Linear Algebra and its Applications 438 (2013) 3511-3515

Spectral radius and degree sequence of a graph Chia-an Liu*, Chih-wen Weng

Department of Applied Mathematics, National Chiao Tung University, Taiwan, ROC

ARTICLE INFO

Article history: Received 26 October 2012 Accepted 12 December 2012 Available online 28 January 2013

Submitted by R.A. Brualdi

AMS classification: 05C50 15A18

Keywords: Graph Adjacency matrix Spectral radius Degree sequence

ABSTRACT

Let *G* be a simple connected graph of order *n* with degree sequence d_1, d_2, \ldots, d_n in non-increasing order. The *spectral radius* $\rho(G)$ of *G* is the largest eigenvalue of its adjacency matrix. For each positive integer ℓ at most *n*, we give a sharp upper bound for $\rho(G)$ by a function of d_1, d_2, \ldots, d_ℓ , which generalizes a series of previous results.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let *G* be a simple connected graph of *n* vertices and *m* edges with degree sequence $d_1 \ge d_2 \ge \cdots \ge d_n$. The *adjacency matrix* $A = (a_{ij})$ of *G* is a binary square matrix of order *n* with rows and columns indexed by the vertex set *VG* of *G* such that for any *i*, $j \in VG$, $a_{ij} = 1$ if *i*, *j* are adjacent in *G*. The *spectral radius* $\rho(G)$ of *G* is the largest eigenvalue of its adjacency matrix, which has been studied by many authors.

The following theorem is well-known [6, Chapter 2].

Theorem 1.1. If A is a nonnegative irreducible $n \times n$ matrix with largest eigenvalue $\rho(A)$ and row-sums r_1, r_2, \ldots, r_n , then

 $\rho(A) \leqslant \max_{1 \leqslant i \leqslant n} r_i$

with equality if and only if the row-sums of A are all equal.

E-mail addresses: twister.imm96g@g2.nctu.edu.tw, giant.cm96g@g2.nctu.edu.tw (C.-a. Liu).

0024-3795/\$ - see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.laa.2012.12.016

^{*} Corresponding author. Address: Department of Applied Mathematics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan, ROC. Tel.: +886 3 5712121x56460.

In 1985 [1, Corollary 2.3], Brauldi and Hoffman showed the following result.

Theorem 1.2. *If* $m \le k(k-1)/2$, *then*

$$\rho(G) \leq k-1$$

with equality if and only if *G* is isomorphic to the complete graph K_n of order *n*.

In 1987 [8], Stanley improved Theorem 1.2 and showed the following result.

Theorem 1.3.

$$\rho(G) \leqslant \frac{-1 + \sqrt{1 + 8m}}{2}$$

with equality if and only if *G* is isomorphic to the complete graph K_n of order *n*.

In 1998 [3, Theorem 2], Yuan Hong improved Theorem 1.3 and showed the following result.

Theorem 1.4.

$$\rho(G) \leqslant \sqrt{2m - n + 1}$$

with equality if and only if G is isomorphic to the star $K_{1,n-1}$ or to the complete graph K_n .

In 2001 [4, Theorem 2.3], Hong et al. improved Theorem 1.4 and showed the following result.

Theorem 1.5.

$$\rho(G) \leq \frac{d_n - 1 + \sqrt{(d_n + 1)^2 + 4(2m - nd_n)}}{2}$$

with equality if and only if G is regular or there exists $2 \le t \le n$ such that $d_1 = d_{t-1} = n - 1$ and $d_t = d_n$.

In 2004 [7, Theorem 2.2], Jinlong Shu and Yarong Wu improved Theorem 1.1 in the case that *A* is the adjacency matrix of *G* by showing the following result.

Theorem 1.6. For $1 \leq \ell \leq n$,

$$\rho(G) \leqslant \frac{d_{\ell} - 1 + \sqrt{(d_{\ell} + 1)^2 + 4(\ell - 1)(d_1 - d_{\ell})}}{2}$$

with equality if and only if G is regular or there exists $2 \leq t \leq \ell$ such that $d_1 = d_{t-1} = n-1$ and $d_t = d_n$.

Moreover, they also showed in [7, Theorem 2.5] that if $p + q \ge d_1 + 1$ then Theorem 1.6 improves Theorem 1.5 where p is the number of vertices with the largest degree d_1 and q is the number of vertices with the second largest degree. The special case $\ell = 2$ of Theorem 1.6 is reproved [2].

In this research, we present a sharp upper bound of $\rho(G)$ in terms of the degree sequence of *G*, which improves Theorem 1.2 to Theorem 1.6.

Theorem 1.7. *For* $1 \leq \ell \leq n$,

$$\rho(G) \leqslant \phi_{\ell} := \frac{d_{\ell} - 1 + \sqrt{(d_{\ell} + 1)^2 + 4\sum_{i=1}^{\ell-1} (d_i - d_{\ell})}}{2},$$

with equality if and only if G is regular or there exists $2 \leq t \leq \ell$ such that $d_1 = d_{t-1} = n - 1$ and $d_t = d_n$.

This result improves Theorem 1.5 and Theorem 1.6 since ϕ_n is exactly the upper bounds in Theorem 1.5 and is at most the upper bound appearing in Theorem 1.6. Additionally, generalized from this research, a similar upper bound of the spectral radius in terms of the average 2-degree sequence of a graph will be presented in [5].

Notice that the number ϕ_{ℓ} defined in Theorem 1.7 is at least d_{ℓ} . The sequence $\phi_1, \phi_2, \ldots, \phi_n$ is not necessary to be non-increasing. We show that this sequence is first non-increasing and then non-decreasing, and determine its lowest value in Section 3.

2. Proof of Theorem 1.7

Proof. Let the vertices be labeled by 1, 2, ..., *n* with degrees $d_1 \ge d_2 \ge \cdots \ge d_n$, respectively. For each $1 \le i \le \ell - 1$, let $x_i \ge 1$ be a variable to be determined later. Let $U = diag(x_1, x_2, \dots, x_{\ell-1}, 1, 1, \dots, 1)$ be a diagonal matrix of size $n \times n$. Then $U^{-1} = diag(x_1^{-1}, x_2^{-1}, \dots, x_{\ell-1}^{-1}, 1, 1, \dots, 1)$.

Let $B = U^{-1}AU$. Notice that A and B have the same eigenvalues.

Let r_1, r_2, \ldots, r_n be the row-sums of *B*. Then for $1 \le i \le \ell - 1$ we have

$$r_{i} = \sum_{k=1}^{\ell-1} \frac{x_{k}}{x_{i}} a_{ik} + \sum_{k=\ell}^{n} \frac{1}{x_{i}} a_{ik} = \frac{1}{x_{i}} \sum_{k=1}^{n} a_{ik} + \frac{1}{x_{i}} \sum_{k=1}^{\ell-1} (x_{k} - 1) a_{ik}$$

$$\leqslant \frac{1}{x_{i}} d_{i} + \frac{1}{x_{i}} \left(\sum_{k=1, k \neq i}^{\ell-1} x_{k} - (\ell - 2) \right), \qquad (2.1)$$

and for $\ell \leq j \leq n$ we have

$$r_{j} = \sum_{k=1}^{\ell-1} x_{k} a_{jk} + \sum_{k=\ell}^{n} a_{jk} = \sum_{k=1}^{n} a_{jk} + \sum_{k=1}^{\ell-1} (x_{k} - 1) a_{jk}$$

$$\leq d_{\ell} + \left(\sum_{k=1}^{\ell-1} x_{k} - (\ell - 1) \right).$$
(2.2)

For $1 \leq i \leq \ell - 1$ let

$$x_i = 1 + \frac{d_i - d_\ell}{\phi_\ell + 1} \ge 1, \tag{2.3}$$

where ϕ_ℓ is defined in Theorem 1.7. Then for $1 \leqslant i \leqslant \ell - 1$ we have

$$r_i \leq \frac{1}{x_i} d_i + \frac{1}{x_i} \left(\sum_{k=1, k \neq i}^{\ell-1} x_k - (\ell-2) \right) = \phi_\ell,$$

and for $\ell \leq j \leq n$ we have

$$r_j \leqslant d_\ell + \left(\sum_{k=1}^{\ell-1} x_k - (\ell-1)\right) = \phi_\ell.$$

Hence by Theorem 1.1,

$$\rho(G) = \rho(B) \leqslant \max_{1 \le i \le n} \{r_i\} \leqslant \phi_\ell.$$
(2.4)

The first part of Theorem 1.7 follows.

The sufficient condition of $\phi_{\ell} = \rho(G)$ follows from the fact that

$$\phi_{\ell} \leqslant rac{d_{\ell} - 1 + \sqrt{(d_{\ell} + 1)^2 + 4(\ell - 1)(d_1 - d_{\ell})}}{2}$$

and applying the second part in Theorem 1.6.

To prove the necessary condition of $\phi_{\ell} = \rho(G)$, suppose $\phi_{\ell} = \rho(G)$. Then the equalities in (2.1) and (2.2) all holds. If $d_1 = d_{\ell}$, then $d_1 = \phi_1 = \phi_{\ell} = \rho(G)$, and *G* is regular by the second part of Theorem 1.1. Suppose $2 \le t \le \ell$ such that $d_{t-1} > d_t = d_{\ell}$. Then $x_i > 1$ for $1 \le i \le t - 1$ by (2.3). For each $1 \le i \le \ell - 1$, the equality in (2.1) implies that $a_{ik} = 1$ for $1 \le k \le t - 1$, $k \ne i$. For each $\ell \le j \le n$, the equality in (2.2) implies that $a_{jk} = 1$ for $1 \le k \le t - 1$ and $d_j = d_{\ell}$. Hence $n - 1 = d_1 = d_{t-1} > d_t = d_n$.

We complete the proof. \Box

3. The sequence $\phi_1, \phi_2, \ldots, \phi_n$

The sequence $\phi_1, \phi_2, \dots, \phi_n$ is not necessarily non-increasing. For example, the path P_n of n vertices has $2 = d_1 = d_{n-2} > d_{n-1} = d_n = 1$, and it is immediate to check that if $n \ge 6$ then $\phi_1 = \phi_2 = 2 < \sqrt{n-1} = \phi_{n-1} = \phi_n$.

Clearly that for all $1 \leq s < t \leq n$, $d_s = d_t$ implies that $\phi_s = \phi_t$. However, $\phi_s = \phi_t$ dose not imply $d_s = d_t$. For example, in the graph with degree sequence (4, 3, 3, 2, 1, 1), one can check that $\phi_4 = \phi_5 = 3$ but $d_4 > d_5$.

Recall that $d_s = d_{s+1}$ implies $\phi_s = \phi_{s+1}$ for $1 \le s \le n-1$. The following proposition describes the shape of the sequence $\phi_1, \phi_2, \ldots, \phi_n$.

Proposition 3.1. Suppose
$$d_s > d_{s+1}$$
 for $1 \le s \le n-1$, and let $\succeq \in \{>, =\}$. Then
 $\phi_s \ge \phi_{s+1}$ iff $\sum_{i=1}^{s} d_i \ge s(s-1)$.

Proof. Recall that

$$\phi_s = \frac{d_s - 1 + \sqrt{(d_s + 1)^2 + 4\sum_{i=1}^{s-1} (d_i - d_s)}}{2}.$$

The proposition follows from the following equivalent relations step by step:

$$\phi_s \succeq \phi_{s+1}$$

$$\Leftrightarrow \quad d_s - d_{s+1} + \sqrt{(d_s + 1)^2 + 4\sum_{i=1}^{s-1} (d_i - d_s)}$$

$$\geq \sqrt{(d_{s+1}+1)^2 + 4\sum_{i=1}^{s}(d_i - d_{s+1})}$$

$$\Leftrightarrow \quad \sqrt{(d_s+1)^2 + 4\sum_{i=1}^{s-1}(d_i - d_s)} \geq 2s - (d_s+1)$$

$$\Leftrightarrow \quad (d_s+1)^2 + 4\sum_{i=1}^{s}(d_i - d_s) \geq 4s^2 - 4s(d_s+1) + (d_s+1)^2$$

$$\Leftrightarrow \quad \sum_{i=1}^{s} d_i \geq s(s-1),$$

where the relation in (3.1) is obtained from the second by taking square on both sides, simplifying it, and deleting the common term $d_s - d_{s+1}$. Notice that if $2s - (d_s + 1) < 0$ in (3.1) then in the case that \succeq is =, all statements fails, and in the case that \succeq is > the left hand side of (3.1) is at least $d_s + 1$, which is greater than $|2s - (d_s + 1)|$, so the equivalent relation in the next step holds. \Box

Corollary 3.2. Let $3 \leq \ell \leq n$ be the smallest integer such that $\sum_{i=1}^{\ell} d_i < \ell(\ell-1)$. Then for $1 \leq j \leq n$ we have

$$\phi_j = \min\{\phi_k \mid 1 \leqslant k \leqslant n\}$$

if and only if $d_j = d_\ell$, or $d_j = d_{\ell-1}$ with $\sum_{i=1}^{\ell-1} d_i = (\ell - 1)(\ell - 2)$.

Proof. From Proposition 3.1, $\sum_{i=1}^{\ell-1} d_i = (\ell-1)(\ell-2)$ implies $\phi_{\ell-1} = \phi_{\ell}$. Also, clearly that $d_j = d_{\ell}$ implies $\phi_j = \phi_{\ell}$. We show that $\phi_{\ell} = \min\{\phi_k \mid 1 \leq k \leq n\}$ in the following.

For $1 \leq s \leq \ell - 1$, from Proposition 3.1 we have $\phi_s \geq \phi_{s+1}$ since $\sum_{i=1}^{s} d_i \geq s(s-1)$. For $\ell \leq t \leq n-1$, notice that $\sum_{i=1}^{t} d_i < t(t-1)$ implies $d_t < t-1$, and hence $\sum_{i=1}^{t+1} d_i < t(t-1) + (t-1) < t(t+1)$. From Proposition 3.1 we have $\phi_\ell \leq \phi_{\ell+1} \leq \cdots \leq \phi_n$ since $\sum_{i=1}^{\ell} d_i < \ell(\ell-1)$. The result follows. \Box

Acknowledgment

This research is supported by the National Science Council of Taiwan, ROC, under the project NSC 99-2115-M-009-005-MY3.

References

- [1] R.A. Brauldi, A.J. Hoffman, On the spectral radius of (0,1)-matrices, Linear Algebra Appl. 65 (1985) 133-146.
- [2] Kinkar Ch. Das, Proof of conjecture involving the second largest signless Laplacian eigenvalue and the index of graphs, Linear Algebra Appl. 435 (2011) 2420–2424.
- [3] Yuan Hong, Upper bounds of the spectral radius of graphs in terms of genus, J. Combin. Theory Ser. B 74 (1998) 153-159.
- [4] Yuan Hong, Jin-Long Shu, Kunfu Fang, A sharp upper bound of the spectral radius of graphs, J. Combin. Theory Ser. B 81 (2001) 177–183.
- [5] Yu-pei Huang, Chih-wen Weng, Spectral radius and average 2-degree sequence of a graph, preprint.
- [6] Henryk Minc, Nonnegative Matrices, John Wiley and Sons Inc., New York, 1988.
- [7] Jinlong Shu, Yarong Wu, Sharp upper bounds on the spectral radius of graphs, Linear Algebra Appl. 377 (2004) 241–248.
- [8] Richard P. Stanley, A bound on the spectral radius of graphs with e edges, Linear Algebra Appl. 87 (1987) 267–269.

3515