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Abstract:

This article proposes an improved multi-run genetic programming (GP) and applies it to estimate the typhoon rainfall over
ocean using multi-variable meteorological satellite data. GP is a well-known evolutionary programming and data mining method
used to automatically discover the complex relationships among nonlinear systems. The main advantage of GP is to optimize
appropriate types of function and their associated coefficients simultaneously. However, the searching efficiency of traditional
GP can be decreased by the complex structure of parse tree to represent the multiple input variables. This study processed
an improvement to enhance escape ability from local optimums during the optimization procedure. We continuously run GP
several times by replacing the terminal nodes at the next run with the best solution at the current run. The current method
improves GP, obtaining a highly nonlinear meaningful equation to estimate the rainfall. In the case study, this improved GP
(IGP) described above combined with special sensor microwave imager (SSM/I) seven channels was employed. These results
are then verified with the data from four offshore rainfall stations located on islands around Taiwan. The results show that the
IGP generates sophisticated and accurate multi-variable equation through two runs. The performance of IGP outperforms the
traditional multiple linear regression, back-propagated network (BPN) and three empirical equations. Because the extremely
high values of precipitation rate are quite few and the number of zero values (no rain) is very large, the underestimations of
heavy rainfall are obvious. A simple genetic algorithm was therefore used to search for the optimal threshold value of SSM/I
channels, detecting the data of no rain. The IGP with two runs, used to construct an appropriate mathematical function to
estimate the precipitation, can obtain more favourable results from estimating extremely high values. Copyright  2011 John
Wiley & Sons, Ltd.
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INTRODUCTION

Taiwan is located at the centre of the western Pacific
Rim and is particularly vulnerable to threat by typhoons.
On average, there are 4Ð9 typhoons passing through
Taiwan annually. Approximately 79% of these typhoons
occur in the period from July to September (Wei et al.,
2006). Heavy rainfalls resulted from the typhoons cost
human lives and financial damages in Taiwan every
year. This is especially the case for stagnant typhoons
over Taiwan area, which brings large-scale disasters
in forms of floods and debris flows. For example, a
recent ferocious typhoon Morakot passed through and
ravaged Taiwan in August 2009. During its passage, more
than 2215Ð5 mm of rainfall was recorded in southern
Taiwan in 48 h (http://www.cwb.gov.tw/). Therefore, one
of the most important topics in disaster prevention
in whole world would be the accurate estimation of
rainfall rate. Rainfall estimation using meteorological
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satellite data plays an especially important role in this
topic.

Satellite rainfall retrieval can provide rainfall estimates
more frequently and over a wider area than conven-
tional raingauge measurements and can assist in detect-
ing heavy rain events caused by typhoon (Li et al.,
2004). The special sensor microwave imager (SSM/I)
has gained widespread applications in the ocean and
atmosphere system in the past decades. It has been in
operation since June 1987 (Hollinger, 1991), has the
unique ability to penetrate through the cirrus clouds and
senses the emitted and scattered radiation by raindrops
and precipitation sized ice particles, respectively. Pas-
sive microwave retrieval can be grouped into two cat-
egories. The first is emission based, where liquid pre-
cipitation causes brightness temperature increases over
a radiometrically cold (usually ocean) background. The
second is scattering based, where precipitation, especially
that above freezing level, causes brightness temperature
decreases over a radiometrically warm (usually land)
background. The emission method is the best known,
based primarily on the work by Wilheit et al. (1997)
at 19Ð25-GHz oceanic precipitation retrievals (Spencer
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et al., 1988). Many algorithms applying the SSM/I data
have been developed in estimating the precipitation (Liu
et al., 2008). The primary goal of the algorithms was to
produce a reasonable relationship between the SSM/I’s
brightness temperature and rainfall.

Numerous algorithms applying the SSM/I data have
been developed in estimating the precipitation. The for-
mation of the various retrievals was based on the rain
gauge data or cloud-resolving model simulations. Wil-
heit (1994) and Petty (1995) established various viable
rainfall estimation algorithms. The second WetNet Pre-
cipitation Intercomparison Project (PIP-2) and PIP-3 were
employed in comparing each SSM/I precipitation algo-
rithm (Smith et al., 1998; Adler et al., 2001). They
discovered that some of the algorithms performed sat-
isfactorily, where their average bias was less than those
of the rainfall approximation of weather radars. In these
particular rainfall estimation algorithms, some utilized a
single channel, such as the 19Ð35-GHz band (Chiu et al.,
1990), while others made use of all the SSM/I chan-
nels (Ferraro, 1997). The algorithms’ primary goal was
to produce a reasonable relationship between the SSM/I’s
brightness temperature and observed rainfall. In general,
Ferraro’s (1997) method is considered the most common
approach in depicting the Tb and rainfall rate relation-
ship, but it is still unclear whether it is a suitable tool
for a typhoon’s rainfall estimation. According to Huang
(2000), among the various algorithms, Chiu et al.’s
(1990) method owned a higher accuracy in the compari-
son of the rain gauge data in the northwest Pacific Ocean.

An alternative method in recent years, artificial neu-
ral networks (ANNs) are implemented with standard-
ized black-box packages, so they are easier to use;
and the performances of ANNs are usually better than
those of traditional statistical methods. Moreover, they
are highly nonlinear and can capture complex interac-
tions among input/output variables in a system with-
out any prior knowledge about the nature of these
interactions. It is well known that a multilayer feed-
forward neural network, having at least one hidden
layer, can approximate most nonlinear function relat-
ing inputs to outputs. The main advantage of ANNs is
that one does not have to explicitly assume a model
form, which is a prerequisite in the parametric approach.
In the field of rainfall forecasting, many studies have
been performed using an ANN approach with different
remote sensing data such as satellite data (Hsu et al.,
1997; Sorooshian et al., 2000; Kuligowski and Barros,
2001; Grimes et al., 2003) and radar data (Mimikou
and Baltas, 1996; Bellerby et al., 2000; Trafalis et al.,
2002). All these studies have reported an improvement
in performance using ANNs (Chiang et al., 2007). For
microwave, Staelin et al. (1999) used an ANN to esti-
mate precipitation from 183-GHz humidity channels of
the advanced microwave sounding unit (AMSU) on satel-
lite NOAA-15. Hsu et al. (1999) demonstrated the util-
ity of using ANN to generate functions linking infrared
and visible image characteristics (including image texture
characteristics) to precipitation. Krasnopolsky et al.

(1999) developed an ANN to retrieve sea surface tem-
perature, water vapour, liquid water, and wind speed
over the ocean simultaneously. Xia (2001) used a
similar method to retrieve sea surface temperature,
wind speed, relative wind direction, and water vapour
from SSM/I data. Recently, Chen and Staelin (2003)
applied ANNs to estimate the precipitation rate based
on brightness temperature data from the atmospheric
infrared sounder (AIRS)/advanced microwave sounding
unit (AMSU)/Humidity Sounder for Brazil sensors on
board the AQUA satellite. However, these ‘black box’
models are unable to generate explicit formulas that can
explain the essence of the precipitation mechanism.

Evolutionary computation techniques, which are based
on a powerful principle of evolution: survival of the
fittest, are very efficient optimization methods. Among
these methods, genetic algorithm (GA) is one of the most
popular search algorithms. But there are some kinds of
difficulties of GA, such as fixed-length encoding and
premature convergence. On the other hand, researchers
have successfully used evolutionary algorithms for auto-
matically generating programs or equations connecting
the inputs and outputs. The genetic programming (GP)
operates a population of the chromosome (a string of
input variables, constants and mathematical operators)
expressed as dynamic tree, which is more flexible than
fixed-length data structure of GA. A great number of
previous studies applied GP to their fields. However,
it seems that not many efforts have been made to the
applications to hydrologic estimation and water resources
engineering (Omolbani et al., 2010). Babovic (1996)
introduced the GP paradigm in the area of water engineer-
ing first soon after Koza, who first proposed GP in 1992.
Cousin and Savic (1997), Savic et al. (1999), Drecourt
(1999), Whigham and Crapper (1999, 2001), and Babovic
and Keijzer (2002) applied GP to rainfall–runoff mod-
elling. Dorado et al. (2003) studied on prediction and
modelling of the rainfall–runoff transformation of a typ-
ical urban basin using ANNs and GP.

Chen (2003) used a GP to evaluate the water quality in
a reservoir through remote sensed imageries. The results
show that the presented method can obtain satisfied accu-
racies for estimation. However, the estimation of precip-
itation through SSM/I microwave frequency channels is
more difficult. Chen (2003) pointed out ‘The traditional
GP like general GA usually suffers from the problem of
premature convergence, which cannot acquire a satisfac-
tory solution’. This problem is addressed in the current
study by enhancing the ability of the algorithm to escape
from a local optimal solution. Therefore, in the following
section, we will firstly begin with an introduction of the
GP algorithm and a discussion concerning the improve-
ment. Then, a case study of the precipitation at sea surface
model is demonstrated in the later section. The results
of this improved GP (IGP) are compared with those of
traditional regression, several empirical equations, back-
propagated network (BPN) and three empirical equations.
Finally, we present the conclusions and some closing
remarks.
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GENETIC PROGRAMMING

GP is a conceptual model for system identification
problems and it can acquire much information on the
detail of insight relationships between input and output
data. In the case study presented in this article, all the
seven input variables and corresponding output variable
are continuous. Therefore, it is suitable to use the
GP to estimate the output values directly. Unlike the
regression techniques, GP automates the trial and error
process of system identification and can be used to
build a model structure that best fits training data. GP
works by emulating natural evolution to generate a
model structure that maximizes (or minimizes) objective
function involving an appropriate measure of the level
of agreement between the model and system responses
(Koza, 1992).

This model allows us to gain additional information on
how the system performs, i.e. gives an insight into the
relationship between input and output data. GP builds
on methods derived from the GA (Goldberg, 1989). GP
expresses the hierarchical computer programs as parse
trees, rather than as the binary strings usually used by
GA. This algorithm begins with the random generation
of the dynamic parse tree of each individual for the initial
population. Then, the chromosomes are expressed as
mathematical equations and the fitness of each equation
is evaluated by the errors between actual and estimating
data. The individuals are then selected according to
fitness to reproduce the offspring. The process is repeated
for a certain number of generations or until the criterion
for termination has been achieved. GP has a distribution-
free advantage, i.e. no prior knowledge is needed about
the statistical distribution of the data (Kishore et al.,
2000).

There are five major preparatory steps in using GP for a
particular problem. These five steps involve determining
(Chen, 2003)

1. The set of terminals consisting the variables and
constants (a real number determined automatically by
GP) of the program.

2. The set of primitive functions consists of the basic
mathematical functions and other more complex user-
defined functions.

3. The crossover, mutation operators and selection oper-
ator are the most important part of GP.

4. The parameters for controlling the run including the
population size, crossover rate, mutation rate, etc.

5. The criterion for terminating a run generally is set
by a predefined number of generations, the amount of
variation of individuals between different generations
or a target value of fitness.

Representation schemes

GP uses parse trees instead of lines of code to repre-
sent programs. Thus, for example, the simple algebraic
expression zy�y C 0Ð639z� would be represented as the
tree in Figure 1. The ‘root node’ is the first element of

+
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root node = 1

leaf nodes = 3, 4, 6, 8, 9

interior nodes = 2, 5, 7

Figure 1. Parse tree representation of an expression

the tree, the ‘interior nodes’ (non-terminal nodes) are the
functions and the ‘leaf nodes’ (terminal nodes) are the
constants and/or the variables. The coding of a chromo-
some is a hierarchical structure, which consists of two
layers. The first layer is to determine the type of ter-
minal, non-terminal nodes. The second layer gives the
actual value of variable number or the constant value.

The three genetic operators of GP are described as
follows:

(1) Reproduction (selection)

Reproduction is a process in which individual trees
are set according to their fitness function values. The
reproduction operator may be implemented in algorithmic
form in a number of ways, such as proportional, rank, and
tournament selection. A macro-evolutionary algorithm is
used as a selection scheme in this article which was
described as Chen (2003) to maintain diversity.

(2) Crossover (recombination)

After reproduction, the algorithm uses a crossover
operator that exchanges arbitrary sub-trees between two
individuals with probability Pc. The crossover operator
used in GP must ensure that programs obey the syntax
of the representation scheme. So it creates new offspring
that consists of genetic material taken from the parents.
Figure 2 shows how this operator works.

(3) Mutation

The mutation of GP simply consists of randomly
exchanging a node in the tree with another node or a
sub-tree.

Fitness function

The correlation coefficient (CC) between estimated
and actual values is adopted as the fitness function of
GP. Through several experiments, it is observed that
this fitness function can accelerate the speed of search
procedure compared with using the root mean squared
error (RMSE) directly. It is able to achieve both ‘high
linear correlation’ and ‘small RMSE’ simultaneous in
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Figure 2. Crossover scheme of two parse trees

most cases, so we chose the former as the objective
function. This study therefore employed single linear
regression analysis to decrease the RMSE of estimation:

y D ˛ C ˇ Ð f �1�

where f is the output value of data estimated by the GP,
y is the actual output value in the dataset, and ˛ and ˇ
are the regression coefficients.

According to the single linear regression analysis, the
two regression coefficient can be estimated as follows:

˛ D y � ˇ Ð f �2�

ˇ D

n∑
iD1

�fi � f� ð �yi � y�

n∑
iD1

�fi � f�2

�3�

where y is the mean of the actual output values in the
dataset, f the mean of the output values estimated by GP,
yi the actual output value of the ith data in the dataset,
and fi the output value of the ith data estimated by GP.

Improved GP

One of the main drawbacks in the conventional GP is
likely to be trapped in a region that does not contain
the global optimum. This problem, called premature
convergence, has been recognized as a serious failure
mode for almost all the optimization models. This study
improves GP to maintain the best result in the current
run and then places it on the terminal nodes of the parse
tree to run the GP again. The best result automatically

includes the original one in the next run, so the equation
is more sophisticated and accurate. To avoid a very
complicated form of equation, this learning procedure
continues several times until achieving a satisfactory
result.

RAINGAUGE AND SATELLITE DATA

The data adopted in this article were collected by the
SSM/I under the US Defense Meteorological Satellites
Program (DMSP) satellites, along with offshore island
raingauge data. SSM/I are sun-synchronous satellites,
which orbit the earth at a height of 833 km and are
oriented with an inclination of 98Ð8° (Hollinger et al.,
1990). The SSM/I are seven-channel passive microwave
radiometers scanning in the dual-polarized (vertical and
horizontal) channels at 19Ð35, 37Ð0, and 85Ð5 GHz and
vertical-polarized channel at 22Ð2 GHz (Hollinger, 1989,
1991). This study utilizes the microwave data (Tb19, Tb22,
Tb37, and Tb85) observed by DMSP F-13, F-14, and
F-15 satellites mentioned above with respective seven
channels.

Rainfall rates estimated by the SSM/I were compared
with the hourly raingauge data of Taiwan’s offshore
islands, including Peng-Jia-Yu, Don-Gji-Dao, Lan-Yu,
and Green Island, as shown in Figure 3. The area
of interest locates around 115° –135 °E longitude and
10° –30°N latitude, which covers all the possible typhoon
trajectories that could influence Taiwan. The typhoon
rainfall data were used during 2000 to 2004. In this
study, a total of 34 typhoon events with 1396 data
were collected during this time period, as shown in
Table I. The brightness temperature measurements from
satellite-borne microwave radiometers and the rainfall
measurements from the four offshore raingauges are
coupled. Since the rain rate from ground rain station
is just one point measurement compared with the area
measurement from satellite, it is well known that the
non-uniform beam filling is a major error source when
a comparison between satellite data and ground rain
station is made. The general beam filling error correction
schemes include both homogeneous radioactive transfer
calculation and based on cloud simulations with field
of view (FOV)-average rain and brightness temperatures
databases (Wei et al., 2011).

All data were arbitrarily grouped in two sets, called
the training (calibration) set and the testing (validation)
set, which have roughly the same statistical properties
(mean and variance). When the training process had been
completed, the constructed model was used to estimate
the output values for the data in the testing set (which
the process had never seen during the training stage).
Therefore, the use of these SSM/I data in the learning
by IGP depends on splitting the 1396 records into two
groups:

1. the first group is used for training the model and
is called the training set including 900 data (22
events) and
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Figure 3. Location of the four islands around Taiwan

2. the second group is used to measure the performance
of the model and is called the testing set including 496
data (12 events).

RESULTS

Improved GP

The IGP was applied to precipitation estimation. The
input variables (terminals) involved seven channels of
SSM/I, Tb19v, Tb19h, Tb22v, Tb37v, Tb37h, Tb85v, and
Tb85h, and operators (internal nodes), which apply several
sets of mathematical operators such as fC, �, ð, /, LN,
EXP, POWERg, were used in the experiments. In this
study, the GP model was conducted twice. With the
population size (individuals or parse trees) equal to 400
and through 8000 generations, the final optimal equations
obtained from the IGP are shown as Equations (4) and
(5). Results of these two parse trees of the precipitation
models at sea surface are shown in Figures 4 and 5, and
the corresponding mathematical formulas are listed as
follows.

The result of the first run:

RR0
IGP D �1Ð9884 � 0Ð0022 ð Tb37h ð Tb85h

Tb19h � Tb19v
�4�

The result of the second run:

RR00
IGP D 0Ð0233 C 0Ð0035 ð [

RR0
IGP ð Tb22v

C0Ð0654 C 99Ð76

Tb37h � Tb19v

]
�5�

where RR0
IGP and RR00

IGP represent the retrieved rain-
fall rate (mm/h); Tb�� represents the footprint brightness
temperature; the unit in the brackets is the absolute tem-
perature in Kelvin; and subscripts v and h represent the
vertical and horizontal polarized channels, respectively.

This study employed single linear regression analysis
to decrease the RMSE of estimation using Equation (1):

˛ D �1Ð9884, ˇ D �0Ð0022, and f D Tb37h ð Tb85h
Tb19h � Tb19v

for Equation (4).
˛ D 0Ð0233, ˇ D 0Ð0035, and f D RR0

IGP ð Tb22v C
0Ð0654 C 99Ð76

Tb37h � Tb19v
for Equation (5).
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Table I. Typhoon data collected in this study

Year Typhoon Duration Number Mean Variance

2000 KAI-TAK 07/06¾07/10 40 0Ð58 1Ð98
BILIS 08/21¾08/23 32 1Ð62 29Ð41
PRAPIROON 08/27¾08/30 68 0Ð03 0Ð02
YAGI 10/23¾10/26 10 0Ð0 0Ð0
XANGSANE 10/30¾11/01 28 2Ð39 21Ð86
BEBINCA 11/06¾11/07 10 0Ð75 2Ð75

2001 TRAMI 07/10¾07/11 54 2Ð13 42Ð5
YUTU 07/23¾07/24 42 0Ð14 0Ð17
TORAJI 07/28¾07/31 66 0Ð08 0Ð11
NARI 09/08¾09/19 214 1Ð02 17Ð82
LEKIMA 09/23¾09/28 58 2Ð54 17Ð66
HAIYAN 10/15¾10/16 42 0Ð02 0Ð0

2002 RAMMASUN 07/02¾07/04 30 0Ð0 0Ð0
NAKRI 07/09¾07/10 16 0Ð8 1Ð13
SINLAKU 09/04¾09/08 60 017 0Ð30

2003 KUJIRA 04/21¾04/24 82 0Ð30 1Ð31
NANGKA 06/01¾06/03 56 0Ð15 0Ð44
SOUDELOR 06/16¾06/18 50 0Ð29 0Ð84
IMBUDO 07/21¾07/23 32 0Ð5 3Ð13
MORAKOT 08/02¾08/04 52 1Ð14 5Ð16
VAMCO 08/19¾08/20 26 2Ð49 14Ð6
KROVANH 08/22¾08/23 42 0Ð15 0Ð2
DUJUAN 08/31¾09/02 36 1Ð53 11Ð6
MELOR 11/02¾11/03 38 0Ð36 0Ð79

2004 CONSON 06/07¾06/09 44 0Ð59 2Ð37
MINDULLE 06/28¾07/03 44 0Ð19 0Ð46
KOMPASU 07/14¾07/15 2 0 0
RANANIM 08/10¾08/13 17 0 0
AERE 08/23¾08/26 36 1Ð52 21Ð83
HAIMA 09/11¾09/13 19 0Ð5 2Ð17
MEARI 09/26¾09/27 17 0 0
NOCK-TEN 10/23¾10/26 22 0Ð07 0Ð10
NANMADOL 12/03¾12/04 11 1Ð66 7Ð30

÷

–

Tb85hTb37h Tb19vTb19h

Figure 4. The parse tree of Equation (4)

Two constants �1Ð9884 and 0Ð0654 shown in Equa-
tion (5) were chosen automatically via IGP to optimize
the defined objective function.

Four input variables are presented at the first run:
Tb19h, Tb19v, Tb37h, and Tb85h as shown in Equation (4).
Then, Tb22v is included in Equation (5) at the second run
of IGP. Table II shows the RMSEs of these two runs at
both training and testing stages. Findings show that the
RMSE equals 1Ð92 and 2Ð06 at the training and testing
stage, respectively, for the first run. These represent the
results of conventional GP without improvement. At the
second run, the RMSE decreases to 1Ð77 and 1Ð85 for
the training and testing set, respectively. The values of
RMSEs decrease for both stages, indicating improved
estimation accuracies. It can be concluded that the IGP

+

+ ÷

 0.0654 –99.76

RRIGP' Tb22h Tb37h Tb19V

Figure 5. The parse tree of Equation (5)

method is more accurate to estimate the precipitation than
the traditional one by 8%. The forms of these equations
will become increasingly complicated run by run. When
it reaches the third run, the RMSE decreases to 1Ð75
for the training set. This procedure stops at the second
run, because the RMSE equal to 1Ð77 is considered
convergent. Besides, no additional new input variable is
included during the third run. Therefore, the procedure
terminates at the second run, which is reasonable.

Figures 6 and 7 show the scatter diagrams of estimated
values versus actual values of precipitation for the first

Copyright  2011 John Wiley & Sons, Ltd. Hydrol. Process. 25, 2573–2583 (2011)
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Table II. The RMSEs of all models

Model Training Testing

RR0
IGP (first run) 1Ð92 2Ð06

RR00
IGP (second run) 1Ð77 1Ð85

Chiu et al. (1990) 2Ð49 2Ð46
Ferraro et al. (1994) 2Ð23 2Ð16
Ferraro (1997) 2Ð71 2Ð47
RRRA (regression) 2Ð11 2Ð10
BPN 1Ð85 2Ð08
RR0

SGACIGP (first run) 1Ð75 1Ð91
RR00

SGACIGP (second run) 1Ð56Ł 1Ð77Ł

SGACRA 2Ð02 2Ð04
SGACBPN 1Ð65 1Ð86

Note: the symbol
Ł represents the best result of these methods.
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Figure 6. The scatter plot for the first run (RR0
IGP)

and second run, respectively. One can tell that the average
of estimated extreme high values of the second run shown
in Figure 7 is closer to the ideal line than that of the first
run shown in Figure 6. The accuracies of extreme high
precipitation estimations are very important to disaster
prevention during the typhoon periods. Therefore, the
RMSE of IGP with second run is lower than that of
traditional GP with first run indicating that the IGP
improves the capabilities to prevent the serious disasters
caused by typhoons.

Comparison with empirical equations

The results were compared with those obtained from
the rainfall formulas developed by Chiu et al. (1990),
Ferraro et al. (1994), and Ferraro (1997). These equations
are shown as below.

(a) Chiu et al. (1990)

RRChiu D 5Ð26 ð log
(

102

274 � Tb19h

)
�7�

actual value (mm / hr)
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Figure 7. The scatter plot for the second run (RR00
IGP)

Rain is detected if Tb19h < 274.
where RRChiu represents the retrieved rainfall rate
(mm/h).

(b) Ferraro et al. (1994)

RRFerraro D �Tb19h C Tb19v C Tb37h � Tb22v � Tb37v

� Tb85h C 170Ð2�/18Ð3 �8�

Rain is detected if Tb19v � Tb19h < 60.
where RRChiu represents the retrieved rainfall rate
(mm/h).

(c) Ferraro (1997)

Q37 D �1Ð15[ln�290 � Tb37v� � 2Ð99

� 0Ð32 ln�290 � Tb22v�] �9�

RRFerraro D 0Ð007107�100Q37�1Ð7359 �10�

where Q37 represents the liquid water estimates based
on the 22- and 37-GHz channels, respectively; v repre-
sents the vertical and horizontal polarized channel; and
RRFerraro represents the retrieved rainfall rate (mm/h); rain
is detected if Q37 > 0Ð20. The minimum retrieved rainfall
rate is 0Ð30 mm/h, while any value greater than 35 mm/h
is set to 35 mm/h.

The RMSEs of these three empirical methods are also
shown in Table II. It shows that the testing results of
Ferraro et al. (1994) have the lowest RMSE (2Ð16) among
these three empirical equations, but much higher than the
IGP, regressive analysis (RA), and BPN.

Comparison with multiple linear RA

In the conventional statistical modelling process, RA
is a popular tool for building a model. Because the proper
form of these functions is unknown, this study considers
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only the simplest linear type. The coefficients in this
regression equation were determined through the basic
least squares method:

RRRA D �6Ð9593 C 0Ð2788 ð Tb19v C 0Ð0994

ð Tb19h � 0Ð2498 ð Tb22v

C 0Ð0952 ð Tb37v � 0Ð1389 ð Tb37h � 0Ð0547

ð Tb85v C 0Ð0438 ð Tb85h �11�

where RRRA represents the retrieved rainfall rate (mm/h).
The RMSEs of RA are shown in Table II. It shows

that the RMSEs equal 2Ð11 and 2Ð10 at the training and
testing stages, respectively, which are worse than IGP
and BPN.

Comparison with back-propagation network

The ANN with back-propagation algorithm, called
BPN, might be one of the most widely used models
for estimation. In scaling, the range of each variable is
assigned between 0Ð1 and 0Ð9. A general sigmoid function
is adopted as the activation function in this case study.
The same data were selected for use in the training and
testing stages to compare the performance of IGP with
that of BPN. In this study, the settings of the hidden
layers and hidden nodes are determined after a number
of trials. The procedure used two hidden layers with two
and four nodes in each layer for training single and four
variable models, respectively. The training procedures
were terminated after 1000 iterations for both models.
The RMSE equals 1Ð85 and 2Ð08 for the training and
testing set, respectively, which is better than the first
run of IGP but worse than the second run of IGP. The
scatter diagram of the estimated values and the actual
values of training data and testing data are shown in
Figure 8. It shows that BPN underestimates at the high
end, but it overestimates at the mid-range. In addition,
the linear CCs of Figures 6–8 are 0Ð74, 0Ð79, and 0Ð75,
respectively. It also indicates that the performances of
IGP with the second run are the best compared with those
of IGP with the first run and BPN. Because there are
very few peak rainfalls in a typhoon event with limited
observed high rainfall data to model and train the IGP,
all models tended to fit low values, which explains why
the predicted heavy rainfalls were underestimated.

Detecting rainfall thresholds using simple GA

The variation of rainfall intensity for each typhoon
event is extremely wide, as shown in Table I. A histogram
of precipitation rates for the four rain gauges is shown
in Figure 9, showing that the extremely high values of
precipitation rate are quite few. In contrast, the number
of zero values (no rain) is greater than one thousand.
Therefore, a GA was used to search for the optimal
threshold values of the bands, detecting the data of zero
values (no rain). The IGP was then used to construct
an appropriate mathematical function to estimate the
precipitation using SSM/I.
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Figure 8. The scatter plot for BPN

A simple GA (SGA; Goldberg, 1989) was used to
search for the thresholds of the seven channels to
detect rainfall. The optimal thresholds were determined
to be 185Ð7 for Tb19h. In other words, when Tb19h

was less than 185Ð7 (°K), it detected ‘No Rain’. The
classification results of the SGA were demonstrated as
a confusion matrix, as shown in Table III. The overall
predicting accuracy equals 89Ð9%. Table III also indicates
producer’s accuracies are 92Ð7% (for ‘No Rain’) and
79Ð3% (for ‘Rain’) and user’s accuracies are 94Ð4% (for
‘No Rain’) and 74Ð1% (for ‘Rain’). There are two types
of errors: omission error D 7Ð3% (actual value is rain,
but estimating as no rain) and commission error D 5Ð5%
(actual value is no rain, but estimating as rain). The
commission error can be modified in the next step via
the IGP. Although the omission error cannot be further
corrected via the IGP, the error of rainfall prediction is
relatively small.

The same procedures to train the IGP using 188 data
in which SGA was detected as ‘Rain’, the obtained
equations for two runs are shown as Equations (12) and
(13). Results of these two parse trees of the precipitation
models at sea surface are shown in Figures 10 and 11:

RR0
SGACIGP D 9Ð73 C 8Ð39 ð

(
1

270 � Tb19h

�270 � Tb19h

74Ð88

)
�12�

RR00
SGACIGP D 0Ð122 C 0Ð0694 ð [

RR0
SGACIGP

ð
(

Tb19v

19Ð187

)
C LN�Tb19v�

Tb37h � Tb19v

]
�13�

˛ D 9Ð73, ˇ D 8Ð39, and f D 1
270 � Tb19h

�270 � Tb19h
74Ð88 for Equation (12).
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Figure 9. Histogram of rain rates derived from the four raingauges

Table III. The confusion matrix of SGA

Actual Value SGA No
Rain

Rain Row
Total

User’s
Accuracy%

No Rain 660 39 699 94.4
Rain 52 149 201 74.1
Column Total 712 188 900
Producer’s Accuracy% 92Ð7 79Ð3 89.9

–

÷ ÷

 – 1.0 74.88–

270 Tb19h 270 Tb19h

Figure 10. The parse tree of Equation (12)

˛ D 0Ð122, ˇ D 0Ð0694, and f D RR0
SGACIGP

ð
(

Tb19v
19Ð187

)
C LN�Tb19v�

Tb37h � Tb19v
for Equation (13).

Only Tb19h was chosen as the most significant input
variable to estimate rainfall using SSM/I shown in
Equation (12). Then after the second run, Tb19v and
Tb37h were included in Equation (13). The total number
of input variables used to estimate rainfall decreased
from an original five to three because of the SGA. The
total training RMSEs of 900 data for Equations (12) and
(13) equal 1Ð75 and 1Ð56, respectively, revealing that
detecting rainfall thresholds using the SGA is beneficial
in modelling for rainfall prediction using the IGP.

+

÷

 ÷RR'SGA+IGP –LN

19.187Tb19V Tb19V Tb37h Tb19V

Figure 11. The parse tree of Equation (13)

The SGA combined with RA (SGA C RA) is shown
as Equation (14):

RRSGACRA D 4Ð426 C 0Ð1573 ð Tb19v C 0Ð2424

ð Tb19h � 0Ð2348 ð Tb22v

C 0Ð2245 ð Tb37v � 0Ð2946 ð Tb37h � 0Ð5512

ð Tb85v C 0Ð5002 ð Tb85h �14�

The same neural parameters of SGA combined with
BPN (SGA C BPN) were set as the BPN without SGA.
All the results of models with SGA are also summarized
in Table II. The most crucial result was that the RMSEs
of SGA C IGP for the second run were more favourable
than those of the other models.

The scatter diagrams of SGA C IGP for the first and
second runs are depicted and compared in Figures 12
and 13, respectively. Figure 12 shows that the low and
middle values are more accurate using SGA C IGP for
the first run than those shown in Figures 6 and 7 (which
are without the SGA), but the high values are obviously
underestimated. The predicted values of SGA C IGP for
the second run are much closer to the ideal 45° line
even for the extremely high values shown in Figure 13,
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Figure 12. The scatter plot for the first run (SGA C IGP)
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Figure 13. The scatter plot for the second run (SGA C IGP)

revealing that the model obtained by SGA C IGP for the
second run more accurately predicts rainfall. The scatter
diagram of the SGA C BPN is shown in Figure 14, and
the estimating accuracy of SGA C BPN is between those
of the SGA C IGP for the first and the second runs.
The CCs of Figures 12–14 are 0Ð76, 0Ð82, and 0Ð79,
respectively.

CONCLUSIONS

This article demonstrates the possibilities of adopting
an IGP to estimate the precipitation at sea surface
by meteorological satellite data. This model is more
convenient and efficient to use for numerical expression
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Figure 14. The scatter plot for SGA C BPN

to review the effects of each channel of SSM/I on
the precipitation during typhoon periods. The hourly
raingauge data in Taiwan’s offshore islands along with
the rainfall rates estimated by the SSM/I were collected
from 34 typhoons that occurred during 2000 to 2004.
The IGP deals easily with highly nonlinear problems via
running the traditional GP two times to achieve higher
accuracy in the case study. Five channels of SSM/I
including Tb19h, Tb19v, Tb37h, Tb85h, and Tb22v were used
to estimate the precipitation. The results demonstrate that
the IGP presented in this article is an appropriate system
identified model compared with the traditional statistical
regression. In addition, the performance of the second run
of IGP was also found with lower RMSEs than those of
the BPN and three empirical equations developed by Chiu
et al. (1990), Ferraro et al. (1994), and Ferraro (1997).
In addition, a SGA combined with the IGP improves
the estimating accuracies for all models. Among those,
SGA C IGP with two runs outperforms all other models.
The optimal thresholds were determined to be 185Ð7 (°K)
for Tb19h, and only three channels of SSM/I including
Tb19h, Tb19v, and Tb37h were chosen after two runs of
SGA C IGP.
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