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MDC FFT/IFFT Processor With Variable Length
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Abstract— This paper presents an multipath delay commutator
(MDC)-based architecture and memory scheduling to imple-
ment fast Fourier transform (FFT) processors for multiple
input multiple output-orthogonal frequency division multiplexing
(MIMO-OFDM) systems with variable length. Based on the MDC
architecture, we propose to use radix-Ns butterflies at each stage,
where Ns is the number of data streams, so that there is only one
butterfly needed in each stage. Consequently, a 100% utilization
rate in computational elements is achieved. Moreover, thanks to
the simple control mechanism of the MDC, we propose simple
memory scheduling methods for input data and output bit/set-
reversing, which again results in a full utilization rate in memory
usage. Since the memory requirements usually dominate the die
area of FFT/inverse fast Fourier transform (IFFT) processors, the
proposed scheme can effectively reduce the memory size and thus
the die area as well. Furthermore, to apply the proposed scheme
in practical applications, we let Ns = 4 and implement a 4-stream
FFT/IFFT processor with variable length including 2048, 1024,
512, and 128 for MIMO-OFDM systems. This processor can be
used in IEEE 802.16 WiMAX and 3GPP long term evolution
applications. The processor was implemented with an UMC
90-nm CMOS technology with a core area of 3.1 mm2. The
power consumption at 40 MHz was 63.72/62.92/57.51/51.69 mW
for 2048/1024/512/128-FFT, respectively in the post-layout sim-
ulation. Finally, we analyze the complexity and performance of
the implemented processor and compare it with other processors.
The results show advantages of the proposed scheme in terms of
area and power consumption.

Index Terms— 3GPP, 802.16, fast Fourier transform (FFT),
long term evolution (LTE), memory scheduling, multiple-
input multiple-output (MIMO), orthogonal frequency division
multiplexing (OFDM), output sorting, pipeline multipath delay
commutator (MDC), WiMAX.

I. INTRODUCTION

FAST Fourier transform (FFT) is a crucial block in orthog-
onal frequency division multiplexing (OFDM) systems.

OFDM has been adopted in a wide range of applications from
wired-communication modems, such as digital subscriber lines
(xDSL) [1], [2], to wireless-communication modems, such as
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IEEE802.11 [3] WiFi, IEEE802.16 [4], [5] WiMAX or 3GPP
long term evolution (LTE), to process baseband data. Inverse
fast Fourier transform (IFFT) converts the modulated informa-
tion from frequency domain to time domain for transmission
of radio signals, while FFT gathers samples from the time
domain, restoring them to the frequency domain. With multiple
input multiple output (MIMO) devices, data throughput can be
increased dramatically. Hence MIMO-OFDM systems provide
promising data rate and reliability in wireless communica-
tions [6]. To handle “multiple” data streams, intuitively the
functional blocks need to be duplicated for processing the
concurrent inputs. Without a proper design, the complexity of
FFT/IFFT processors in MIMO systems grows linearly with
the number of data streams.

In-place-memory-updating and pipelines are the archi-
tectures most widely adopted for the implementation of
FFT/IFFT. From the memory access perspective, in-place
memory updating schemes performs the computation in three
phases: writing in the inputs, updating intermediate values, and
reading out the results. In updating phase, the processor reuses
the radix-r processor, such that a single radix-r butterfly is
sufficient to complete N-point FFT/IFFT computation. Since
each phase is non-overlapped, the outputs can be sequential or
as requested. However, it is the non-overlapping characteristic
that makes the butterfly idle in memory write and read phases,
and the overall process is lengthy. Continuous-flow mixed-
radix (CFMR) FFT [8], [9] utilizes two N-sample memories
to generate a continuous output stream. One of the memories
is used to calculate current FFT/IFFT symbols, while the other
stores the previously computed results and controls the output
sequence. Thus, when CFMR is used in MIMO systems,
the required memory is increased in a trend proportional to
2×Ns , where Ns is the number of data streams. Such memory
requirement may be forbidden if Ns is large, because the area
of memory does not shrink as much as that of logic gates
when fabrication technology advances, due to the use of sense
amplify circuitry.

As for pipeline schemes, single-path delay feedback (SDF)
and multipath delay commutator (MDC) are the two most
popular architectures [10]. Cortes et al. proposed a proce-
dure to decompose a discrete Fourier transform matrix so
that the FFT processor can be implemented with pipeline
systematically [11]. SDF schemes provide feedback paths to
manage partially computed results in each pipe and to generate
seamless output without delay. The first output sample can be
generated immediately after the last input sample has been fed
into the FFT/IFFT processor. Furthermore, with the scheduling
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of input data, SDF schemes are capable of processing multiple
input streams using a single FFT/IFFT processor [12], [14]. On
the other hand, MDC schemes parse feedback paths into feed
forward streams using switch-boxes with more memory [15].
Meanwhile, the radix-r butterflies idle until the r th input is in
position. Although the control of data flow in MDC is more
straightforward, the utilization rate of the MDC FFT/IFFT
computing core is 1/r , which is far less than the 100%
utilization rate in SDF FFT/IFFT. Sansaloni et al. suggested
that MDC could save more area than SDF in FFT with
multiple streams [16], and Fu implemented a four-stream
MDC FFT/IFFT processor in which the area was 75% that of
conventional designs [20]. To obtain parallelism, radix-2 but-
terflies were duplicated at the first stage. Together with storage
elements, generally the first module occupied the largest area.

To the best of our knowledge, for the FFT/IFFT processors
used in MIMO-OFDM systems, most of the researches intu-
itively duplicated the butterflies and memory according to the
number of data streams, and then sought ways to maximize
parallelism while reducing the hardware complexity. Also, few
works have considered output memory needed for bit-reversed
reordering for MIMO FFT/IFFT processors. These motivate us
to explore an FFT/IFFT architecture for MIMO systems, which
can easily achieve a 100% utilization rate while the control
mechanism is still simple. Meanwhile, we would like to reduce
the memory requirement for managing bit/set-reversed output
order in the new architecture.

In this paper, we consider MIMO-OFDM systems with Ns

data streams, and propose to use single radix-Ns butterfly at
each folding stage to implement an MDC MIMO FFT/IFFT
processor. In conventional radix-r MDC FFT/IFFT processor
with single data stream, the utilization rate is 1/r . Hence, (r −
1)/r computing resource and memory are wasted. However,
for a MIMO-OFDM system with Ns data streams, if we let
r = Ns , the vacancy can be filled and thus the processor
can achieve a 100% utilization. It is worthwhile to emphasize
that by doing it we only need one butterfly at each pipeline
stage. Since we use one butterfly to process Ns data streams at
each pipeline stage, the input data need to be well scheduled
before passing to the processor. Thanks to the simple control
mechanism of MDC, we propose a simple mechanism for
input scheduling, where the mechanism is scalable for Ns

being power of 2. Moreover, due to the use of one butterfly
at each stage, we propose a simple output scheduling for
bit/set-reversing, which can greatly reduce the required output
memory. If the required output memory size is Nw for single
data stream, the size remains nearly Nw for multiple streams
instead of Nw × Ns in conventional schemes, where multiple
butterflies are needed in each pipeline stage. Furthermore,
to apply the proposed schemes in practical applications, we
let Ns = 4 and implement a 4-stream FFT/IFFT processor
with variable length including 2048, 1024, 512, and 128. This
processor was implemented using an UMC 90 nm process and
can be used in LTE or Wi-MAX applications.

The organization of this paper is as follows. Section II
lists the FFT/IFFT algorithm for the proposed architecture.
Section III introduces the memory scheduling rules and the
hardware requirements to provide the proposed features at

Fig. 1. Decomposition of four different FFT/IFFT lengths.

low cost. Section IV includes the hardware implementation, a
synthesis report, and analysis of performance. Core area and
power consumption are used to compare the proposed design
with existing designs. Conclusions are provided in the last
section.

II. ALGORITHM

The N-point FFT and IFFT are calculated as follows:

X[k] = F FT {x[n]} =
N−1∑

n=0

x[n]W nk
N (1)

and

x[n] = I F FT {X[k]} = 1

N

N−1∑

k=0

X[k]W−nk
N (2)

where

W nk
N = cos

(
2πnk

N

)
− j sin

(
2πnk

N

)
. (3)

The IFFT can be realized by slightly modifying the FFT. That
is, the IFFT of X[k] can be obtained by [7]

x[n] = 1

N
(F FT {X∗[k]})∗.

Generally N is power of 2 and the implementation of 1/N
only involves right shift operation. Therefore, the IFFT can
share the same hardware with FFT.

In this paper, we take LTE and Wi-MAX systems as
examples to implement the FFT/IFFT processor. For these two
systems, there are four FFT/IFFT lengths, that is, N = 2048,
1024, 512, and 128. We fold the four FFT/IFFT lengths using
radix-4 butterflies as many times as possible, as shown in
Fig. 1. Note that the last three stages of the four FFT/IFFT
lengths can share the same hardware.

Based on the decomposition in Fig. 1, (1) can be rewritten as
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512

}
W n3k3

4 W N3k3
128

}
W n4k4

4 W n5k4
32

}
W n5k5

8 (4)

where K = k1 + 4k2 + 16k3 + 64k4 + 256k5, k1 = 0 ∼ 3,
k2 = 0 ∼ 3, k3 = 0 ∼ 3, k4 = 0 ∼ 3, k5 = 0 ∼ 7, and
N = 512n1 + 128n2 + 32n3 + 8n4 + n5, N1 = 128n2 +
32n3 + 8n4 + n5, N2 = 32n3 + 8n4 + n5, and N3 = 8n4 + n5.
Each brace includes computations of a radix-4 butterfly and a
twiddle factor multiplication. For non-power-of-4 FFT/IFFT,
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Fig. 2. SFG of the proposed radix-4/radix-8 butterfly.

a radix-8 butterfly is placed at the last stage. Hence, the last
stage is configurable for both radix-4 and radix-8 computation.
The proposed radix-4/radix-8 butterfly for the last stage is
shown in Fig. 2, where a radix-8 butterfly has the data path
indicated by both solid and dashed lines, whereas a radix-4
butterfly has the data path indicated by solid lines only. The
regularity of the decomposition makes the processor scalable.
This means parameterized register-transfer-level source code is
highly reusable to extend the number of stages for a large N .

III. MDC ARCHITECTURE FOR MIMO FFT/IFFT

Storage elements dominate most of the area in conventional
MDC architecture. That is, the input buffering stage for radix-4
based FFT/IFFT needs N/4+ N/2+3N/4 words of memory,
and each computing stage needs 3N/4s words of memory,
where s is the stage index. For a 2048-point MDC FFT/IFFT
processor, 5112 words of memory are required. If MDC is
applied in MIMO-OFDM systems, the memory size grows
linearly with the number of data streams. As for the utilization
rate of butterflies and multipliers, since 3/4 of the computing
time is used to gather the input data, the utilization rate is only
25% in single stream radix-4 MDC FFT/IFFT. Although MDC
architecture offers an intuitive and simpler data flow control,
most of the previous works use SDF instead of MDC for
complexity concern. However, for MIMO FFT/IFFT, we found
that if the data streams are properly scheduled, the utilization
rate can increase from 25% to 100%. This makes MDC very
suitable for MIMO-OFDM systems.

Therefore we propose an efficient mechanism of memory
scheduling to reduce the required memory. Together with
the proposed memory scheduling, the proposed MIMO MDC
FFT/IFFT has the following advantages. First, the proposed
memory scheduling mechanism reduces the size of storage
elements. Moreover, the mechanism properly shuffles the four
input streams such that stage one to stage five are all with
the same feed-forward switch-box data flow. Therefore, the
control simplicity of MDC schemes can be preserved while

the memory size is greatly reduced. As for the utilization
rate of butterflies and multipliers, each one of the four input
symbols after memory scheduling takes 25% of one symbol-
time for radix-4 butterfly computation. Consequently one
radix-4 butterfly and three twiddle-factor multipliers in each
pipeline stage can process four data streams without any idle
period, that is, the utilization rate of butterflies and multipliers
is 100%. Furthermore, the radix-8 butterfly at the last stage
can be configured as a radix-4 butterfly. With such flexibility,
radix-2 computation can be incorporated at the last radix-8
stage, and thus for any N in power-of-2 fashion can be
computed with this proposed method. Finally, the serial blocks
of output symbol format helps to reduce the memory usage
for output sorting and the complexity of the modules followed
by the FFT/IFFT processor.

For description convenience, the following notations are
applied: i stands for spatial stream index, j stands for OFDM
symbol index, n stands for input sample index, and k stands
for output sample index. Thus each input sample can be
represented as xi

j [n]. Moreover, s denotes the pipeline stage,
ranging from one to five in the proposed design. Fig. 3
shows the block diagram of the proposed MIMO FFT/IFFT
computing core with N = 2048. The input order and the
indices in between are also annotated.

A. Input Memory Scheduling

The goal is to convert the input streams in Fig. 3(a) to
the format in Fig. 3(b). There are 12 memory banks at the
input stage for converting the parallel input streams into serial
blocks, such that one butterfly at each stage can compute the
four data streams without idle period.

The 12 memory banks are grouped into four memory sets
as shown in Fig. 4(a), that is, memory sets a, b, c, and
d , which are used to store the input streams A, B, C , and
D, respectively. There are two kinds of grouping methods,
namely grouping for even indexed symbols and grouping
for odd indexed symbols. Let the index of OFDM symbol
begin from 0. For even-indexed OFDM symbols, the grouping
method in the left side of Fig. 4(a) is used and for odd-
indexed OFDM symbols, the grouping method in the right
side of Fig. 4(e) is used. Fig. 4 illustrates the memory
scheduling for even-indexed OFDM symbols. The scheduling
for odd-indexed OFDM symbols will become clear after the
illustration for even-indexed OFDM symbols. Let us take
N = 2048 as an example and explain the input scheduling as
follows.

Initially the 12 memory banks are logically grouped into
four sets {a1, a2, a3}, {b1, b2, b3}, {c1, c2, c3}, and {d1, d2,
d3} as shown in Fig. 4(a). Each set is in charge of one input
stream. From the first to the 3N/4th cycle, the memory banks
keep the first to 3N/4th samples of each input stream. For
the case of N = 2048, the memory banks {a1, a2, a3}, {b1,
b2, b3}, {c1, c2, c3}, and {d1, d2, d3} store the samples 1th–
512th, 513th–1024th, 1025th–1536th} of the first, the second,
the third, and the fourth input streams, respectively.

From the (3N/4+1)th to the N th cycle shown in Fig. 4(b),
the radix-4 butterfly processes the read-out data from the



YANG et al.: MDC FFT/IFFT PROCESSOR WITH VARIABLE LENGTH FOR MIMO-OFDM SYSTEMS 723

Output
Sorting

Stage 5
Radix-

4/8

Stage 4
Radix-4

Input
Buffer

Stage 1
Radix-4

Stage 2
Radix-4

Stage 3
Radix-4

0kX i
j

(b) (c)

nx Aj
nx Bj
nxCj
nx Dj

1kX i
j

2kX i
j

3kX i
j

12 0...2047

12 0...2047

12 0...2047

12 0...2047

1 0

1 0

1 0

1 0

...

...

...

...

Symbol jSymbol j+1

A

B

C

D

1...511

513...1023

1025...1535

1537...2047

0

512

1024

1536

Stream A

1...511

513...1023

1025...1535

1537...2047

0

512

1024

1536

Stream B
Time index Time index

Stream B

1024...1279

1280...1535

1536...1791

1792...2047

0

256

512

768

Stream A
Time index

64

320

576

832

1088

1344

1600

1856

255

511

767

1023

1024...1279

1280...1535

1536...1791

1792...2047

0

256

512

768

64

320

576

832

1088

1344

1600

1856

255

511

767

1023

RAM
N/4

RAM
N/4

RAM
N/4

RAM
N/4

RAM
N/4

RAM
N/4

RAM
N/4

RAM
N/4

RAM
N/4

RAM
N/4

RAM
N/4

RAM
N/4

TF
MUL
TF

MUL
TF

MUL

FIFO
N/4S+1

FIFO
2N/4S+1

FIFO
3N/4S+1

FIFO
3N/4S+1

FIFO
2N/4S+1

FIFO
N/4S+1

R
adix-4

B
ut ter fly

To the next stage

Stage S=1

Connectivity of switch box
Phase 1 2 3 4

Address generator
S

w
itch

Box Stream B Output

4...2044

5...2045

6...2046

7...2047

0

1

2

3

Stream A Output

4...2044

5...2045

6...2046

7...2047

0

1

2

3

Time index

Output
Sorting

Stage 5
Radix-

4/8

Stage 4
Radix-4

Input
Buffer

Stage 1
Radix-4

Stage 2
Radix-4

Stage 3
Radix-4

0kX i
j

(a)

nx Aj
nx Bj
nxCj
nx Dj

1kX i
j

2kX i
j

3kX i
j

12 0...2047

12 0...2047

12 0...2047

12 0...2047

1 0

1 0

1 0

1 0

...

...

...

...

Symbol jSymbol j+1

A

B

C

D

1...511

513...1023

1025...1535

1537...2047

0

512

1024

1536

Stream A

1...511

513...1023

1025...1535

1537...2047

0

512

1024

1536

Stream B
Time index Time index

Stream B

1024...1279

1280...1535

1536...1791

1792...2047

0

256

512

768

Stream A
Time index

64

320

576

832

1088

1344

1600

1856

255

511

767

1023

1024...1279

1280...1535

1536...1791

1792...2047

0

256

512

768

64

320

576

832

1088

1344

1600

1856

255

511

767

1023

RAM
N/4

RAM
N/4

RAM
N/4

RAM
N/4

RAM
N/4

RAM
N/4

RAM
N/4

RAM
N/4

RAM
N/4

RAM
N/4

RAM
N/4

RAM
N/4

TF
MUL
TF

MUL
TF

MUL

FIFO
N/4S+1

FIFO
2N/4S+1

FIFO
3N/4S+1

FIFO
3N/4S+1

FIFO
2N/4S+1

FIFO
N/4S+1

R
adix-4

B
ut ter fly

To the next stage

Stage S=1

Connectivity of switch box
Phase 1 2 3 4

Address generator
S

w
itch

Box Stream B Output

4...2044

5...2045

6...2046

7...2047

0

1

2

3

Stream A Output

4...2044

5...2045

6...2046

7...2047

0

1

2

3

Time index

(d)

Fig. 3. Block diagram of the proposed MIMO MDC FFT/IFFT processor. The routing rule updates every N/4s+1 clock cycles. (a) Initial input order.
(b) Sorted input order at the output of input buffer. (c) Computed output order without sorting. (d) Output order after output sorting.

memory set {a1, a2, a3} and then this memory set are
updated with the incoming samples from stream B, C , and D.
That is, together with the previously stored first to 3N/4th
samples, now the radix-4 butterfly can process the samples
of stream A, because the (3N/4 + 1)th to the N th samples
are ready at this moment, also, since only one butterfly is
used at each stage, the (3N/4 + 1)th to the N th samples
for input streams B , C , and D are stored in the vacated
memories a1, a2, and a3, respectively. Continuing with the
example of N = 2048, at the end of the 2048th clock
cycle, the radix-4 butterfly has computed the 2048 samples
of stream A, and the memory set {a1, a2, a3} is updated with
the 1537th to the 2048th samples of stream B, C , and D,
respectively.

Similarly, in the next N/4 cycles, the contents in memory
set b are updated as shown in Fig. 4(c). The processor reads
out the 2048 samples of stream B from the memory banks a1
and {b1, b2, b3} and sends it to the radix-4 butterfly. Then, the
empty memories a1 and {b1, b2, b3} are updated by the first
to the N/4th samples of streams A, B , C and D, respectively,
of the second OFDM symbols. Continuing with the example
of N = 2048, at the end of the 2560th clock cycle, the radix-4
butterfly has computed the 2048 samples of stream B , and the
memories a1 and {b1, b2, b3} are updated with the first to the

512th samples of stream A, B, C , and D, respectively, of the
second OFDM symbols.

Similar procedure is executed for stream C and D, and
this is shown in Fig. 4(d) and (e). Note that in Fig. 4(e),
the memory grouping of b, c, and d are transposed logically
while the grouping for a remains the same at the end of
the 7N/4th cycle, when compared to Fig. 4(a). Also, from
Fig. 4(e), now the 12 memory banks already store the first
to the 3N/4th samples of the second OFDM symbol. Con-
tinuing with the example of N = 2048, at the end of the
3072th and the 3584th clock cycles, the radix-4 butterfly
has handled streams C and D, respectively. Moreover, at
the end of the 3584th clock cycle, all the memories are
updated with the first to the 1536th samples of the second
OFDM symbol. Next, similar procedures mentioned above
are used to handle the second OFDM symbol. For a practical
implementation, the control mechanism of the proposed input
scheduling is summarized in Fig. 5, where the switch-box
at stage s updates the routing rule every N/4s+1 OFDM
symbol time.

By using the proposed memory scheduling illustrated in
Figs. 4 and 5, the input sequence in Fig. 3(a) is converted
into the format shown in Fig. 3(b). In Fig. 3(b), each of
the four scheduled sequences occupies 1/4 of one OFDM
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Fig. 4. Illustration of the proposed input scheduling. The cubicles are the
physical memory and radix-4 butterfly in active mode, while the rectangles
are the modules in dormant mode. (a) Logical groups of initial memory banks.
(b) (3N/4 + 1)th to the N th cycle. (c) (N + 1)th to the (N + N/4)th cycle.
(d) (N + N/4 + 1)th to the (N + N/2)th cycle. (e) (N + N/2 + 1)th to the
(N + 3N/4)th cycle.

symbol time, hence all four scheduled sequences can be
handled within one OFDM symbol duration using one radix-
4 butterfly at each stage. As a result, the utilization rates for
adders, multipliers and memories are 100%. The computa-
tional complexity for each stage is thus one radix-4 butterfly,
three twiddle-factor multipliers, and a switch-box with first-
in first-outs (FIFOs). Since stage s needs 3N/4s words of

Fig. 5. Memory access control of the proposed input memory scheduling.
Each memory access performs write-after-read.
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Fig. 6. Schematic of the proposed radix-8 butterfly. In radix-8 operation i
is configured as 0 or 1, while in radix-4 operation i is 0.

FIFOs, together with the input scheduling memory that is of
3N words, the overall required memory size of the proposed
radix-4 MDC FFT/IFFT processor with four parallel input
streams is 3N + ∑�log4 N�−1

s=1 3N/4s .

B. Butterfly Operations

The proposed FFT/IFFT processor uses radix-4 butterflies as
fundamental computing elements. Each stage adopts the same
radix-4 butterfly, while the last stage uses a radix-8 butterfly
which can also be configured as a radix-4 butterfly. As for the
storage requirement of the twiddle factors, Lin suggested to
keep only the twiddle factors whose phase indices are within
N/8 [12], the rest of the twiddle factors can be derived from
quadrant conversion. As for the complex multiplications, each
radix-4 butterfly needs three multipliers and five real adders
[13]. We adopted the routing rule for switch-box proposed by
Swartzlander in [23].

We propose a configurable radix-8/radix-4 butterfly for the
last stage, where the multiplications of twiddle factor can be
realized by constant multipliers. This butterfly is composed
by one radix-4 and four radix-2 butterflies as shown in Fig. 6.
When a radix-4 instead of a radix-8 computation is needed,
this butterfly enables only the internal radix-4 computations
and disables the other radix-2 computations.

C. Memory Reduced Bit/Set Reversing Method

For an FFT/IFFT processor with radix-4 butterflies, the
input and output indices are in set-reversed order instead of bit-
reversed order. From the example in Fig. 3, if N is with power
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Fig. 7. Proposed output sorting for set-reversed FFT/IFFT processors. Stage A percolates the first half symbol from interlaced sequence. Stages B and C
contain switch-boxes for reordering. The annotated write/read-access indices in stage C is used for 512-FFT/IFFT.

of 4, e.g., N = 1024, the last stage is configured as a radix-4
butterfly. Let the bit-wise input sample index n be expressed
as [b9 b8 · · · b2 b1 b0], then the bit-wise output indices of
the proposed MDC FFT/IFFT processor for k1, k3, k5, k7,
and k8 are [b9 b8], [b7 b6], [b5 b4], [b3 b2], and [b1 b0],
respectively. On the other hand, if N is not with power of 4,
e.g., N = 2048, the bit-wise output indices for k1, k3, k5, k7,
and k8 are [b10 b9], [b8 b7], [b6 b5], [b4 b3], and [b2 b1 b0],
respectively. Since the memory dominates the area of an
FFT/IFFT processor, we would like the memory requirement
for bit/set-reversing be as small as possible. Based on the
proposed MDC MIMO FFT/IFFT processor, we propose an
output set-reversing method that only needs 9N/8+192 words
of memory while can handle four N-point data streams.

The proposed output sorting is to convert the output indices
in Fig. 3(c) to those in Fig. 3(d). The output format in
Fig. 3(d) reduces the hardware complexity due to the following
reasons. First, the sequential outputs are straightforward for
serial processing, such as cyclic-prefix insertion at the trans-
mitter, and sub-channel equalization or frame reconstruction
at the receiver. Second, for MIMO applications no duplicated
macros are required. The baseband modules, which follows
the FFT/IFFT processor can have full utilization rate and
the complexity for system integration is therefore simplified.
Finally, the required memory for output set-reversing is small.

The proposed architecture for output sorting is shown in
Fig. 7. Let us explain how it works. The output indices in
Fig. 3(c) shows that the first half, from indices 0 to N/2 − 1,
and the rest of the output samples, which are from indices
N/2 to N − 1, are interlaced. Thus, the first step is to extract
the first half of the samples. Note that the interlacing occurs
in 2048, 512, and 128-point FFT/IFFT, where the radix-8

computation is needed at the last stage. For N = 1024, that
is, power-of-4, the radix-8 computation is not required, and
the output of the FFT/IFFT processor are not interlaced.
The signal Source Ctrl. in Fig. 7 is used to select the first
half or the other half of the OFDM symbol, or bypass the
selection when N = 1024. The six FIFOs before and after
the switch-boxes save the sequence shuffled by the radix-4
computation in FFT/IFFT core. Thus for N = 2048 and
N = 1024, stages B and C in Fig. 7 are needed. For N = 128,
stage C is bypassed. For N = 512, stage B is needed but stage
C is only partially active, that is, in stage C the switch-box
is disabled, and the FIFOs with sizes eight and twelve are
applied for the sorting with the write/read-access indices
shown in Fig. 7. Using the proposed output sorting, we need
3N/4 words of memory to buffer interlaced sequence and
3N/8 + 192 words of memory for switch-boxs. The overall
required memory size is therefore 9N/8 + 192.

Comparison With Previous Works: Let us compare the out-
put bit/set reversing (reordering) method to the conventional
methods herein. We first briefly describe the features of the
conventional methods, and then compare the proposed method
with them. The sorting method proposed by Fu [20] generates
a set of 64 sequential output samples in 16 clocks. Let A1,
A2, A3, and A4 be four consecutive 128-point FFT/IFFT
symbols; also, let the first 64 samples and the last 64 samples
in each symbol be denoted by Ai1 and Ai2, respectively,
that is, [A11 A12] for the first symbol, [A21 A22] for the
second symbol, and so on. The output order of this sorting
method will be [A11 A21 A31 A41 A12 A22 A32 A42], that
is, the output is “interlaced.” In [17], Parhi uses a life-time
analysis to find out the timing relationship between inputs and
outputs. This method can guarantee the minimum memory
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usage. However, this method needs several switches for the
flow control of registers according to the permutation rules.
Hence, the control mechanism is somewhat complicated and
so is the corresponding routing. In this case, we may not
be able to use a high-density memory. Also, the routing
complexity increases in MIMO systems. Fan in [21] proposed
an output sorting function for FFT/IFFT used in ultrawideband
systems. To generate sequential output samples, two different
memory access rules were applied for even and odd symbols.
In a 128-point FFT/IFFT processor, the authors mentioned
that this method can reduce the output sorting buffer from
320 to 128. To avoid access conflict, however, each output
symbol is spaced with 9 to 10 clock cycles. As a result, the
memory usage does not achieve the 100% utilization. In [18],
Jarvinen et al. use iterative tensor product to describe the
stride permutation in FFT sorting. Also, they proposed to use
multiple small FIFOs to shuffle the inputs into desired output
sequence for specific configuration. However, small FIFOs
lead to complicated routing and large area when FFT/IFFT size
is large. To overcome these issues, in [19], Puschel et al. pro-
posed a clever reordering method, which uses two independent
size-N RAMs to handle the output reordering. Since RAM
macro is of high density, this method can significantly reduce
the routing complexity and area. Also, the required memory
size for output reordering is fixed to be 2N for multiple data
streams. In the provided example, the stream number can be
up to 11.

Since our design example is for LTE and Wi-MAX, the
proposed output reordering scheme simultaneously supports
various FFT/IFFT sizes, that is, N = 128, 512, 1024, and
2048, as well as multiple data streams. Due to the use of MDC
architecture, the control mechanism for the output reordering
is simple because the switch boxes at all stages have the
same architecture, except that their operational clock counts
are different. As a result, the memory control only demands
push-and-pop operation instead of memory addressing, and the
corresponding routing complexity is much simpler than that in
[17] and [18]. Also, the proposed reordering enables the output
samples to be consecutive, which is not like the “interlaced
output” as in [20], and non-fully utilization of memory in
[21]. Furthermore, compared to [19], the proposed reordering
requires less memory than that in [19]. Taking N = 2048 for
instance, the proposed method needs (9/8)N + 192 = 2496
words of memory while the method proposed in [19] needs
2N = 4096 words of memory. However, it is worth emphasiz-
ing that the required memory size of the method proposed in
[19] is always 2N for arbitrary N . On the other hand, since our
proposed reordering considers an N with its maximum value
be 2048 for the specific design applications, if N increases,
the memory size may not be fixed as (9/8)N +192, and needs
to be re-evaluated in this case.

D. Reduction in Computing Elements

Let us compare the required adders and multipliers for
the proposed MIMO MDC FFT/IFFT architecture and
conventional schemes. For the conventional schemes, most
works used radix-2 butterfly to implement the FFT/IFFT

processor, e.g., [10], [12], [14]. For these schemes, there
are log2 N stages and each stage needs two complex adders
and one complex multiplier. In MIMO systems with Ns data
streams, the number of complex adder Na and the number of
complex multiplier Nm for conventional schemes are given
respectively by

Na = Ns × 2 × log2 N (5)

and
Nm = Ns × (log2 N − 1). (6)

Note that in the last folding stage, all the twiddle factors are
one. Therefore, multipliers are not required in the last pipe.
For the proposed FFT/IFFT scheme, the discussion in previous
sections are dedicated for practical MIMO systems with four
data streams. Thus radix-4 butterflies are used. It is worthwhile
to emphasize, however, that similar concept can be used for
MIMO systems with arbitrary number of data streams. That is,
for a system with Ns data stream, we propose to use radix-Ns

butterfly with MDC architecture. In this case, there are logNs
N

stages. Also, thanks to the 100% utilization rate of MDC,
each stage requires Ns − 1 multipliers, and

∑log2 Ns −1
k=0 2k

complex adders if binary-tree addition is used in each radix-r
branch. As a result, the number of complex adders N ′

a and the
number of complex multipliers N ′

m are given respectively by

N ′
a = logNs

N × r ×
log2 Ns−1∑

k=0

2k (7)

and
N ′

m = (r − 1) × (logNs
N − 1). (8)

Although there are other advanced hardware schemes, such
as R4MDC or R22SDF as specified in [10], which may
lead to different number of adders and multipliers, if a
specific folding scheme is chosen, the numbers of radix-r
butterflies and complex multipliers does not make much
difference. Therefore, we tend to take radix-r butterfly
and complex multiplier as fundamental building blocks for
comparison. The number of complex adders and multipliers
for different radix schemes are compared in Table I, which is
referenced from Fu’s study [20]. R22SDF is of the minimum
hardware requirement in single-input single-output (SISO) the
FFT/IFFT processor. An intuitive approach to extend SISO
scheme into MIMO scheme is duplicating these computing
elements according to the number of data streams.

To give an insight into the computational reduction of the
proposed scheme, we compare the required numbers of adders
and multipliers in Fig. 8. From Fig. 8(a), we see that the
proposed scheme generally requires more adders than those
in conventional schemes except for Ns ≤ 4. It is observed
in Fig. 8(b), however, the proposed scheme requires fewer
multipliers than those in conventional schemes. Since the hard-
ware complexity of a multiplier is usually much higher than
that of a adder, the proposed scheme enjoys implementational
advantages. From this figure, we see that for Ns = 4, which
is our design example for LTE and Wi-MAX applications,
the proposed radix-4 MDC architecture only need 12 complex
multipliers while the radix-22 scheme and radix-2 scheme need
at least 16 and 36 complex multipliers, respectively.
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TABLE I

HARDWARE COMPLEXITY OF DIFFERENT FFT/IFFT ARCHITECTURES

Scheme CPLX. MUL # Radix-r
BF #

Memory size

SISO R2MDC (log2 N − 1) log2 N 3N/2 − 2

R2SDF (log2 N − 1) log2 N N − 1

R4SDF (log4 N − 1) log4 N N − 1

R4MDC 3(log4 N − 1) log4 N 5N/2 − 4

R22SDF (log4 N − 1) log4 N N − 1

MIMO Prop.
MIMO
MDC

(r − 1)(logNs −1) logNs N (Ns − 1)N+
�logNs N�−1∑

s=1

·(Ns −1)N/Ns
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Fig. 8. Required number of (a) complex adders and (b) complex multipliers,
as functions of FFT/IFFT size N for various numbers of MIMO data
streams.

IV. IMPLEMENTATION

A. Hardware Specification and Synthesis Report

The required components of the proposed MDC MIMO
FFT/IFFT processor are summarized in Table II. Lin et al.
showed that using 12-bit internal word length can provide
an output signal-to-noise ratio of 40 dB, capable of meeting
the IEEE 802.16e WiMAX standard [31]. Based on out fix-
point simulation, the input word length was fine tuned to
8 bits and the output word length was 12 bits. As for the
internal word lengths, all the computations were rounded to
10 bits. The 12 memory banks, which store the input data
were implemented by dual-port synchronous dynamic random
access memory (SDRAM). The intermediate FIFOs whose
depths exceed 8 were also implemented by dual-port SDRAM.
The total SDRAM size in the proposed design was 23.56 KB.

TABLE II

ELEMENTS IN PROPOSED MDC FFT/IFFT PROCESSOR

Components Purpose Number

Complex number
multipliers

Twiddle factors
multiplication with
radix-4/8 outputs

12

FFT butterflies
Radix-4 4

Radix-4/8 1

Memory macros Dual-Port SRAM (words) 10224

Switch-box 7
Input memory addressing 1
Output FIFO control 1

Other control modules FIFO registers (words) 456
Quadrant conversion of
twiddle factor

12

Twiddle factor generator 4

1

3 24
5

S

Fig. 9. APR of the proposed MDC MIMO FFT/IFFT processor. The pipeline
stages of FFT/IFFT computing core are numerated from one to five. “S” is the
output sorting stage. The memory control function is distributed in adjacent
memory macros.

Other FIFOs with depths smaller than 8 were implemented by
registers. The required twiddle factors in each stage can be
implemented by table look-up using physical ROM macros.

The functionality of the proposed FFT/IFFT processor was
implemented and verified by Cadence Verilog-XL simulation.
The circuit was synthesized by Synopsys Design Compiler
using an UMC 90-nm CMOS cell library. The system clock
for synthesis was targeted at 40 MHz. It is worth pointing out
that one of the advantages using pipeline architecture is the
reduction of critical path. Pipeline registers were inserted at
all outputs of memory macros, multipliers, radix-4 and radix-8
butterflies. In fact, we found the maximum achievable clock
rate of the proposed design can be as high as 250 MHz
in synthesis stage. The automatic place and route (APR)
processing of the proposed FFT/IFFT processor was done by
systems-on-a-chip (SoC) Encounter from Cadence. The core
area was 3.1 mm2. The APR result is shown in Fig. 9 with
sub-block annotations.
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Fig. 10. Statistics of memory and submodules. (a) Area. (b) Power.

The power consumption was analyzed primarily by Synop-
sys PrimePower with the net-list extracted from actual APR.
We also use the power analysis function in SoC Encounter.
The measured results using these two tools only have a small
mismatch within 5 mW. Fig. 10 lists the pie diagram of
area and power consumption. Excluding the testing function,
the memory occupied 85.95% of the total area. The ratio of
standard cells versus SDRAM macros was close to 1/5. This
means if more advanced (that is, high density) memory macros
were applied, further reduction could be achieved. The power
consumption at 40 MHz system clock were 63.72 mW for
2048-FFT, 62.92 mW for 1024-FFT, 57.51 mW for 512-FFT,
and 51.69 mW for 128-FFT computations.

B. Performance Analysis and Comparison

Throughput, signal to noise quantization ratio, and normal-
ized area/power consumption are the major indices used to
evaluate the performance of FFT/IFFT processors [22]. Let
us compare the proposed design with other existing designs.
Most of the previous works were based on SDF or memory-
base radix-2n algorithm. Bass proposed methods to evaluate
the normalized area Abass and normalized power consumption
Pbass among different kinds of FFT processor [22] as follows:

Abass = Area

(Tech/0.5 μm)2

Pbass =
Tech ×

[
2

3

Width

20
+ 1

3

(
Width

20

)2
]

Power × Exec Time × 10−6

where Tech is the process in micrometers, Width is the bit-
width of data-path in bits, and ExecTime is the calculation time
in microseconds. Baas’s comparisons were used for FFT/IFFT
designs that have the same N , and similar architecture with
coarse adjustment corresponds to different CMOS process. In
addition to the architecture, different FFT length N , system
frequency, and applied CMOS processes fundamentally affect
the area and power consumption. Thus Peng in [27] considered
different FFT/IFFT length N and proposed the normalized area
Apeng and normalized power Ppeng as

Apeng = Area

N × (Tech/0.18)2

Ppeng = Power × ExecTime

N × (VD D/1.8)2 .

Now let us consider a more general evaluation as follows. The
computational complexity for an N-point FFT/IFFT in radix-r
is N logr N [7]. In practical implementation, the addition and
multiplication operations can be well scheduled and executed
by a small number of radix-r butterflies and complex multipli-
ers. In such a case, the complexity of different N-FFT/IFFT
should grow in logarithmic scale instead of linear scale. As
for different radix-r butterflies, the implementations are still
based on fundamental radix-2 structure. When N increases, the
number of pipeline stages is proportional to logr N . Therefore,
the comparison should be normalized to the fundamental
radix-2 structure. The power consumption is proportional to
load capacitance, supply voltage, and operating frequency, that
is, P ∝ CV 2 F . For comprehensive and comparable analysis
among various N , architecture, technology and number M of
data streams, we may revise the area metric as

Apropose = Area × 103

(Tech/0.09 μm)2 × M × log2 N
(9)

and the metric for power consumption as

Ppropose = Power × ExecTime × 103

M × V 2
D D × N log2 N

. (10)

Note that the VD D in 0.09 μm process is 1 volt. There are still
other factors that affect the comparing criterion, such as the
type of applied RAM macros, the overall load capacitance,
or different synthesis constraints. Meanwhile, the factor of
system frequency is not included in the revised metrics.
Generally different operating frequencies in similar design lead
to different synthesis and APR results.

Table III compares the proposed scheme and other works.
As previously stated, different fabrication technology and
synthesis constraint affect the basis in comparison. Therefore,
the FFT/IFFT processors with the same N are grouped for
discussion. For FFT/IFFT processors with N = 128, the
normalized-area for the MDC scheme in [20] is 67% ∼ 77%
of that for SDF schemes in [12] and [14]. Note that with
higher clock rate, the normalized energy is reduced at the cost
of larger normalized area. The trend can be carried on to 512-
and 2048-FFT/IFFT processors as that in [24] and [28]. Now
consider the FFT/IFFT processors with a large size of N =
2048, where memory macros and storage elements dominate
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TABLE III

COMPARISON AMONG DIFFERENT FFT/IFFT PROCESSORS

Proposed [26] [27] [29] [31] [30] [24] [28] [25] [20] [14] [12]

Architecture MDC SDF MDF Memory
base

Memory
base

SDF SDF Memory
base

SDF MDC SDF SDF

FFT size 2048 1024 512 128 128∼2048 128∼2048/1536 2048 2048 2048 2048 512 256 128 128 128

Clock rate
(MHz)

40 40 35 20 22.86 45 300 324 300 75 40 250

Stream
no.

4 1 1 4 2 1 1 1 8 4 4 4

Process
(um)

0.09 0.18 0.18 0.18 0.13 0.35 0.09 0.09 0.09 0.18 0.13 0.18

Voltage
(V)

1 1.8 1.8 1.8 1.2 3.3 1 1 0.85 1.8 1.2 1.8

Area
(mm2)

3.1 4.53 1.932 4.96 2.12 13.05 1.16 2.46 3.53 2.1 1.41 3.1

Output
sorting

Yes No No Yes Yes No No Yes No Yes No No

Power
(mW)

63.72 62.92 57.51 51.69 55.64 11.29 52.02 17.26 640.00 159.00 103.50 119.70 87.00 5.20 175.00

Execute
time (us)

51.20 25.60 12.80 3.20 51.25 234.00 205.2 89.76 22.36 0.85 0.22 0.11 0.43 0.8 0.13

Normalized
energy

36.20 39.33 39.94 46.15 39.07 36.19 36.56 23.88 58.33 6.02 4.92 1.08 3.20 0.81 1.93

Normalized
area

70.45 102.95 43.91 28.18 46.19 78.45 105.45 273.33 55.23 18.75 24.14 27.68

Fig. 11. Throughput comparison among various 2048-FFT/IFFT processors.

the die area. Although the normalized area in the memory-
base processor is smaller, the normalized energy is not reduced
proportionally [29], [31]. This is because the memory-based
scheme uses twice amount of memory than those in pipeline
schemes with continuous output. As long as the memories are
accessed by computing elements, the macros consumes power.
Consequently, to effectively reduce the area and power con-
sumption in large N-FFT/IFFT processor, decreasing memory
usage may be a key solution. Moreover, the output latency
of the memory-based FFT/IFFT processors can be as long as
one OFDM symbol. Thus it is not able to handle successive
OFDM symbols unless extremely high clock is used to handle
relatively slow data.

Trying to seek a good trade-off between these conventional
schemes, the proposed FFT/IFFT processor adopts simple
memory scheduling methods for both input and output data,
this enables the processor to use a relatively small amount
of memory to handle successive and multiple data streams.

Observed from Fig. 10, the memory part, which includes
input memories, intermediate FIFOs, and output sorting,
takes 85.95% of the overall area and 61.72% of the overall
power consumption. As a result, the scheduling methods not
only reduce the area but also contribute to power saving.
Comparing with [26], the proposed FFT/IFFT processor uses
fewer computing elements, and the execution time is only one-
forth of that for main distribution frame (MDF) scheme in [27].
Moreover, due to the use of output memory scheduling, the
proposed FFT/IFFT processor can handle four data streams
and produce bit/set-reversed output data simultaneously, from
integration perspective, the adjacent functional blocks such
as frequency domain equalizer can directly apply the bit/set-
reversed results from FFT/IFFT processor without additional
effort for reordering.

Fig. 11 converts the execute time per symbol into
the throughput in terms of k-symbol per second. The
corresponding clock rate, normalized power and area are also
marked to show the design trade-off. Although the FFT/IFFT
processor in [24] is of the highest throughput with the minimal
normalized energy, it is at the cost of the largest normalized
area and the maximal operational rate at 300 MHz. Note that
the FFT in [24] was specifically for 16-quadrature amplitude
modulation application and the word-size for real part and
imaginary part is only 4-bit. Among the 2048-point FFT/IFFT
processors with clock rate below 50 MHz, our proposed
design is of the highest throughput.

V. CONCLUSION

In this paper, we proposed a radix-r based MDC MIMO
FFT/IFFT processor for processing Ns streams of parallel
inputs, where r = Ns for achieving a 100% utilization
rate. The proposed approach is suitable for MIMO-OFDM
baseband processor such as WiMAX or LTE applications,
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where Ns = 4 and N can be configured as 2048, 512, 256, and
128. Moreover, we proposed an efficient memory scheduling
to fully utilize memory. This considerably decreases the chip
area because the memory requirement usually dominates the
chip area in an FFT/IFFT processor. It is worth emphasizing
that the proposed design is based on an MDC architecture,
which is generally not preferred, due to its low utilization
rate in memory and computational elements such as adders
and multipliers. However, by using the proposed memory
scheduling, MDC architecture is proved suitable for FFT/IFFT
processors in MIMO-OFDM systems, because the butterflies
and multipliers are capable of achieving a 100% utilization
rate, meanwhile, the characteristics of simple control provided
by MDC is maintained in the proposed design. The reduction
in memory usage also leads to effective power saving, which
is important for mobile devices. For applications applying
large number Ns of data streams such as gigabit passive
optical network, Ns can be as high as 64. In this case, the
proposed radix-Ns MDC scheme and memory scheduling may
also be applied to achieve a 100% utilization rate with simple
control mechanism. Therefore, we conclude that the proposed
designs found a good balance among complexity, energy
consumption, and chip area, for the MIMO-OFDM systems.
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