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1. Introduction

Let G be a simple connected graph of n vertices and m edges with degree sequence d; > dy >

- = dy. The adjacency matrix A = (a;;) of G is a binary square matrix of order n with rows and
columns indexed by the vertex set VG of G such that forany i, j € VG, a; = 1ifi, jare adjacentinG.
The spectral radius p(G) of G is the largest eigenvalue of its adjacency matrix, which has been studied
by many authors.

The following theorem is well-known [6, Chapter 2].

Theorem 1.1. IfA is a nonnegative irreducible n x n matrix with largest eigenvalue p (A) and row-sums
r, T2, ..., Iy, then
A) < max 1
pA) < = i
with equality if and only if the row-sums of A are all equal.
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In 1985 [1, Corollary 2.3], Brauldi and Hoffman showed the following result.

Theorem 1.2. I[fm < k(k — 1)/2, then
p(G) <k—1
with equality if and only if G is isomorphic to the complete graph K, of order n.

In 1987 [8], Stanley improved Theorem 1.2 and showed the following result.

Theorem 1.3.

14+ +/1+8m

p(G) < 5

with equality if and only if G is isomorphic to the complete graph K, of order n.
In 1998 [3, Theorem 2], Yuan Hong improved Theorem 1.3 and showed the following result.

Theorem 1.4.
p(G) </2m—n+1
with equality if and only if G is isomorphic to the star K; ,—1 or to the complete graph K;,.

In 2001 [4, Theorem 2.3], Hong et al. improved Theorem 1.4 and showed the following result.

Theorem 1.5.

dy — 14 /(dn + 1)2 + 4(2m — nd,)

p(G) < 5

with equality if and only if G is regular or there exists 2 < t < nsuch thatdy = di—1 = n— 1 and
dt = dn.

In 2004 [7, Theorem 2.2], Jinlong Shu and Yarong Wu improved Theorem 1.1 in the case that A is
the adjacency matrix of G by showing the following result.

Theorem 1.6. For1 < ¢ < n,

dg — 14 /(e + 1) +4(¢ — 1)(dy — do)

p(G) < 5

with equality if and only if G is regular or there exists 2 < t < £ such thatdy = d;—1 = n — 1 and
dt - dn.

Moreover, they also showed in [7, Theorem 2.5] thatif p + q = d; + 1 then Theorem 1.6 improves
Theorem 1.5 where p is the number of vertices with the largest degree d; and q is the number of
vertices with the second largest degree. The special case £ = 2 of Theorem 1.6 is reproved [2].

In this research, we present a sharp upper bound of p(G) in terms of the degree sequence of G,
which improves Theorem 1.2 to Theorem 1.6.
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Theorem 1.7. For1 < £ < n,

L dg— 1+ D2 AT G - do)

p(G) < ¢y : 5

’

with equality if and only if G is regular or there exists 2 < t < £ such thatdy = d;—1 = n — 1 and
dl’ = dn.

This result improves Theorem 1.5 and Theorem 1.6 since ¢, is exactly the upper bounds in Theo-
rem 1.5 and is at most the upper bound appearing in Theorem 1.6. Additionally, generalized from this
research, a similar upper bound of the spectral radius in terms of the average 2-degree sequence of a
graph will be presented in [5].

Notice that the number ¢, defined in Theorem 1.7 is at least d;. The sequence ¢1, ¢2, ..., ¢n
is not necessary to be non-increasing. We show that this sequence is first non-increasing and then
non-decreasing, and determine its lowest value in Section 3.

2. Proof of Theorem 1.7

Proof. Let the vertices be labeled by 1, 2, ..., n with degreesdy > dy > --- > d,, respectively. For
each1 < i< € —1,letx; > 1be avariable to be determined later. Let U = diag(x1, X2, ..., X¢—1,
1,1,...,1) be a diagonal matrix of size n x n. ThenU™! = diag(xl_l,xz_l, .. ,xe__]P 1,1,...,1).
Let B= U~ 'AU. Notice that A and B have the same eigenvalues.
Letry, 1y, ..., I, be the row-sums of B. Then for 1 < i < £ — 1 we have
-1 n n -1
Xi 1 1 1
= e+ p —tp=— > G+ — > (X — Dag
k=1 %i k=¢ Xi Xi g Xi =1

1 1 -1
<xd,-+< > xk—<e—2>), (21)

i Xi \ k=1 ki
and for ¢ < j < n we have

-1 n n -1
1= Zxkajk =+ Z Qjle = z Qjle + Z(xk - 1)ajk
k=1 k=t

k=1 k=1

-1
<dp + (Zxk—(£—1)>. (2.2)

k=1

For1 <i</{—1let

> 1, (23)

where ¢y is defined in Theorem 1.7. Then for 1 < i < £ — 1 we have

1 1/ =
Tig‘di‘l‘( > Xk—(ﬁ—z)):W,

Xi Xi \ k=1, ki
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and for £ < j < nwe have
-1
H<de+ [ D xe—(E—1)) = ¢
k=1
Hence by Theorem 1.1,

p(G) =pB) < 12{2(””1‘} < . (24)

The first part of Theorem 1.7 follows.
The sufficient condition of ¢y = p(G) follows from the fact that

_ 1 + /(e + 12 + 4 — 1)(dy — do)
AR
2

and applying the second part in Theorem 1.6.

To prove the necessary condition of ¢y = p(G), suppose ¢y = p(G). Then the equalities in (2.1)
and (2.2) all holds. If d; = dy, thend; = ¢1 = ¢¢ = p(G), and G is regular by the second part of
Theorem 1.1. Suppose 2 < t < £suchthatd;—q > dy = dp. Thenx; > 1for1 <i < t—1by(2.3).
Foreach1 < i < £ — 1, the equality in (2.1) implies that aj, = 1for1 < k < t — 1, k # i. For
each ¢ < j < n, the equality in (2.2) implies that ajy = 1for 1 < k < t — 1and d; = dy. Hence
n—1=d =di—1 >dy =dy =d.

We complete the proof. O

3. The sequence ¢1, ¢2, ..., Py

The sequence ¢1, ¢3, ..., ¢, is not necessarily non-increasing. For example, the path P, of n ver-
ticeshas2 = dy = d,—» > dy,—1 = d, = 1, and it is immediate to check that if n > 6 then
¢1 :¢2:2<\/“_1:¢n—1 :¢n~

Clearly that forall 1 < s < t < n, d; = d; implies that ¢ = ¢;. However, ¢ = ¢ dose not
imply d; = d;. For example, in the graph with degree sequence (4, 3, 3, 2, 1, 1), one can check that
¢4 = ¢5 = 3 butdy > ds.

Recall that d; = dsy1 implies ¢s = ¢s+1 for 1 < s < n — 1. The following proposition describes
the shape of the sequence ¢+, ¢o, . .., ¢n.

Proposition 3.1. Supposeds > ds41 for1 <s<n—1,andlet> € {>,=}.Then

G5 = s ff D di = s(s—1).

i=1

Proof. Recall that

ds — 14 /(ds + D2 + 4337 (d; — dy)

¢s= D)

The proposition follows from the following equivalent relations step by step:

Os > Gs 1

s—1

< ds_ds+1 + (ds+1)2 +4Z(di —ds)
i=1
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S
= | (o1 + 12+ 4D (d — dsyq)

i=1

s—1

& (ds+1)2+4> (dj—d) = 25 — (ds + 1)

i=1

N
& (ds+ 1> +4D (di — ds) > 45 — 4s(ds + 1) + (ds + 1)*

i=1

N
& Ddi=s(s—1),
i=1

where the relation in (3.1) is obtained from the second by taking square on both sides, simplifying it,
and deleting the common term ds — ds1. Notice that if 2s — (ds + 1) < 0in (3.1) then in the case
that > is =, all statements fails, and in the case that > is > the left hand side of (3.1) is at least ds + 1,
which is greater than |2s — (ds + 1)|, so the equivalent relation in the next step holds. O

Corollary 3.2. Let 3 < £ < n be the smallest integer such that ZL] di <€ —1).Thenfor1 <j<n
we have

¢j = min{¢y | 1 < k < n}
ifand only ifdj = dg, ordj = d¢—q with Zf;ll d=—-1){—2).

Proof. From Proposition 3.1, Zfz_ll di = (£ —1)(£ — 2) implies ¢p¢_1 = . Also, clearly that d; = dy
implies ¢; = ¢¢. We show that ¢y = min{¢y | 1 < k < n} in the following.

For 1 < s < £ — 1, from Proposition 3.1 we have ¢s > ¢4 since >3_; d;i > s(s — 1). For
£ <t <n—1, notice that Zle di < t(t — 1) impliesd; < t — 1, and hence Zfi]] di <t(t—1)+
(t —1) < t(t + 1). From Proposition 3.1 we have ¢y < ¢pyq < - -+ < ¢, since Zle di < £(€£—1).
The result follows. [
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