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The Trefftz method may be described in terms of an integral equation formulation 
based on eigenfunction expansions rather than the usual element (BEM) solution 
method. Using an ‘Embedding Integral Equation’ approach, the Trefftz method 
may not only be seen to be related to integral equation methods but it is also seen 
to be amenable to partitioning, allowing more rapid convergence. 

INTRODUCTION 

The Trefftz method, e.g. Herrera,’ is well known as an 
eigenfunction expansion approach to the solution of 
partial differential equations. In a sense, it may be 
considered as the generalization of separation of 
variables, e.g. Wylie & Barrett,* just as the boundary 
integral equation approach, e.g. Cruse & R~zzo,~ may be 
considered as the generalization of the classical Green’s 
function approach, e.g. Morse & Feshbach.4 In the 
separation of variables, the basic set of eigenfunctions 
must be particular not only to a given equation but also 
to a specific geometry and type of boundary condition. 
The Trefftz approach relaxes this to a basic set of 
eigenfunctions which merely satisfies the governing 
equation, but at the price of leading to a coupled 
system for the unknown coefficients when the particular 
boundary conditions given are satisfied in some manner 
on the given geometry. Similarly, ‘THE’ Green’s 
function as used in the classical Green’s theorem 
approach is also specific to a given equation, geometry 
and type of boundary condition. The boundary integral 
equation approach is based on the use of ‘A’ Green’s 
function which satisfies the governing equation but is 
unconnected from the geometry and type of boundary 
condition, but at the price of leading to an integral 
equation rather than a quadrature for the solution. 
While element expansions are the usual method for 
solving BIE’s, there is a substantial literature which is 
based on eigenfunction expansion methods, primarily 
on wave scattering problems, e.g. Varadan & Varadan.5 
The purpose of this paper is to review some integral 

approaches, as discussed in some previous work, and 
show their connection to the Trefftz method as well as 
showing how the Trefftz method may be improved from 
using a ‘different point of view’. 

THE TREFFTZ FORMULATION 

Consider a problem governed by a linear second order 
elliptic partial differential equation in some domain, 
V(r), bounded by a surface, S(r), with no exterior 
forcing term as an example. A separation of variables 
solution to such problems for a specific geometry and 
boundary condition would depend on whether or not 
the governing equation separated in a coordinate system 
whose surfaces of constant independent variable matched 
the boundaries of that particular geometry, S(r), on 
whether the boundary conditions were appropriate, e.g. 
homogeneous in one direction, and whether the equation 
itself separated in this coordinate system in the domain 
V(r), For arbitrary geometries, this will generally not be 
the case. Nevertheless an eigenfunction expansion 
approach can be used. If the dependent variable is 
assumed to have an expansion in terms of a basic set of 
eigenfunctions, each of which satisfies the governing 
Laplace equation, i.e. 

U(r) = fJ ai Qj(r); 
j=O 

in V(r) (1) 

the coefficients, aj, may be found for an approximating 
finite sum going from j = 0 to j = N by the solution of 
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an N x N set of simultaneous algebraic equations 
obtained by forcing eqn (1) to satisfy the given 
boundary conditions on the given boundary, S(r), e.g. 
by collocation at N specific points or by a Gale&in 
method using, for example, the @j(r) as weights. 
Neumann conditions require the derivative of eqn (1) 
but this present no difficulty since this series is to hold 
for all of the original domain. The main change from the 
separation of variables approach is that these equations 
are now completely coupled and a change in the upper 
limit N changes all of the coefficients whereas the 
separation of variables approach determined the coeffi- 
cients one by one independently of the upper limit N, 
but only for specific geometries. For example, a 
Dirichlet problem with U(r,) = F(Q) with rb on the 
boundary, would have, in the collocation approach, 

F(rb>i = eaj*(rb)i; i=O,...,N; on S(r) 
j=O 

(2) 
as the system of linear algebraic equations to be solved. 

THE EMBEDDING INTEGRAL EQUATION 
FORMULATION 

Consider the original volume V extended to include a 
new volume V’ which terminates at some convenient 
surface, S,, which is called the embedding surface, e.g. 
Fig. 1. The original boundary surface, S, is now 
‘embedded’ in this extended volume and is therefore 
called the embedded surface. A distribution of sources 
and/or doublets will be placed on the embedding surface 
which will be chosen for convenience, e.g. to be a sphere 
in three-dimensional problems or a circle in two- 
dimensional problems, and the strength of this distri- 
bution will be determined by satisfying the original 
boundary conditions on the embedded surface. Consider 
as an example, a distribution of sources of strength a(re) 
on S, which will be taken as a circle for a two- 
dimensional illustration. The three-dimensional form 
follows the same procedures but with somewhat more 
arithmetic. This provides a solution, U(r), within 
VUV’as 

U(r) = 
J 

4rs> WY rs) 6 
se 

(3) 

with an outward normal derivative, 

lW(r)/l%z = q(r) = js &)dG(r, r,)/& dS, (4) 
c 

EMBEDDING EIGENFUNCTION EXPANSION 
SOLUTION - POTENTIAL EXAMPLE 

The eigenfunction expansion technique assumes that all 
of the variables in this problem may be expanded in 

6) 

Fig. 1. Embedding surface S, as a circle of radius r, = b 
‘around’ original domain D with added domain De; (a) exterior 

problem and (b) interior problem. 

terms of a convenient set of basic eigenfunctions, e.g. 
Shaw & Huang.6 While it would be nice to have the 
‘correct’ set of eigenfunctions, i.e. that corresponding to 
this differential equation for this specific geometry and 
boundary conditions, the classical Trefftz approach 

Fig. 2. Partitioned interior domain with interface point P and 
two embedding surfaces. 
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described above suggests that any set satisfying just the 
differential equation will do, e.g. those corresponding to 
the geometry chosen for the embedding surface, with the 
restriction that no singularities are introduced in the 
added volume as seen from the embedding viewpoint. 
Then, as an illustration, for a two-dimensional interior 
potential problem of relatively square or box-like shape, 
those eigenfunctions for a circumscribing circle could be 
chosen, Fig. 1. For long slender geometries, either those 
eigenfunctions corresponding to an ellipse of a similar 
aspect ratio or a partitioning into box-like shapes with 
several ‘embedding’ circles could be used, e.g. Fig. 2. 
For a box-like interior potential problem as discussed 
first, a circle of radius b will be used as the embedding 
surface as shown in Fig. l(b). The eigenfunctions for a 
potential or Laplace equation are 

(a,(r,e) = rPcos(pO),rPsin(pO); p=o,1,2 ,*-*, 

(5) 

a(r,) = 2 A, cos(mt9,) + B,,, sin(m0,) 
m=O 

on re = b 

(6) 

with the Green’s function for r < r, = b (the radius of 
the embedding circle, S,, around the original surface, S) 
given as, e.g. Morse & Feshbach,4 

G(r,e;b,e,) = (l/24 

X 

{ 
- ln@) + ~tl/dWW costs I e - 0, I > (7) 

p=l 

Then the solution is given by 

A, cos(m0,) + B,,, sin(m0,)) 

X - W) + fjl/fW~)p(cosW) cosWA 

p=l 

+ sin( pe) sin( p0,)) b de, 
1 

=ao+~(l/m){a,rmcos(m~)+ic,rmsin(mO)} 
m=l 

(8) 

where 

o. = -b In(b) A0 

a, = (1/2)&/b”+‘; m=0,1,2,... 

pm = (l/2) B,Jbm-‘; m= 1,2,... (9) 

A similar expression is obtained for the normal 
derivative of U which will be required for Neumann 

boundary conditions on S, 

dU(r, Wan = (l/274 j:lo z{A, coW4) 

e m-0 

+ B,sin(m~,)}d{-In(b) + g(l/p)(r/b)P 
p=l 

x tcosw) we) 
+ sin( p0) sin( pe,)) b de,}/% = (l/2) 

x F{Am[(r/b)m-l cos(m0) &/an - (r m/bm-l) 
m=l 

x sin(m0) M/&z]} + Bm[(r/b)m-’ sin(m0) &/an 

+ (r m/bm-l) cos(me) de/an] = k{am r m-’ 
m=1 

x cos(X + me) + pm r m4 sin(X + me)} (10) 

where X is the angle between the r direction and the unit 
normal vector to the surface with counterclockwise as 
positive, i.e. 

cos(X) = &/an; sin(x) = (l/r)LW/f% (11) 

Details of this derivation and the corresponding exterior 
problem derivation are given in the thesis by Huang.’ 
Note that the embedding surface radius b does not 
appear explicitly in the coefficients QI and ,B as they are 
used in eqns (8) and (10) to determine U and W/&z, i.e. 
the actual size of the embedding surface is not relevant 
to the solution procedure. It does appear in the expression 
for (T through the coefficients A, and B, but this is not 
used directly. In fact, this shows that the present 
procedure is simply an alternative derivation of the 
Trefftz method. -However, this approach is still 
conceptual value especially when partitioning 
discussed. 

NUMERICAL PROCEDURE FOR POTENTIAL 
EXAMPLE 

of 
is 

One of the simplest methods for the solution of the 
above formulation is that of collocation. Select the first 
K coefficients of om and the first (N - K) coefficients of 
,B, where K = N/2 or (N + 1)/2 for even and odd N 
respectively. This implies an approximate solution for U 
to K terms in the eigenfunction expansion. Equations (8) 
and (10) will be forced to satisfy the given boundary 
conditions at N collocation points on the original 
surface, S. In general, 

U(ri) = Vi = EjGij; i,j= 1,2 ,..., N 

aU(ri)/an = qi = Ej Hij ; i, j= 1,2,.. .,N (12) 

where oj is represented by the first K terms of ej and Bj is 
represented by the last (N - K) terms. The coefficient 
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matrices Gij and Hij are given by 

Gij = 2; j=l 

X cos( [ j - l]e)(rj) j-l ( j - 1); 

j=2,3 K 7 * * . 7 

x sin([ j - K]f3)(ri)jpk( j - K); 

j=K+l iV 7”‘, 

Hij = 0; j=l 

X COS(X + [j - l] 0)(rj)je2; j = 2,3,. . . , K 

x sin(X + [j - K] e)(Ti)jpk-‘; 

j=K+l N >***, (13) 

unless the problem has pure Neumann boundary 
conditions in which case a0 will not be present and U 
is determined only to within an arbitrary reference level. 
The simplest way to avoid this difficulty is to pin U 
down to a specific value by replacing the Neumann 
boundary condition at one of the collocation points by a 
reference level for 17, thereby making the problem one 
with mixed boundary conditions. Nothing is lost in this 
procedure since this particular value of the normal 
derivative of U is completely specified by the condition 
that the net total boundary integral, or sum of 
collocation values times segment lengths, around the 
entire original surface must be zero. 

Using Bi as the known boundary values of either Vi 
or qi and Cij as either the corresponding G or H, the 
equation on Ej is simply 

Cijcj = Bi; i= 1,2,...,N (14) 

Once ej is known, i.e. all of the (Y’S and /3’s within this 
level of approximation, the remainder of the field 
solution is found directly from eqns (8) and (10). 

EXTENSION TO PARTITIONED GEOMETRIES 

When the original geometry is irregular or has a large 
aspect ratio such that the eigenfunctions for an 
embedding circle might appear inappropriate or dis- 
tances from the embedding elements to the collocation 
points may be too large, the possibility of partitioning 
the original geometry into subdomains that are better 
suited geometrically to this embedding geometry arises. 
So of course does the possibility of choosing another 
embedding geometry such as an ellipse, etc., but this 
choice loses the simplicity of the present approach. In 
the partitioning approach, the original domain is 
divided into subdomains that are closer to the circular 
embedding geometry, e.g. box-like sections. This intro- 
duces a small number of interior points which now 
become boundary points on the partitioned geometries, 
e.g. Fig. 2. At these ‘new’ points, rather than one 

boundary condition there will be two continuity 
conditions, one on the temperature and one on the 
flux or normal derivative, which still provides a 
complete system of algebraic equations on the eigen- 
function expansion coefficients. Again details are given 
by Huang7 for both the eigenfunction expansion and the 
element approaches. 

NUMERICAL POTENTIAL PROBLEM 
EXAMPLES 

Several numerical examples were given in Shaw, Huang 
& Zhao* based on the dissertation of Huang,7 e.g. an L 
shaped region of equal legs made up of three squares. 
Boundary values corresponding to simple specified 
nonsingular temperature fields, e.g. y + 3, xy + 2x + 3y 
and x2 - y2, were used with boundary conditions of the 
Dirichlet, Neumann and mixed types, chosen from these 
analytical solutions. Forty collocation points were 
spaced equally around the perimeter of the original 
surface. Numerical results were checked against the 
exact solution. The L shaped region, shown in Fig. 3 
with one embedding surface and 32 collocation points, 
gave results accurate to which errors of the order of 
lo-*% or better for boundary points and points at the 
centers of the three small squares that made up this 
domain. When three subregions were used as shown in 
Fig. 4, increasing the number of collocation points to 40 
through the introduction of interface points but keeping 
the same spacing around the boundary, this error was 
reduced to less than lo-r2%, an improvement by several 
orders of magnitude. This was of course not a stringent 
test since the reentrant corner did not have any singular 
behavior, except in geometry. 

The next test considered a discontinuous prescribed 

-2.00 ; i ’ i ’ ’ ’ L 
-2.00 -1.00 0.00 1.00 2.00 

x 

Fig. 3. L shaped domain with circular embedding surface and 
32 collocation points. 
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L Shape - 40 collocation pointa (3 raglona) 
2.00-i ! ’ ! ! j 

J 

-2.001 ; i ; ’ 
-2.00 -1.00 0.00 1 .oo 2.bo 
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Fig. 4. L shaped domain with three embedding circles and 40 
collocation points. 

temperature field which has a singularity in flux for a 
problem with a known separation of variables solution. 
Figure 5 shows results for a unit circle with a 
temperature discontinuity, T( 1,6) = 1 for 0 < 0 < 7r 
and = 0 for rr < 0 < 27r. Numerical results were found 
with 18,30 and 60 collocation points for r = O-999 and a 
range of values of 8. While the singularity in radial flux 
is reasonably well represented, the solution was not as 
accurate as those above. This might be improved by 
using a matching method involving the entire boundary 
such as a Gale&in method. Of course, as the solution 
point was moved further from the boundary, the 
accuracy of the solution improved considerably. 

Finally a test problem widely used as a benchmark 

EIM - Elg.“functlon 
‘O-O- 

o.o01.‘~‘;“..;“..;“..;““;....;.‘.’;”””.”I 
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 6d.O 90.0 

degrw 

Fig. 5. Radial flux at r = 0999 for unit circle with discontinu- 
ous prescribed boundary temperature of 1 for 0 < B < rr and 0 

for rr < 0 < 27r by an embedded eigenfunction expansion. 

Table 1 

x Y SY’mn Eigenfunction BEM 

0.5 0.5 0.2881 0.2863 0.2889 
-0.5 0.5 0.8018 0~8020 0.7986 
-0.5 -0.5 0900 1 0.9117 0.9119 

was considered. This is an L shaped region T = 0 on the 
right face, T = 1 on the left face and q = 0 on all other 
faces including the two sides of the reentrant corner. 
Calculations using a single embedding circle gave very 
poor results, indicative of the difficulty that the Trefftz 
method has with singular behavior. The reentrant corner 
in this case does have a steep temperature gradient in the 
benchmark numerical solution to which these results 
were compared. When a three region partition was 
introduced, it gave results which were in very good 
agreement with a numerical solution by Symn~,~ e.g. 
within about 2%, even at the reentrant corner. Table 1 
compares these numerical results at three interior field 
points corresponding to the centers of the three squares 
which make up the L shaped domain with 48 collocation 
points and three embedding circles of radius 15 of the 
subregion square sides to results from a standard 64 
element BEM program using ‘constant’ shape functions, 
i.e. mean values, and show excellent agreement. Table 2 
gives the solutions, using three regions, for the 
temperature along the two sides of the reentrant 
corner where a large temperature gradient is found; 
again the agreement with a 64 element BEM program is 
very good, as it was for the other boundary points. 

EMBEDDING EIGENFUNCTION EXPANSION 
SOLUTION - HELMHOLTZ EXAMPLE 

The major difference between the potential example and 
a Helmholtz problem lies in the form of the basic set of 
eigenfunctions used. These, in 2D, differ only in the 
radial dependence with the angular dependence still 
essentially a Fourier series. For an exterior problem, i.e. 
excluding r = 0, as occurs in wave scattering, the roles of 
r and r, are reversed in that r would be larger than r,, 
e.g. Shaw & Huang.” Furthermore, the dependent 
variable must vanish as r approaches itinity, i.e. the 
scattered or radiated field must be used, to avoid 
contributions from a closing circle at infinity in the 

Table 2 

x Y Emb. Eig. BEM 

0 -0.8 0.8954 0.9000 
0 -0.6 0.8812 0.8822 
0 -0.4 0.8531 0.8502 
0 -0.2 0.8047 0.7977 
0.2 0 0.4784 0.4768 
0.4 0 0.3534 0.3507 
0.6 0 0.2340 O-2311 
0.8 0 0.1170 0.1141 



62 S. C. Huang, R. P. Shaw 

original Green’s theorem. Then the basic set would be 

$,(r 7 19) = J&b e ) H;‘)(b) cos(p8) 7 

x .Zp(kre) Hd’)(kr) sin(@). , 

p=o,1,2 )‘.., (15) 

where r > r, = a. Thus the form for the source strength 
on the embedding boundary of constant radius is 
unchanged from the potential problem, i.e. 

n(re) = 2 A, cos(mf3,) + B,,, sin(m0,) on r, = a 
m=O 

(16) 

with the Green’s function for r > r, = a (the radius of 
the embedding circle, S,, ‘inside’ the original surface, S, 
given as, e.g. Morse & Feshbach4) 

W, 0; a, 64 

= (i/4)~~~cos(p)8-B,I)J,(kn)Hd’)(kr) (17) 
p=o 

Here eP is the Neumann function and is 1 if p = 0 and 2 
otherwise. Then the solution is given by 

UP7 0) = (V4) &Lo z{ A, cos(m0,) + B, sin@&)} 
e m-0 

~~~cos(plB-B,I)J,(ka)Hdl)(kr)bdB, 
p=o 

= (ir/2) T{om cos(m8) + pm sin(&‘)}H~‘)(kr) 
m=O 

(18) 

where CY, and pm are combinations of A,, B, and 
J, (ka) . The bothersome ‘fictitious interior eigenvalue’ 
problem, which arises at wavenumbers such that 
J,(ka) = 0, has been circumvented by this approach. 
This is not surprising since the Trefftz method, which is 
directly related to this approach, does not suffer from 
this difficulty. An example of a plane wave scattering by 
a circular cylinder was given by Shaw & Huang,” where 
no breakdown at these eigenvalues occurred, as 
occurred in the BEM method and the T Matrix 
method. This approach worked equally well on interior 
problems, e.g. obtaining eigenfrequencies for a closed 
domain, e.g. Shaw & Huang.” 

CONCLUSION 

The embedding integral method is seen to lead to a form 
of the Trefftz method when eigenfunction expansions 
are used for the approximate solution of this formula- 
tion. One of the major drawbacks to the Trefftz method 
in general (and its solution by collocation in particular) 

in its application to irregularly shaped geometries lies in 
the fact that a large number of terms in the expansion 
are required for accuracy in the geometrical representa- 
tion leading then to a possible large accumulation of 
errors and ‘high frequency oscillations’ between colloca- 
tion points, if the procedure converges at all. When this 
is viewed as an embedding integral however, the logical 
resolution of this difficulty lies in partitioning which 
provides much better results at a modest increase in the 
number of solution points, i.e. due to the added interior 
points, through a better match of the partitioned 
geometry to the original eigenfunction geometry. Such 
partitioning is particularly well suited to parallel pro- 
cessing since the coefficients for each partitioned domain 
may be solved simultaneously down separate pipelines. 
This partitioning has the added advantage of reducing 
the added ‘embedding’ volume which reduces the 
possibility of singularities occurring in the added 
region. The question of added singularities occurring 
outside of the original domain but within the extended 
domain has been examined to some extent by consider- 
ing a potential problem on a square for boundary 
conditions arising from a singularity near to but outside 
of the original domain. The resulting coefficients in the 
eigenfunction expansion showed rapid oscillation at 
higher modes which served as a warning that the method 
was inadequate. In principle, the eigenfunction expan- 
sion (Trefftz) method should still converge since the 
actual boundary conditions were bounded, but the 
embedding approach indicated where the difficulty lay, 
i.e. the singularity was included in the embedding 
domain. Attempts to remove this singularity by sub- 
tracting out a known solution caused by a similar 
nearby singularity, i.e. a ‘guess’ as to where the original 
lay, met with only limited success. 
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