussian prior and posterior
distributions. The kernel parameters in GP priors were also
estimated in the OLGP-ICA algorithm frame-by-frame. The
NB-ICA, OLGP-ICA, and SMC-ICA had comparable model
structures and frame-by-frame updating equations. SMC-ICA
conducted the frame-by-frame updating of the importance dis-
tributions, which were applied to find particles and estimate the
SMC-ICA parameters or source signals in sequential impor-
tance sampling procedure. Experimental results on source
separation of audio signals confirmed the effectiveness of
compensating the ARD parameter and the mixing coefficients.
The proposed NB-ICA and OLGP-ICA performed better than
SMC-ICA and other ICA methods in terms of signal-to-
interference ratio and signal predictability. The OLGP-ICA
dealt with the most complicated scenario and achieved the
best performance among different ICA methods. In the future,
the evaluation of different numbers of sources and mixtures
shall be investigated. The proposed sequential ICA approaches
shall be extended for convolutive and underdetermined BSS.

APPENDIX: SEQUENTIAL VB INFERENCE FOR OLGP-ICA

Continuing from Section IV-B, the hyperparameters
{Mg) , R(l)} at each frame / are inferred via finding the optimal
variational distribution q(sm ) of the mth source signal by

logg(s\) oc Eqoxs)llog p(XP1all) s, eD)]

m >

+log p(s|n=D, RU-D)y (44)

where the expectation is operated over the variational distribu-
tions q(G(Z) = s® ) by excluding that of S®. To combine two
terms in RHS of (44), we arrange the first term as a logarithm
of Gaussian distribution of a new transformed observation

vector (\IIS"? 1i§2 with mean s\ in a form of

exp{Eg(o2s)[log p(XP[al) sV, D)1}
e

oc./\/((\ll(l)) IX(I) 0]

Sm m 4

(45)

where igz denotes an L x 1 vector with the tth entry

)
N q(@#S)[ﬁm Eq©£5)[apm]
Fo=2 )
] X (e ; Eq@zslay, JEqoxs)si))
nm

(46)

and \Ilgfs denotes a diagonal matrix with the rth entry
(5 = Z Eqozs)BiNEqoss (@ )1 @47)

n=1

By combining two quadratic functions of s£,1) in RHS of

(44), the variational distribution q(s(l) gz, Rgg) turns out to

be a new Gaussian posterior distribution with the updated
hyperparameters {;ng, Rgz}, which are expressed in the same
formulas as (32) and (33) except that the subscripts are all
altered by ay,;,, — s,,. Again, the GP prior acts as the conjugate
prior so that the reproducible prior/posterior distribution pair
is established for sequential VB learning.

In addition, the kernel parameters {Ag), :Ef’, k(l) §§1) } in
calculation of GP priors are inferred in the OLGP-ICA pro-
cedure. The solution to new parameters ATD = {,15,{“”‘)} —

(l) {lg{?m} of mlxmg coefficients af,l,,)l is presented. The
1nd1v1dua1 parameter ianm is estimated via VB algorithm by

maximizing the lower bound of log marginal likelihood

N (
Oy1 exp{Ego2a)l [log p(XD1al), s, e} Ja®
q(a,;,) log (D 170=1) =(-1) Oyt |93m
x p(ap anm s Sapm V(g @pm))~

= log / exp{Egoallog p(XVaf),. (). &)1}

xpag, A5V, &l Dydaf)
o log N (D Y71%D o, (w) y=1 + RU-D)

1L RO-D|_ l(ga) )T (@ )1

Anm Anm Anm

1
——log|(¥V )~
5 og (¥, )

Anm

x (e )~

Anm

R(l 1)) (\Il(l)) 150

Anm Anm anm (48)
In (48), the RHS is obtained by substituting into the nor-

malized variational distribution q(a%) as determined in (28).

The kernel parameter A, ~ exists in the covariance matrix

Rﬁfm‘) = Kt(llnml) of GP prior p(a,(ll,z,l [Lanml) , Rﬁfm‘) ). The
integral is operated over a Gaussian distribution of a,(ll,z, and
comes up with a new Gaussian distribution. However, there is
no closed-form solution to this optimal hyperparameter. The
steepest descent algorithm is applied to find the solution by
usin a learning rate and the differentiation of (48) with respect

to 2=V which is written by [32]

anm ’

(=1
—lTr |:((\Il(1) )l RUD )12 2 aRanm :|
2

Anm Anm

3G YT D ) () R D)
5Rz(zlnm1) v -1 4 RO-Dy-1 D 150
20D (¥g,,) " +RG D)Wy, )X, - (49)
Anm
The solutions to the other hyperparameters
{f(f,ml) /1§f,, 1),53(,{:1) ] - {é(f;,,,ﬁf,}, S(,?} are similarly

derived by applying the steepest descent algorithms and
considering the objective function in (48).
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