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Let G be a simple connected graph of order n with degree sequence

d1, d2, . . . , dn in non-increasing order. The spectral radius ρ(G) of

G is the largest eigenvalue of its adjacency matrix. For each positive

integer � at most n, we give a sharp upper bound for ρ(G) by a

function of d1, d2, . . . , d�, which generalizes a series of previous

results.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a simple connected graph of n vertices and m edges with degree sequence d1 � d2 �
· · · � dn. The adjacency matrix A = (aij) of G is a binary square matrix of order n with rows and

columns indexed by the vertex set VG of G such that for any i, j ∈ VG, aij = 1 if i, j are adjacent in G.
The spectral radius ρ(G) of G is the largest eigenvalue of its adjacency matrix, which has been studied

by many authors.

The following theorem is well-known [6, Chapter 2].

Theorem 1.1. If A is a nonnegative irreducible n × n matrix with largest eigenvalue ρ(A) and row-sums

r1, r2, . . . , rn, then

ρ(A) � max
1�i�n

ri

with equality if and only if the row-sums of A are all equal.
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In 1985 [1, Corollary 2.3], Brauldi and Hoffman showed the following result.

Theorem 1.2. If m � k(k − 1)/2, then

ρ(G) � k − 1

with equality if and only if G is isomorphic to the complete graph Kn of order n.

In 1987 [8], Stanley improved Theorem 1.2 and showed the following result.

Theorem 1.3.

ρ(G) � −1 + √
1 + 8m

2

with equality if and only if G is isomorphic to the complete graph Kn of order n.

In 1998 [3, Theorem 2], Yuan Hong improved Theorem 1.3 and showed the following result.

Theorem 1.4.

ρ(G) �
√

2m − n + 1

with equality if and only if G is isomorphic to the star K1,n−1 or to the complete graph Kn.

In 2001 [4, Theorem 2.3], Hong et al. improved Theorem 1.4 and showed the following result.

Theorem 1.5.

ρ(G) �
dn − 1 +

√
(dn + 1)2 + 4(2m − ndn)

2

with equality if and only if G is regular or there exists 2 � t � n such that d1 = dt−1 = n − 1 and

dt = dn.

In 2004 [7, Theorem 2.2], Jinlong Shu and Yarong Wu improved Theorem 1.1 in the case that A is

the adjacency matrix of G by showing the following result.

Theorem 1.6. For 1 � � � n,

ρ(G) �
d� − 1 +

√
(d� + 1)2 + 4(� − 1)(d1 − d�)

2

with equality if and only if G is regular or there exists 2 � t � � such that d1 = dt−1 = n − 1 and

dt = dn.

Moreover, they also showed in [7, Theorem 2.5] that if p + q � d1 + 1 then Theorem 1.6 improves

Theorem 1.5 where p is the number of vertices with the largest degree d1 and q is the number of

vertices with the second largest degree. The special case � = 2 of Theorem 1.6 is reproved [2].

In this research, we present a sharp upper bound of ρ(G) in terms of the degree sequence of G,
which improves Theorem 1.2 to Theorem 1.6.
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Theorem 1.7. For 1 � � � n,

ρ(G) � φ� := d� − 1 +
√

(d� + 1)2 + 4
∑�−1

i=1 (di − d�)

2
,

with equality if and only if G is regular or there exists 2 � t � � such that d1 = dt−1 = n − 1 and

dt = dn.

This result improves Theorem 1.5 and Theorem 1.6 since φn is exactly the upper bounds in Theo-

rem 1.5 and is at most the upper bound appearing in Theorem 1.6. Additionally, generalized from this

research, a similar upper bound of the spectral radius in terms of the average 2-degree sequence of a

graph will be presented in [5].

Notice that the number φ� defined in Theorem 1.7 is at least d�. The sequence φ1, φ2, . . . , φn

is not necessary to be non-increasing. We show that this sequence is first non-increasing and then

non-decreasing, and determine its lowest value in Section 3.

2. Proof of Theorem 1.7

Proof. Let the vertices be labeled by 1, 2, . . . , n with degrees d1 � d2 � · · · � dn, respectively. For
each 1 � i � � − 1, let xi � 1 be a variable to be determined later. Let U = diag(x1, x2, . . . , x�−1,

1, 1, . . . , 1) be a diagonal matrix of size n × n. Then U−1 = diag(x−1
1 , x−1

2 , . . . , x−1
�−1, 1, 1, . . . , 1).

Let B = U−1AU. Notice that A and B have the same eigenvalues.

Let r1, r2, . . . , rn be the row-sums of B. Then for 1 � i � � − 1 we have

ri =
�−1∑
k=1

xk

xi
aik +

n∑
k=�

1

xi
aik = 1

xi

n∑
k=1

aik + 1

xi

�−1∑
k=1

(xk − 1)aik

� 1

xi
di + 1

xi

⎛
⎝

�−1∑
k=1,k �=i

xk − (� − 2)

⎞
⎠ , (2.1)

and for � � j � n we have

rj =
�−1∑
k=1

xkajk +
n∑

k=�

ajk =
n∑

k=1

ajk +
�−1∑
k=1

(xk − 1)ajk

� d� +
⎛
⎝

�−1∑
k=1

xk − (� − 1)

⎞
⎠ . (2.2)

For 1 � i � � − 1 let

xi = 1 + di − d�

φ� + 1
� 1, (2.3)

where φ� is defined in Theorem 1.7. Then for 1 � i � � − 1 we have

ri � 1

xi
di + 1

xi

⎛
⎝

�−1∑
k=1,k �=i

xk − (� − 2)

⎞
⎠ = φ�,
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and for � � j � nwe have

rj � d� +
⎛
⎝

�−1∑
k=1

xk − (� − 1)

⎞
⎠ = φ�.

Hence by Theorem 1.1,

ρ(G) = ρ(B) � max
1�i�n

{ri} � φ�. (2.4)

The first part of Theorem 1.7 follows.

The sufficient condition of φ� = ρ(G) follows from the fact that

φ� �
d� − 1 +

√
(d� + 1)2 + 4(� − 1)(d1 − d�)

2

and applying the second part in Theorem 1.6.

To prove the necessary condition of φ� = ρ(G), suppose φ� = ρ(G). Then the equalities in (2.1)

and (2.2) all holds. If d1 = d�, then d1 = φ1 = φ� = ρ(G), and G is regular by the second part of

Theorem 1.1. Suppose 2 � t � � such that dt−1 > dt = d�. Then xi > 1 for 1 � i � t − 1 by (2.3).

For each 1 � i � � − 1, the equality in (2.1) implies that aik = 1 for 1 � k � t − 1, k �= i. For
each � � j � n, the equality in (2.2) implies that ajk = 1 for 1 � k � t − 1 and dj = d�. Hence
n − 1 = d1 = dt−1 > dt = d� = dn.

We complete the proof. �

3. The sequence φ1, φ2, . . . , φn

The sequence φ1, φ2, . . . , φn is not necessarily non-increasing. For example, the path Pn of n ver-

tices has 2 = d1 = dn−2 > dn−1 = dn = 1, and it is immediate to check that if n � 6 then

φ1 = φ2 = 2 <
√

n − 1 = φn−1 = φn.
Clearly that for all 1 � s < t � n, ds = dt implies that φs = φt . However, φs = φt dose not

imply ds = dt . For example, in the graph with degree sequence (4, 3, 3, 2, 1, 1), one can check that

φ4 = φ5 = 3 but d4 > d5.
Recall that ds = ds+1 implies φs = φs+1 for 1 � s � n − 1. The following proposition describes

the shape of the sequence φ1, φ2, . . . , φn.

Proposition 3.1. Suppose ds > ds+1 for 1 � s � n − 1, and let � ∈ {>, =}. Then
φs � φs+1 iff

s∑
i=1

di � s(s − 1).

Proof. Recall that

φs = ds − 1 +
√

(ds + 1)2 + 4
∑s−1

i=1 (di − ds)

2
.

The proposition follows from the following equivalent relations step by step:

φs � φs+1

⇔ ds − ds+1 +
√√√√√(ds + 1)2 + 4

s−1∑
i=1

(di − ds)
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�
√√√√(ds+1 + 1)2 + 4

s∑
i=1

(di − ds+1)

⇔
√√√√√(ds + 1)2 + 4

s−1∑
i=1

(di − ds) � 2s − (ds + 1)

⇔ (ds + 1)2 + 4

s∑
i=1

(di − ds) � 4s2 − 4s(ds + 1) + (ds + 1)2

⇔
s∑

i=1

di � s(s − 1),

where the relation in (3.1) is obtained from the second by taking square on both sides, simplifying it,

and deleting the common term ds − ds+1. Notice that if 2s − (ds + 1) < 0 in (3.1) then in the case

that� is =, all statements fails, and in the case that � is > the left hand side of (3.1) is at least ds + 1,

which is greater than |2s − (ds + 1)|, so the equivalent relation in the next step holds. �

Corollary 3.2. Let 3 � � � n be the smallest integer such that
∑�

i=1 di < �(� − 1). Then for 1 � j � n

we have

φj = min{φk | 1 � k � n}

if and only if dj = d�, or dj = d�−1 with
∑�−1

i=1 di = (� − 1)(� − 2).

Proof. From Proposition 3.1,
∑�−1

i=1 di = (�− 1)(�− 2) implies φ�−1 = φ�. Also, clearly that dj = d�

implies φj = φ�. We show that φ� = min{φk | 1 � k � n} in the following.

For 1 � s � � − 1, from Proposition 3.1 we have φs � φs+1 since
∑s

i=1 di � s(s − 1). For

� � t � n − 1, notice that
∑t

i=1 di < t(t − 1) implies dt < t − 1, and hence
∑t+1

i=1 di < t(t − 1) +
(t − 1) < t(t + 1). From Proposition 3.1 we have φ� � φ�+1 � · · · � φn since

∑�
i=1 di < �(� − 1).

The result follows. �
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