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Achievable Angles Between Two Compressed
Sparse Vectors Under Norm/Distance Constraints
Imposed by the Restricted Isometry Property:

A Plane Geometry Approach
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Abstract—The angle between two compressed sparse vectors
subject to the norm/distance constraints imposed by the restricted
isometry property (RIP) of the sensingmatrix plays a crucial role in
the studies of many compressive sensing (CS) problems. Assuming
that 1) u and v are two sparse vectors with and 2) the
sensing matrix satisfies RIP, this paper is aimed at analytically
characterizing the achievable angles between and . Moti-
vated by geometric interpretations of RIP and with the aid of the
well-known law of cosines, we propose a plane-geometry-based
formulation for the study of the considered problem. It is shown
that all the RIP-induced norm/distance constraints on and
can be jointly depicted via a simple geometric diagram in the 2-D
plane. This allows for a joint analysis of all the considered algebraic
constraints from a geometric perspective. By conducting plane
geometry analyses based on the constructed diagram, closed-form
formulas for the maximal and minimal achievable angles are
derived. Computer simulations confirm that the proposed solution
is tighter than an existing algebraic-based estimate derived using
the polarization identity. The obtained results are used to derive a
tighter restricted isometry constant of structured sensing matrices
of a certain kind, to wit, those in the form of a product of an orthog-
onal projection matrix and a random sensing matrix. Follow-up
applications in CS are also discussed.

Index Terms—Compressive sensing (CS), plane geometry, re-
stricted isometry constant (RIC), restricted isometry property
(RIP).

I. INTRODUCTION

A. Background and Motivation

C OMPRESSIVE sensing (CS) is a new technique which
exploits sparsity inherent in wide classes of real-world

signals so as to facilitate efficient data acquisition, storage, and
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processing [1]–[3]. Applications of CS have been found in var-
ious areas, including analog-to-digital converters [4], magnetic
resonance imaging [5], wireless communications [6]–[13],
sensor networks [14], [15], and linear control [16]–[18], to
name just a few. A CS system is typically described by an
underdetermined linear equation set

(1.1)

where is a -sparse signal vector ,
is the compressed measurement vector, and is

the sensing matrix with . In the literature of CS, suffi-
cient conditions for unique signal identification are commonly
characterized in terms of the so-called restricted isometry prop-
erty (RIP) of the sensing matrix [19], [20]. More precisely, the
sensing matrix is said to satisfy the RIP of order [19], [20]
if there exists such that

(1.2)

holds for all -sparse . In particular, for two sparse vectors
and supported on and such that , the cardinality
of , satisfies , it follows from (1.2) that

(1.3)

Roughly speaking, if a sensing matrix satisfies RIP (1.2) with
a small restricted isometry constant (RIC) , the information
about x remains largely intact upon compression. In addition,
(1.3) ensures that the Euclidean distance between two sparse
vectors is approximately preserved in the compressed do-
main; this will guarantee robustness of signal recovery against
noise perturbation. Both (1.2) and (1.3) characterize signal
identifiability in terms of the norm, or Euclidean distance, of
compressed sparse vectors. In the literature of CS, the angle

between a compressed vector pair plays
an important role in many studies regarding stability analyses
and performance evaluations. Specific examples include the
following.
1) Parameter Estimation with Compressed Measurements
[11]: In this problem, the angle is relevant to
the assessment of the estimation errors. An upper bound
on that is used for characterizing
the estimation performance is given in [11, p. 454].

2) Compressed Signal Detection [12], [13]: In this problem,
extreme values of is needed to characterize the
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worst-case detection/missing probability [12]. Under the
assumption that the sensing matrix satisfies the RIP and
the value of RIC falls within a certain range, estimates of
the achievable have been provided in [13].

3) Compressed-Domain Interference Cancellation [9]–[11]:
Under the assumption that the support of interference is
known, the effective sensing matrix upon interference can-
cellation admits the form , where is a certain or-
thogonal projection matrix and is a random sensing ma-
trix. Assume that the commonly used -minimization al-
gorithm [19], [20] is adopted for signal recovery, and let
be the reconstruction of the desired sparse signal vector
. Based on [26, eqs. (5) and (6)], the upper bound of the
reconstruction error is known to be

where is the RIC of and is the level of the data mis-
match (measured in -norm). To determine so as to ex-
plicitly evaluate the reconstruction performance, a key step
is to estimate the achievable angles between two orthog-
onal sparse vectors in the compressed domain; see Lemma
1 and Theorem 2 in [9].

4) RIP-based Analyses of the Orthogonal Matching Pursuit
(OMP) Algorithm [21]–[24]: Structured sensing matrices
of the form , the product of an orthogonal projection
matrix and a random sensingmatrix , also arise inmod-
eling the residual vector of the OMP algorithm so as to
facilitate RIP-based stability analysis [21], [22]. In partic-
ular, the RIC of is needed to establish certain sufficient
conditions for signal recovery. Hence, as mentioned previ-
ously, knowledge of the achievable angles between a pair
of orthogonal sparse vectors upon compression is required;
see also [21, Lemmas 3.2 and 3.3, p. 4398].

5) Characterization of the Democratic Nature of Random
Sensing Matrices [25], [26]: The RIC of the structured
sensing matrix is also crucial for characterizing the
robustness of random sensing/projection against measure-
ment loss, a property termed as the “democratic nature”
of random sensing matrices. To establish the main results
therein, bounds of the achievable angles between two
compressed sparse vectors with nonoverlapping supports
are required; see the analyses in [25, Ths. 1 and 3].

In most of the aforementioned works, the analysis resorted
to certain upper bounds of that are derived
by using inequalities such as (1.2) and (1.3) in conjunction with
the polarization identity.1 The bounds obtained via such an al-
gebraic-based RIP analysis, however, are the worst-case esti-
mates [28] and will lead to a pessimistic judgment about the true
system performance. Toward more accurate performance eval-
uations, a fundamental approach is to explicitly specifying the
achievable subject to the norm/distance constraints
induced by RIP. In-depth studies of such problems, however,
have not been seen in the literature yet.

1For , , the inner product between and can be expressed as
[27].

B. Paper Contribution

This paper investigates the maximal and minimal achievable
angles between two compressed sparse vectors under norm/dis-
tance constraints imposed by RIP. To be more precise, we con-
sider two sparse vectors and whose supports
and satisfy . Suppose that the angle between
and is , that is,

(1.4)

where is assumed without loss of generality.2

In the compressed domain, the angle between and is
, i.e.,

(1.5)

Under RIP (1.2) and (1.3), all we know about and are
the plausible values of the respective norms and distance. This
implies that the measure of (or the value of ) will lie
within a certain range. Given a fixed , we propose a
method for identifying the maximal and the minimal achievable
, hereafter denoted respectively by3 and , subject to
the RIP-induced norm/distance constraints. Specific technical
contributions of this paper can be summarized as follows.
1) By exploiting geometric interpretations of RIP and the
well-known law of cosines [29], [30], it is shown that
the angle between a feasible pair has the same
measure as the angle determined by one vertex of an auxil-
iary triangle in the two-dimensional 2-D plane. This leads
to a natural problem formulation on the basis of the plane
geometry framework for the study of the achievable .
With the aid of the proposed formulation, we then leverage
the technique of similarity4 in plane geometry [29], [30]
to construct a geometric diagram depicting all the auxil-
iary triangles associated with all feasible . The
problem then boils down to searching into the diagram
for the two triangles whose corresponding vertices yield,
respectively, the largest and smallest angles.

2) The distinctive features of the proposed plane-geom-
etry-based formulation are twofold. First, all the RIP-in-
duced algebraic norm/distance constraints that are relevant
to the characterization of the angle can be
jointly elucidated in a visualizable manner from a plane
geometry perspective. This facilitates a joint analysis of all
the considered algebraic constraints in the plane geometry
setting for the identification of and . Such an
approach is in marked contrast with the existing alge-
braic-based method [9], [21], [25], wherein the extreme
values of the norm/distance specified by the inequalities
(1.2) and (1.3) are employed to obtain mere the worst-case

2If the angle , then consider instead, say, and
with . Since and are
supplementary, i.e., , the largest and smallest

can be directly obtained as the supplements of, respectively, the
smallest and largest achievable .
3The dependence of and on is omitted in the sequel to conserve

notation.
4The technique of similarity has also been adopted in, e.g., algorithm devel-

opment in the context of pattern recognition [31], [32].
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estimate of (or ). Second, by conducting plane
geometry analyses based on the constructed geometric
diagram, closed-form formulas of and can
be derived and are then validated through computer
simulations.

3) Applications of the obtained analytic results to CS are
investigated. First of all, the achievable RIC of a struc-
tured sensing matrix of the form , where is a certain
orthogonal projection matrix and is a random sensing
matrix, is investigated. Matrices of this kind were found
in, e.g., compressed-domain interference cancellation
[9]–[11], RIP-based analyses of the OMP algorithm [21],
and characterization of the democratic nature of random
sensing matrices [25], [26]. Based on the knowledge of

and , we derive a closed-form formula for the
RIC of . The proposed solution is shown to be tighter
than an existing estimate given in [9], [21], and [25].
The impact of our study on the interference cancellation
problem has been reported in [33] and, thus, is omitted
here to conserve space. Applications of this result to the
last problem mentioned above are also discussed.

C. Connection to Previous Works

It is noted that, based on the plane geometry approach intro-
duced in [34] and [35], bounds of the achievable angles between
two compressed sparse vectors have also been derived in [12]
and [13]. The main idea behind the method in [34] and [35] lies
in the construction of auxiliary right and isosceles triangle in
the ambient signal domain, followed by geometric characteri-
zations of the transformed triangle upon the dimensionality-re-
duction mapping. Even though both our result and [12], [13] are
developed under the plane geometry setting, the bounds given
in [12] and [13] are valid only when the value of the RIC of
the sensing matrix satisfies certain conditions. On the contrary,
the solutions in our paper hold true without any requirements on
the RIC. Numerical results also evidence that the proposed solu-
tions in our paper can provide tighter estimates of the achievable
angles; this will be seen in Section V.
The rest of this paper is organized as follows. Section II

presents the proposed plane geometry based formulation.
The maximal and minimal achievable angles are derived,
respectively, in Sections III and IV. Section V discusses the
connection between the presented analytic study with pre-
vious works; simulation results are also given to evidence
the proposed analytic solutions. Section VI investigates the
applications of the obtained results to CS. Section VII presents
the conclusion. To ease reading, all supporting technical proofs
of the established mathematical lemmas and theorems are
relegated to the Appendix.

II. PROPOSED PLANE-GEOMETRY-BASED FORMULATION

This section introduces the proposed plane-geometry-based
analysis framework for identifying and . After high-
lighting some intuitive motivations, Section II-A presents the
proposed problem formulation. Section II-B constructs a geo-
metric diagram in the 2-D plane that shows concrete geometric
depictions of all the feasible under RIP. Section II-C

provides more explicit characterizations about and
within the proposed plane geometry framework. The derivations
of and will be given in Sections III and IV.
Recall that, under RIP (1.2) and (1.3), all we know about

and is the maximal, and minimal, achievable norms and
distance. To identify and , the first step is to find a
mathematical relation which can delineate the connection be-
tween the norm/distance information about the pair
and the resultant angle . Hopefully, such a for-
mula can moreover provide distinctive insights to facilitate an
analytic study of the considered problem from a geometric per-
spective. The ideas above can be realized by the well-known
law of cosines, which states that the angle can
be determined by , , and as

(2.1)

Hence, at least conceptually, by taking account of all the avail-
able knowledge about , , and under
RIP, it is possible to characterize the achievable and, in par-
ticular, to identify and . The unique advantage of
(2.1) is its underlying geometric interpretation: we can think of

, , and as the three sides of a triangle
in , and then has the same measure as the angle
defined by a certain vertex of this triangle. As will be shown
later, such a simple and concrete geometric view of
will allow for a natural problem formation within the plane ge-
ometry framework. We shall note that the angle between two
vectors is invariant to scaling of the respective norms, that is, if
and are such that and , then it

follows and regardless
of any positive scalars and [see (1.4) and (1.5)]. Hence,
we assume in the sequel that .
Before introducing the proposed formulation, let us first

specify the relevant norm/distance information about and
that is revealed by RIP. The plausible values of and
under RIP (1.2) are

(2.2)

Also, the achievable distance between and can be di-
rectly obtained from (1.3) and the law of cosines as

(2.3)

in which

(2.4)

and

(2.5)
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We note that the law of cosines (2.1) can also be expressed as

(2.6)

Hence, in addition to , , and , (2.6)
implies that the knowledge of is also needed for
characterizing . As a result, the following constraint on

imposed by RIP should also be taken into ac-
count:

(2.7)

where

(2.8)

and

(2.9)

The conditions (2.2), (2.3), and (2.7) can be regarded as the full
characterization of the norm/distance information about and

under RIP. Our task is to find and based solely
on (2.2), (2.3), and (2.7). The following notation will be used
throughout the rest of this paper.
• : the line segment between the two points and in
the 2-D plane.

• : length of the line segment .
• : the triangle with three vertexes denoted by , ,
and .

• : the angle with and as sides and as the
vertex.

• : the circle centered at with radius in the 2-D
plane, thus .

• : the connected curve in the 2-D plane with
and as the two end points

A. Problem Formulation via Plane Geometry

The proposed approach is motivated by the crucial observa-
tion: the triangle in the -dimensional Euclidean space with
three sides given by , , and can be
directly depicted in the 2-D plane (see Fig. 1). As a result, the
study of the achievable angles between the two -dimensional
compressed vectors and can be formulated by means
of such an auxiliary triangle from a plane geometry setting. In
this way, the “algebraic”constraints (2.2), (2.3), and (2.7) can be
jointly elucidated in a visualizablemanner from a geometric per-
spective; more importantly, a joint analysis of these constraints
within the plane geometry framework can, therefore, be carried
out to derive closed-form solutions for and , as will
be seen later.

Fig. 1. (a) Triangle defined by the three -dimensional vectors , , and
(we use for illustration). (b) Depiction of the auxiliary triangle

in the 2-D plane; in particular, based on the law of cosines (2.1), the angle be-
tween and can be computed using , , and .

To begin with, we shall leverage the idea of auxiliary tri-
angles to translate the algebraic constraints (2.2), (2.3), and
(2.7) into concrete geometric depictions in the 2-D plane.
Toward this end, let us first pick a plausible compressed dis-
tance such that [to
meet constraint (2.3)] and construct all the feasible auxiliary
triangles with a common bottom of length . This can be done
by drawing a line segment of length , and then going on to
find the locations of all feasible top vertices, whereof each one
has the property that 1) the lengths of the two sides, i.e.,
and , obey the norm constraint (2.2), and 2) the resultant

satisfies (2.7).
Specifically, for a plausible , let us draw a segment, say
, in the plane with [see

Fig. 2(a)]. We can first determine the region such that,
if , then and
fulfill (2.2), i.e., and

. For this, let us construct four
circles, i.e., , , ,
and . Clearly, is simply the intersec-
tion of the two annular regions defined by the four circles
5; see the two gray regions in Fig. 2(a), and due to sym-
metry, it suffices to consider the one in the upper half. For a
fixed , the triangle is thus associated
with the magnitude triple

, and the angle between
the -dimensional vector pair is exactly given
by . Nevertheless, not every is
feasible, since the corresponding may fail to
satisfy the constraint (2.7). To further take (2.7) into account
for identifying the locations of all feasible top vertices, we
shall rewrite (2.7) in an alternative, yet equivalent, form more
amenable to handle. For this, we first note that

(2.10)

5The two annular regions defined by the four circles must overlap since, by
invoking the definition of in (2.4), it is easy to show that the sum of the
radii of the two circles and is no less than ,
that is, .
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Fig. 2. (a) Schematic description of the feasible top-vertex set associated with . (b) Dilation of (a) under the scale .
The radius of each circle in (b) is times the radius of the corresponding circle in (a). The dilated is similar to . The dilated triangle
in (b) is similar to in (a), thereby .

where (a) follows from the polarization identity, and (b) holds
since . Equation (2.10) then implies

(2.11)

By again invoking the law of cosines (2.1) and
, we can rewrite (2.11) as

(2.12)

where the last equality holds since in our setting
and . Based on (2.12) together

with some straightforward manipulations, the constraint (2.7)
on can be equivalently rewritten in terms of

as follows:

(2.13)

Hence, the feasible top-vertex set associated with
, hereafter denoted by ,

consists of all that also satisfy (2.13), namely

(2.14)
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From (2.14), it is easy to see that can be obtained by re-
moving from the following two parts:

(2.15)
and

(2.16)

Notably, and , both in general nonempty,6 represent
the top and bottom “corner regions” of , respectively. The
schematic depiction of is, therefore, shown as the black-
dashed region in Fig. 2(a); the top and bottom edges of are
characterized, respectively, by the two curves

(2.17)

and

(2.18)

Associated with each fulfilling (2.3), we
have been able to specify the feasible top-vertex set . In
particular, for and satisfying (2.2) and (2.7) subject to

, the angle is exactly given by
for some ; hence, we have

(2.19)

The significance of such a formulation is that all the considered
norm/distance constraints imposed by RIP can be jointly char-
acterized via simple and visualizable geometric depictions in
the 2-D plane. Based on the above plane geometry framework,
the proposed approach for the identification of and
is shown next.

B. Proposed Approach via Similarity

Given a plausible and the corresponding constructed
as above, one may immediately proceed to seek among all

to find

6 contains the point , the intersection of the two circles
and , unless . This is because

,
where (a) follows from (2.4) and (2.8), and (b) holds since ;
inequality (b) becomes equality when . In an analogous way, it can
be verified that contains , the intersection of and

, and is thus nonempty (unless ).

and

associated with the particular . Once ’s and ’s
for all feasible are obtained, the maximal and minimal can
be determined as

and

Such a method, even though conceptually simple, is nonethe-
less a daunting task since there are uncountably many candi-
date . This thus motivates us to devise afresh an alternative
free of the aforementioned drawbacks. Ideally, if we can come
up with a single diagram tractably depicting all feasible aux-
iliary triangles associated with all compressed dis-
tances , it only remains to consider such a
diagram for the identification of and . To realize this
idea, we resort to the technique of similarity in the plane geom-
etry analysis.
Definition 2.1 [29]: Two figures in the plane are similar

whenever one is congruent to a dilation of the other.
A well-known result is that if two polygons are similar, the

corresponding sides are in proportion and the corresponding
angles must be equal (the so-called conformal property) [30].
Now, suppose we have a figure similar to Fig. 2(a). For each

, there is one and only one corresponding triangle,
say, , in the similar figure, and is sim-
ilar to . Thanks to the conformal property, it follows

. Given this fact, we can instead focus on
the similar figure as far as the characterization of achievable

is concerned.With the aid of judiciously constructed
similar figures for all , there is a simple way
to obtain a single diagram depicting all the similar feasible
auxiliary triangles . Therefore, a unified and tractable
plane geometry analysis can be conducted to identify
and .
To proceed, let us first highlight the main idea about the con-

struction of the desired single diagram. Recall from Fig. 2(a)
that, for a plausible , all the associated feasible auxiliary trian-
gles ’s are with a bottom of length . In other words,
for any two sets of such triangles associated with two plausible

, the corresponding bottoms assume different lengths:
this makes it difficult to “merge” all the auxiliary triangles for
all into a single diagram. To rid this difficulty,
one intuitive approach is to come up with alternative sets of tri-
angles, which have the properties that 1) the bottoms of all the
triangles are with equal length, regardless of the values of , and
2) the set of measures of all angles defined by the top vertexes re-
main identical to .
Now, the idea of similarity comes into play. Specifically, for
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each , we will first obtain a figure similar to Fig. 2(a) via a di-
lation with the scale . Let be the dilated ver-
sion of , for , in the similar figure. Thus,

is similar to (accordingly,
) and, moreover,

, meaning that the bottom-length of each similar auxiliary
triangle is then fixed to , no matter what the value of
is. Such an equal bottom-length characteristic then allows for a
simple way of depicting all similar auxiliary triangles on a single
diagram.
The construction of such a diagram based on the aforemen-

tioned approach involves two steps as detailed below.
(I) Construction of the Similar Figure Associated with
a Plausible : For a plausible compressed distance

, let us uniformly
stretch all geometric objects in Fig. 2(a) by the scale

to obtain the dilated similar figure as
depicted in Fig. 2(b), in which is similar to

and, for each , there exists one
and only one corresponding such that

, , and
, and

therefore, in Fig. 2(b) is similar to
in Fig. 2(a). The conformal characteristic of similarity
asserts ; thus

(2.20)

Notably, through the proposed dilation procedure, the
length of the enlarged is then
fixed to be irrespective of . That is to
say, all the similar auxiliary triangles associated with all
plausible ’s are with bottoms of identical length, equal
to .
Specific procedures for constructing the similar figure
for a plausible as mentioned above are as follows.
(a) Draw the line segment with .
(b) Obtain the dilation of in Fig. 2(a), as

the intersection of the annular region defined by
the four enlarged circles ,

,
and .

(c) Determine by specifying its top and bottom
edges, which are the dilations of, respectively,

in (2.17) and
in (2.18). For this, we note that, if and
associated with are, respectively, the
dilated and , where , it im-
mediately follows that
and With this fact
in mind, the dilated top and bottom edges can be
accordingly determined from (2.17) and (2.18) as,
respectively, (2.21) and (2.22) at the bottom of the
page.

(II) Depiction of all Similar Feasible Auxiliary Triangles
in one Diagram: Now, each similar auxiliary triangle

, where , for any
, is with a common bottom-length . The iden-

tical bottom-length property suggests that we can place
all “one on the top of another” in the plane,
with all bottoms aligned altogether, to obtain the desired
single diagram. Equivalently, this can be done via first
drawing a line segment of length as the common
bottom, followed by locating the topic vertexes of all
similar auxiliary triangles, namely, for all

, in the plane. The procedures are as
follows:

(d) Draw the common referenced line segment
with .
(e) Repeatedly use steps (b) and (c) in part (I) to
construct ’s for all .

Observe that, as decreases from to , the radii of the
four circles constructed in step (b) will increase, and so do
in (2.21) and in (2.22). Hence, as decreases, the intersec-
tion of the annular region defined by the four circles, as well as
the dilated top and bottom edges in (2.21) and (2.22), is “pushed
away” from : this implies that constructed by (e) con-
tinuously “moves upward” as decreases from to
(see Fig. 3). The joint feasible top-vertex set , which consists
of the top vertexes of all similar auxiliary triangles with
as the common bottom, is obtained as the union of all ’s,
namely,

(2.23)

(2.21)

(2.22)
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Fig. 3. Schematic description of the joint feasible top-vertex set .

Note that, in the 2-D plane, is the collection of the overlaid
’s, with on the top and at the bottom.

The depiction of is shown as the gray part in Fig. 3. As a
result, each similar feasible auxiliary triangle can be depicted in
Fig. 3 as for some , thereby

(2.24)

Now, we can reach the following conclusions:

(2.25)

where (a) can be directly inferred from (2.19), (b) follows from
(2.20), and (c) holds due to (2.24). The result of (2.25) then leads
to the key theorem given below.
Theorem 2.2: The following result holds:

(2.26)

Theorem 2.2 provides the foundation behind the proposed
approach. In particular, (2.26) asserts that we can focus on
the single diagram as Fig. 3, based on which plane geometry
analyses can be then conducted to identify and .

C. Further Characterization of the Joint Feasible Top-Vertex
Set

According to Theorem 2.2, all we have to do is to seek among
all for the two that will, respectively, yield the maximal
and minimal [cf., (2.26)]. Intuitively speaking,
and are very likely to be attained by some points located on

Fig. 4. Decomposition of the boundary as the connection of
and .

, the boundary of . By conducting plane geometry analyses
based on the diagram in Fig. 3, such a simple idea turns out to
be true, as will be shown below. The result allows us to further
narrow down the candidate top vertices in so as to simplify
the identification of and .
To proceed, we shall first provide more concrete characteri-

zation of ; in particular, the left, right, top, and bottom com-
ponents of will be specified. For this, associated with each
similar feasible top-vertex set , we define

(2.27)

Here, and represent, respectively, the left and right
corner points of (see Fig. 4). Let us then decompose the
boundary of , say , into the connection of two
branches as

(2.28)

where and are, respectively, the upper and
lower branches both with and as the end points (see
Fig. 4). Since is obtained by overlaying all the continuum

’s, with on the top and at the bottom
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Fig. 5. Depiction of the boundary of , in which , , , and
are, respectively, the top, bottom, left, and right boundaries.

(recall the construction of ), the upper branch of
and the lower branch of must belong to , i.e.,

and . This naturally sug-
gests that the top and bottom boundaries of , denoted by
and , can be specified, respectively, as

(2.29)

and

(2.30)

With and given as above, we can go on to determine
the left and right boundaries of , denoted by and
respectively. Indeed, is simply the boundary curve with end
points and , namely, the left ends of and

; similarly, is the portion with and
as the two ends. Note that by construction of , it follows

(2.31)

which are the collections of, respectively, the left and right
corner points of for all plausible . Hence, we have

; see Fig. 5 for the depic-
tion of the four boundary components, and in the sequel, we
use the shorthand to denote the four end points

in order to conserve
notation. With the above characterizations of , the main
result of this section is then given in the next theorem, which
asserts that the candidate top vertices relevant to the identifi-
cation of and can be narrowed down to those on,
respectively, and .
Theorem 2.3: for some , and

for some .
Proof: See Appendix A.

Based on the established results, the derivations of and
are given in Sections III and IV.

III. DERIVATION OF

In this section, we will conduct plane geometry analyses
based on Fig. 5 to derive . According to Theorem 2.3
and (2.30), our task is to find the largest among all

, which is the lower branch of .
It is worth mentioning that all the feasible auxiliary triangles
are with a common bottom with , and

is depicted as a connected curve in the 2-D plane.
To seek for the maximal for , the
underlying approach lies in first constructing certain auxiliary
circles, with as a chord, on the plane. Then, by exploiting
the location of points on relative to the auxiliary
circles, together with various properties regarding the inscribed
angles that are well established in the plane geometry context,
plane geometry analyses are conducted to find the solution
(details referred to the appendix). The main results of this
section are established in Theorems 3.2 and 3.4.
To proceed, we shall first highlight the main idea

behind the proof. Let us decompose as
the union of three boundary curves ,

, and as
shown in Fig. 5. We propose to first find the maximal
for . The main advantages
of such an approach are twofold. First, the cosine of
for , as will be shown later,
admits a very simple expression in terms of and .
With the aid of this expression, finding the maximal
for can be mathematically
formulated as a constrained optimization problem which
is analytically solvable. Second, even though the feasible
set of such an optimization problem consists of only those

, the solution to this problem
can act as a yardstick point, to which the achievable
for all

can be readily compared via plane geom-
etry analyses: this thus provides a unified and systematic way
of identifying .
Since by construction, is the

bottom edge of (see Fig. 2(b) with ), for
any , the sum of the squared
length must satisfy [cf., (2.22)]

(3.1)

With (3.1) and since , we have

(3.2)

Hence, for , de-
pends on as well as the product length .
Since is a constant independent of the top vertex
[see (2.4) and (2.9)], to simplify the exposure we proceed to

find the maximal , or the minimal , by first
considering the scenario .
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A. Case I:

Since , (3.2) shows that minimization of
amounts to maximizing the product .

Observe that

(3.3)

where (a) follows from (3.1). Equation (3.3) implies that, to
maximize , it is equivalent to maximize the summed
length . As a result, minimization of
among all under the case

can be formulated as a constrained optimiza-
tion problem as

Note that the three constraints in are indeed the characteri-
zation of and for
[cf., (2.22)]. The optimal obtained by solving the above op-
timization problem is given in the next lemma.
Lemma 3.1: Let and be defined in, respec-

tively, (2.4) and (2.9). If , and let
be such that

(3.4)

then the optimal which solves (P1) is uniquely
given by .

Proof: See Appendix B.
As a result of Lemma 3.1, we have

for all .
Roughly speaking, the closer the top vertex is to the
bottom , the larger the angle will be. Since
among the three boundary curves ,

, and , the
second one, namely, , is located
nearer to (see Fig. 5), it is expected that the maximally
achievable for ,
namely, , is the global . This turns out to be true,
as shown in the following theorem.
Theorem 3.2: Let and be defined in, respectively,

(2.4) and (2.9). If , we have

(3.5)

Proof: See Appendix C.

B. Case II:

Based on (3.2), it can be readily seen that, with
, minimization of thus amounts to minimizing
(instead of maximizing) the denominator . With
the aid of (3.3), this is then equivalent to minimize the summed
length . Specifically, the maximal for

all in this case can be ob-
tained as the solution to the following constrained optimization
problem

The optimal solution obtained by solving is given in the
next lemma.
Lemma 3.3: Let and be defined in, respectively,

(2.4) and (2.9). If , the optimal
which solves (P2) is given by
or .

Proof: See Appendix D.
From Lemma 3.3, it follows that the maximal

among all is attained by
or . Through further plane

geometry analyses, the maximal angle in this case is derived in
the next theorem.
Theorem 3.4: Let and be defined in, respectively,

(2.4) and (2.9). If , the following results hold.

1) If , then

(3.6)

2) If , then

(3.7)

Proof: See Appendix E.

IV. DERIVATION OF

By following the similar ideas and approaches as in
Section III, we go on to derive in this section. Ac-
cording to Theorem 2.3 and (2.29), our task is to find the
smallest among all , the top boundary
of . The main results of this section are summarized in
Theorems 4.2 and 4.4.
Let us likewise decompose as the

union of the three boundary curves ,
and (see

Fig. 5). To identify , we shall first find the smallest
for and further identify the
minimal for

. Such an
approach enjoys similar technical advantages as have been
mentioned and evidenced in the previous section, wherein the
closed-form formula of has been derived.
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Note that is the top edge of
(see Fig. 2(b) with ). Hence, for any

, the quantity
must satisfy [cf., (2.21)]

(4.1)

where is used throughout this section to conserve
notation. With (4.1) and since , we have

(4.2)

Hence, for , de-
pends on as well as the product length

. Since and are constants indepen-
dent of , to simplify the exposure, we proceed to find the min-
imal , or the maximal , by first considering
the scenario .

A. Case I:

As and from (4.2), maximization of
thus amounts to maximizing the product length
. Since

(4.3)

where (a) follows from (4.1), maximization of is
equivalent to maximize the summed length .
Hence, maximization of among all

under the case
can be formulated as the following constrained optimization
problem:

Note that the three constraints in are the characterization
of and for [cf.,
(2.21)]. The optimal obtained by solving the above optimiza-
tion problem is given in the next lemma.

Lemma 4.1: Let and be defined in, respec-
tively, (2.5) and (2.8). If , and let

be such that

(4.4)

then the optimal which solves (P3) is uniquely
given by .

Proof: See Appendix F.
Hence, we have for all

. Through further analyses,
it can be shown that is the global minimal angle ,
as established in the next theorem.
Theorem 4.2: Let and be defined in, respectively,

(2.5) and (2.8). If , we have

(4.5)

Proof: See Appendix G.

B. Case II:

Since and from (4.2) and (4.3), sim-
ilar arguments show that minimization of for all

can be formulated as the
following constrained optimization problem:

The optimal obtained by solving is given in the next
lemma.
Lemma 4.3: Let and be defined in, respectively,

(2.5) and (2.8). If , the optimal
which solves (P4) is given by or

.
Proof: See Appendix H.

With the aid of Lemma 4.3, the minimal
among all is attained by

or . By means of plane
geometry analyses, in this case is derived in the following
theorem.
Theorem 4.4: Let and be defined in, respectively,

(2.5) and (2.8). If , the following results hold.
1) Case 1:
We have

(4.6)

where

(4.7)
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2) Case 2:
(a) If , then

(4.8)

where is given in (4.9), shown at the bottom of
the page.

(b) If , then

(4.10)

where

(4.11)

Proof: See Appendix I.

V. DISCUSSIONS

A. Connection to Previous Works

It is known that a sharp upper bound for
( ) is crucial for accurate performance evalua-
tions in many CS problems, e.g., [9], [21], [22], [25]. For the
special case , thus , a well-known
upper bound for derived by means of the polarization
identity is given by [9]

(5.1)

Using the similar algebraic approach as in [9], a generaliza-
tion of the above result to the case when is arbitrary (but fixed)
is given in the following theorem.
Theorem 5.1: Assume that . The following in-

equality holds:

(5.2)

Proof: See Appendix J.
It is noted that, based also on the plane geometry setting in-

troduced byMagen [34], [35] that is different from ours, bounds
of the achievable angles between two compressed sparse vectors
have been reported in [12] and [13]; the results are summarized
in the next proposition.
Proposition 5.2 [13]: Assume that the sensing matrix

satisfies the RIP of order with RIC . Let
and be two sparse vectors whose supports

and satisfy and with
. Then

(5.3)

Now, with the aid of the derived and in the
previous sections, the achievable can be directly deter-
mined as

(5.4)

For , 0.3, Fig. 6 compares the upper bounds in (5.2)
and (5.3), and the proposed solution (5.4) for different . It can
be seen that our solution (5.4) is tighter as compared with the
other two bounds. The proposed bounds in (5.4) are further cor-
roborated by computer simulations. To generate the test sam-
ples, the entries of the sensing matrix are indepen-
dently drawn from , namely, the Gaussian distribu-
tion with zero mean and variance equal to . The ambient
signal dimension is set to be , and the sparsity level is

. To guarantee that satisfies RIP with an RIC equal
to (with a high probability), the required measurement size
is set in accordance with [3]. Asso-
ciated with each , a total number of 20000 -sparse vector
pairs are generated. For each test
pair , the angles and
are computed and then plotted on Fig. 6. As we can see, the pro-
posed solutions (5.4) are indeed tight estimates of the achievable
’s.

B. Special Case

For the special case , the closed-form
formulae of and provided in Sections III and IV can
be considerably simplified. Specifically, when , it is
easy to verify that

(5.5)

Based on (5.5) together with some straightforward manipula-
tions, we have the following corollary, which will be used to
obtain improved performance guarantees in several CS systems
in Section VI.

if

if
(4.9)
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Fig. 6. Achievable obtained by the proposed solution (5.4), the upper bound (5.2) derived using the polarization identity, and the bounds (5.3) obtained
by using the Magen’s approach.

Corollary 5.3: For , and are, re-
spectively, given as

(5.6)

and

(5.7)

VI. APPLICATIONS

A. Improved RIC Estimate of Certain Structured Sensing
Matrices

Consider the following CS system, in which the effective
sensing matrix is the product of an orthogonal projection ma-
trix and the original sensing matrix :

(6.1)

where , with being the identity
matrix and consisting of the columns of indexed by
a known set . Note that the considered acts as the or-
thogonal projection onto the orthogonal complement of the
column space of . The system model (6.1) arises, e.g.,
in compressed-domain interference cancellation [9]–[11], in
modeling the residual vector of the OMP algorithm [21], and
in establishing the democratic property of random sensing
matrices [25], [26]. Characterization of the RIC of is
crucial for performance evaluation [9]–[11], [25], [26] and for
the study of sufficient signal reconstruction conditions [21].
Based on the derived and in Sections III and IV, the
RIC of is specified in the following theorem.
Theorem 6.1: Consider the CS system (6.1). Assume that

satisfies the RIP of order with RIC given by . Let be an
index set with , i.e., the cardinality of is less than

. The following inequality holds for all -sparse
whose support does not overlap with :

(6.2)

where

(6.3)

Proof: See Appendix K.
Theorem 6.1 asserts that satisfies RIP with an RIC equal

to given in (6.3). Under the same assumptions as in Theorem
6.1 and by means of the polarization identity, an inequality anal-
ogous to (6.2) has been derived in [9] and [21] as:

(6.4)

where is -sparse whose support does not overlap
with . Inequality (6.4) asserts that the RIC of is equal to

(6.5)

Since

(6.6)

it is easy to see from (6.3) and (6.6) that , that is, the
proposed RIC in (6.3) is tighter. The numerical values of the
proposed solution (6.3) and the algebraic-based estimate in
(6.5) with respect to different are computed and plotted in
Fig. 7. It is seen that considerable improvement can be achieved
by our solution for moderate7 .

B. Discussions

An immediate application of the above result, namely, the
structured sensing matrix can enjoy a smaller RIC, is in
the problem of compressive-domain interference cancellation

7A large will result in the failure of signal recovery and thus should be
precluded [24].
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Fig. 7. Comparison of the RIC of the effective sensing matrix .

[9]–[11], wherein is the sensing matrix of the effective
data acquisition system after the undesirable interference is
removed via orthogonal projection. The related details are
referred to [33].
As another application, let us recall that the RIC of is

also needed in establishing the democratic property of random
sensing matrices [25], [26], an appealing characteristic which
guarantees the robustness of random data acquisition against
the loss of measurements. Let , with entries drawn
from , satisfy RIP of order with RIC given by .
By democracy it is meant that, as long as is large enough, a
submatrix obtained by deleting a small, and randomly chosen,
subset of rows of still satisfies RIP but with a larger RIC.
More precisely, assume that 1) is a positive integer such
that , , and , and 2)

for some constant
. Then, with a high probability, a submatrix

obtained by removing arbitrary rows of satisfies RIP of
order with RIC equal to [25]. By following the
same proof procedures as in [25], it can be directly verified that
the RIC of can be further tightened to given in (6.3) [re-
call from Fig. 7 that is uniformly smaller than ].
Note that represents the sensing matrix of the effective
sensing system when measurements are dropped [25]. The
established result, namely, enjoys a smaller RIC, confirms
that better robustness of random sensing against measurement
loss can be achieved.

VII. CONCLUSION

In this paper, the achievable angles between two compressed
sparse vectors under RIP-induced norm/distance constraints are
analytically characterized in a plane geometry framework. Mo-
tivated by the law of cosines and geometric interpretations of
RIP, it is shown that all the algebraic constraints imposed by
RIP that are pertinent to the identification of the achievable an-
gles can be depicted in the 2-D plane. By exploiting the con-
formal property of similarity, it allows us to construct a single

geometric diagram, based on which a unified joint analysis of
all the considered algebraic constraints can be conducted from
a geometric point of view. By means of the proposed approach,
the maximal and minimal achievable angles can be derived in
closed form and are then corroborated by numerical simulations.
Compared with the existing algebraic-based method employing
the polarization identity, the proposed approach does provide
sharper estimates of the achievable angles. Applications of our
study to CS are investigated. First of all, we derive a closed-form
RIC of the product of an orthogonal projection matrix and a
random sensing matrix. Our solution is shown to be tighter than
an RIC estimate reported in the literature. An immediate appli-
cation of the result above is in compressed-domain interference
cancellation; details can be referred to [33]. As another applica-
tion, we show that, with a small randomly chosen subset of rows
removed from a random sensing matrix, the resultant submatrix
enjoys an RIC smaller than the one reported in the literature. The
result asserts that random sensing can provide better robustness
against the measurement loss. It is believed that the presented
analytic study of the achievable angles between two compressed
sparse vectors can be of fundamental importance in the study of
many other CS problems; this is currently under investigation.

APPENDIX
SUPPORTING TECHNICAL PROOFS

The following two lemmas will be used throughout the Ap-
pendix.

Lemma A.1: Consider the two triangles and
in Fig. 8, in which lies entirely inside .

Then, .
Proof: The result follows since
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Fig. 8. Depiction of two triangles considered in Lemma A.1.

Fig. 9. Depiction of geometric objects considered in Lemma A.2.

Lemma A.2: Let be a chord of a circle. Pick and
as two points above , with inside the circle and outside
the circle as depicted in Fig. 9. Also, let be an arbitrary point
on the arc of the circle above . Then,

.
Proof: The triangle intersects with the circle, say,

at and . Let be a point on arc . By lemma A.1, we
have

(A.1)

Let us further pick as a point on the circle such that
lies entirely inside . Again by Lemma A.1, we have

(A.2)

A well-known result from plane geometry is that angles in-
scribed by the same arc of a circle are equal [20]; thus

(A.3)

The assertion follows from (A.1)–(A.3).
Throughout the Appendix, knowledge of the dilated length
and for is needed. Toward this end, we

will leverage an alternative schematic description of the similar
feasible top-vertex set to ease analysis. To construct this
diagram, for , we shall first specify the constraints
on and under RIP. Pick a plausible
. Recall that, for each in Fig. 2(b), there is one
and only one corresponding feasible top vertex in
Fig. 2(a). Since Fig. 2(b) is obtained as the dilation of Fig. 2(a)
with the scale , we have
and . Hence, for the
norm constraints on and can be directly modified

Fig. 10. Alternative depiction of the similar feasible top-vex set via the
considered coordinate system.

based on (2.2) as (note in our setting and
)

(A.4)

Similarly, the constraint on can be obtained
from (2.13) as

(A.5)

Now, we consider the first quadrant of the coordinate system in
the plane, with as the abscissa and as the ordinate.
Taking into account (A.4) and (A.5), the depiction of all

alternatively on this coordinate system is thus shown
as the shadowed region in Fig. 10, in which ,

, , and correspond to, respectively, the
four points , , , and on . The
main advantage of the alternative depiction in Fig. 10 is
that it allows for a simple way of specifying and
associated with all . This will in turn simplify the
underlying analyses, as will be seen later.

A) Proof of Theorem 2.3: The proof of Theorem 2.3 basi-
cally consists of the following two parts.
1) First, we will prove that all elements on the left boundary

and the right boundary , except the end points
, can be excluded from the candidate set in

regard to the identification of and .
2) Then, we will show that and will never be at-
tained by the points in the interior of . In particular,
and will be attained by some located on, respec-
tively, the bottom and top boundaries of . This thus com-
pletes the proof.
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Fig. 11. Depiction of all geometric objects for plane geometric analyses conducted in the proof Theorem 2.3.

The first part is established directly by the following lemma,
whose proof is placed at the end of Appendix A so as to ease
readability.

Lemma A.3: The following results hold:
1) for all .
2) for all .

To prove the second part, we shall first show that is
attained by some point on the bottom boundary . For this
let us construct a circle (marked in purple) with as a
chord and with and on arc as depicted in Fig. 11(a);
also, let

(A.6)

and denote by the complement of in . By Lemma A.2,
it follows immediately that for all .
Notably, all the points on the left and right boundaries, i.e.,
and , except and , must belong to ; this is because
if there exists some inside , then again
by Lemma A.2 we must have , which con-
tradicts with part (2) of Lemma A.3. As a result, we can rule
out those , which includes and ,
regarding the search of . It then remains to consider .
Observe that, for any , both the two sides and

of intersect with , meaning that there exists
an such that lies entirely inside [see
also Fig. 11(a)]. By Lemma A.1, we have .
This shows that must be attained by some point on .
Now let us go on to show that is achieved by some point

. The idea is quite similar to that in the previous proof.
First, we construct circles with as a chord and with
and on arc [see Fig. 11(b)]. Similar to (A.6), we define

(A.7)

Also, we denote by the complement of in . From
Lemma A.2, we immediately have for
all . In addition, from Lemma A.2 and Lemma A.3,

and both must belong to . Hence, it
only remains to consider regarding the identification of

. Observe that, for any , there exists at least one
element on such that is completely inside

[see also Fig. 11(b)]. From Lemma A.1, we must have
. This established that for

some point .
Now, let us provide the proof of Lemma A.3. Owing to the

symmetric nature of , it suffices to prove the first assertion.
Since , , and consists of all

’s, , the left corner points of ’s
[see (2.31)], it remains to show that, as increases from to

, is monotonically increasing (or equivalently,
is monotonically decreasing). Toward this end,

we shall first find an explicit expression for as
a function of . From the law of cosines

and recall that is set to be , we observe
that only and are needed to determine

. To ease the derivation, we will resort to the
diagram in Fig. 10 to specify and .
This can be done if we can first identify the corresponding lo-
cation of on as varies; the results are established
in the next lemma.

Lemma A.4: Let be defined in (2.27), and
be the corresponding location on . Also, let
and be the points on that corre-

spond to, respectively, and on [see
(2.21) and (2.22), and Fig. 2(b)]. Denote by the point
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on the coordinate system on
Fig. 10. The following results hold:

if

if

if .
(A.8)

Proof of Lemma A.4: We first note that

(A.9)

which implies that attains the minimum if
is minimized. Hence, in (2.27) can be

equivalently rewritten as ,

and thus

(A.10)

To minimize , should be as small as pos-
sible, whereas should be instead as large as possible. It
can be seen from Fig. 10 that the point is associated with
the smallest and the largest . Hence, conceptu-
ally, among all points on , the one located closest to
will yield minimal , and therefore according to
(A.10) should be identified as . Since is not always
feasible (i.e., may lie outside ), depends on
the location of relative to . Under the assumption

, locates above
[see Fig. 12(a)], and the desired solution is thus . In case
that ,

is feasible [see Fig. 12(b)] and thus . If
, locates on the left

of [see Fig. 12(c)], and the desired solution is
.

Proof of Lemma A.3: To prove (1), it suffices to show
that, as increases from to , the resultant
is monotonically decreasing. Now, if is small such that

, Lemma A.4 asserts that
[cf., Fig. 12(a)]; since the magnitude triple

associated with is

given by

, the resultant is easily determined by the law of cosines
to be

(A.11)

As increases such that
, we have from Lemma

Fig. 12. Depiction of with respective to three cases: (a)
, (b)

, (c) .

A.4 that [see Fig. 12(b)]; the asso-
ciated magnitude triple is

, yielding

(A.12)
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Fig. 13. Location of the tangency point with respect to the curve
.

As further increases such that
, then from lemmaA.4, we have

[see Fig. 12(c)]. Thus,

,
which results in

(A.13)

From (A.11)–(A.13), it can be seen that is monotonically
decreasing with (this can be readily checked by computing the
first-order derivatives). This thus proves Lemma A.3.

B) Proof of Lemma 3.1: Since the fea-
sible set for Problem (P1) consists of merely these

, let us focus on the corre-
sponding curve ,

which lies on the quarter-circle with radius
as depicted in Fig. 13. It is clear that the maximal

on the quarter-circle is attained by the
unique tangency point, say, , of the tangent line

. Note that the coordinate of

is , and thus,
exactly corresponds to defined in (3.4). As a result, the

point will yield the maximal . The proof is thus
completed.

C) Proof of Theorem 3.2: First of all, we have from
Lemma 3.1 that

(A.14)

Let us then construct a circle , marked in dashed
blue in Fig. 14, with as a chord and on arc

. From (A.14) and Lemma A.2, we must have
, and, in particular,

and must locate outside . We claim

Fig. 14. Depiction of all geometric objects for plane geometric analyses con-
ducted in the proof Theorem 3.2.

that both and are also
outside . As a result, it follows again from Lemma A.2 that

(A.15)

Based on (A.14) and (A.15), it can be deduced that

. Since ,

, equation (3.5) follows. To prove
the claim, due to the symmetric nature of the figure it
suffices to show is outside . For
this, we need the next lemma.

Lemma A.5: If contains more than one
element, then for all , we have

.
Proof: The assertion of the lemma can be obtained by re-

sorting to shown in Fig. 12. To prove the lemma,
let us first identify the curve in that corresponds to

. Denote by the point cor-
responding to . By definition,
and, thus, . According to Lemma A.4, and with

, we then have (A.16), which further implies (A.17)
[(A.16) and (A.17) are shown at the bottom of the next page].
Under the condition that contains

more than one element and from (A.17), the curve on
corresponding to is either

or
[this is depicted, respectively, in Fig. 12(a) and (b)]. We can
observe from the figures that and

both locate on the line segment
. The assertion follows since all points on
are associated with .

Proof of Claim: If degenerates into
one point , we are done since is
outside . For the general case, it readily follows from
Lemma A.5 that lies on the arc of the
circle . Since is outside and,
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moreover, locates to the left of (see
Fig. 14), must lie entirely
outside .

D) Proof of Lemma 3.3: Now the problem is to mini-
mize under the same constraints as in problem
(P1). The solution can be found by again resorting to Fig. 13
used in the proof of Lemma 3.1 (see Appendix B). It is
easy to see from the figure that, to minimize
among all , we shall choose
the one that is located as far away from the tangency point

as possible. The solution is either one of the two end
points of , namely,
or . The corresponding point on is

or . The assertion thus
follows.

E) Proof of Theorem 3.4: Now if we construct a
circle with as a chord and with and

on arc as in Fig. 15, by following similar
procedures as in the proof of Theorem 3.2, it can be verified
that ,

, and all lie outside this
circle. That is, the whole region , except
and , falls outside circle . Again from Lemma
A.2, we thus have

(A.18)

To specify and , we can first refer
to in Fig. 12 to determine the location of
which corresponds to ; this in turn allows us to deter-
mine and . Under the assumption

, i.e., , we
have [see Fig. 12(a) and (b)], and by

computation

(since
), which together with (A.18) leads to (3.6). In

case that , i.e.,
, we have ,

and (since

),
which combined with (A.18) yields (3.7). We note that,
since and from (3.2), we must have

Fig. 15. Depiction of all geometric objects for plane geometric analyses con-
ducted in the proof Theorem 3.4.

in the considered scenario. In case
that

(A.19)

we must have , and hence .
F) Proof of Lemma 4.1: The idea behind this proof is es-

sentially the same as that in the proof of Lemma 3.1. The details
are thus omitted to conserve space.

G) Proof of Theorem 4.2: The idea behind the proof is
quite similar to that in the proof of Theorem 3.2. From Lemma
4.1, it follows immediately

(A.20)

Construct a circle with as a chord and with
on arc (see Fig. 16). Then, from (A.20) and

Lemma A.2, must
lie entirely within ; if there exists some

on or outside , then
Lemma A.2 implies , which contradicts
with (A.20). We further claim that both
and are also inside . Hence, again by
Lemma A.2, we have

(A.21)

if
if
if

(A.16)

if
if
if

(A.17)
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Fig. 16. Depiction of all geometric objects for plane geometric analyses con-
ducted in the proof Theorem 4.2.

Based on (A.20) and (A.21), it can be deduced that
. To prove the claim, due to the symmetric nature of

the figure, it suffices to show that is inside
. This can be done with the aid of the next lemma.
Lemma A.6: If contains more than one

element, then for all , we have
.

Proof: The assertion of the lemma can be obtained by re-
sorting to shown in Fig. 12. The details are essen-
tially the same as those in the proof of Lemma A.5, and are thus
omitted to conserve space.

Proof of Claim: If degenerates into
one point , we are done since is inside

. For the general case, it readily follows from Lemma
A.6 that lies on the arc of the circle

. Since is inside , and, more-
over, locates to the left of (see
Fig. 16), must lie
entirely inside .

H) Proof of Lemma 4.3: The proof can be done based on
Lemma 4.1, and by following the arguments as in the proof of
Lemma 3.3.

I) Proof of Theorem 4.4: From Lemma 4.3, we have

(A.22)

It then suffices to consider for identifying
since the region is symmetric. If de-

generates into one single element , or equivalently,
(by Lemma A.4 and see Fig. 12,

this case occurs when ,
i.e., ), is then the
desired solution; the magnitude triple associated with

is

,
thus resulting in

(A.23)

which yields (4.6). Let us turn to consider the general case when
contains more than one element, or equiv-

alently, (according to Lemma
A.4, this occurs when ,
i.e., . From Lemma A.6, it follows that

for all . Since
, the cosine of for

reads

(A.24)

Equation (A.24) shows that, for , the re-
sultant is completely determined by . Hence,
to find the minimal , it is equivalent to find the optimal

which maximizes . By treating as a
dummy variable, let us first compute the first- and second-order
derivatives of with respect to as

(A.25)
and

(A.26)

Let us first consider the case , which together
with (A.26) asserts that is a convex function of

. The convexity of implies that the maximal
(or, minimal achievable ) is attained by

either the minimal or the maximal among all
. Let us refer to Fig. 12(b) and (c) with

, and focus on the corresponding curve
(recall that ). It is easy to see that the minimal and
maximal are attained by, respectively, and .
This thus implies that the minimal and maximal among
all are attained by either one of the two
end points, namely and ; as a result, we
have

(A.27)

To compute based on (A.27), we shall first find explicit
expressions for and . Since in
the case , we can refer
to Fig. 12(b) and (c) to determine the magnitude triple asso-
ciated with as

; by the
law of cosines it follows

(A.28)
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To find , we first note that the location corresponding
to on the diagram is . From Lemma A.4,
the exact location of depends on the value of . If

, then ,
and thus, . The associated magnitude triple

is
, which implies

(A.29)

If ,
we have from Lemma A.4 that . The as-
sociated magnitude triple is

; by using the law of cosines, we have

(A.30)

Let us turn to consider the other case . As such,
we have [see (A.25)], and
is, therefore, an increasing function of . Since

for all [again, this can
be easily verified based on Fig. 12(b) and (c)], the optimal so-
lution is , and the resultant is given
precisely as in (A.28).
Finally, we note that under the considered assumption

, we have from (4.2) that for all
. In case that the values of computed

are greater than 1, we must have , and
hence .

J) Proof of Theorem 5.1: Since
under the assumption

that and ,we have

(A.31)

Based on (A.31) and RIP, it follows that

(A.32)

Now

(A.33)

where (a) follows from the polarization identity, and (b) holds
from (A.32). Since

(A.34)

inequality (5.2) follows from (A.33) and (A.34), and since
.

K) Proof of Theorem 6.1: The proof can be done by
leveraging the geometric property of the orthogonal projection.
Specifically, let us decompose into

(A.35)

By definition , we immediately
have

(A.36)

which is the orthogonal projection onto , namely, the
column space of . As a result, the term can be
expressed as

(A.37)

where , and is -sparse (with support )
that is obtained by padding zeros to . Since is an
orthogonal projection matrix, it follows that (see Fig. 17)

(A.38)

Since by assumption is a -sparse vector, with the aid
of (1.2) and (A.38) we then have (A.39), and therefore (A.40)
holds. From (5.4), we have (A.41) [see the bottom of the page
for (A.39), (A.40), and (A.41)].
To explicitly specify , we first note

from the assumption that the supports of and do not

(A.39)

(A.40)

if
if
if

(A.41)
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Fig. 17. Schematic description of orthogonal projection of onto the column
space of .

overlap, which implies . Hence, according to
(A.41) and Corollary 5.3, it follows

(A.42)

Combining (A.40) and (A.42) yields (6.3).
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