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We prove that two n-by-nmatrices A and B have their rank-k numer-

ical ranges �k(A) and �k(B) equal to each other for all k, 1 ≤ k ≤
�n/2�+1, if and only if their Kippenhahn polynomials pA(x, y, z) ≡
det(xRe A+ yIm A+ zIn) and pB(x, y, z) ≡ det(xRe B+ yIm B+ zIn)
coincide. The main tools for the proof are the Li-Sze characteriza-

tion of higher-rank numerical ranges, Weyl’s perturbation theorem

for eigenvalues of Hermitian matrices and Bézout’s theorem for the

number of common zeros for two homogeneous polynomials.

© 2012 Elsevier Inc. All rights reserved.

For an n-by-n complex matrix A, its rank-k numerical range (1 � k � n) is, by definition,

�k(A) = {λ ∈ C : X∗AX = λIk for some n-by-k matrix X with X∗X = Ik}.
Motivated by investigations in connection with the quantum error correction, researchers started to

study the higher-rank numerical ranges in [2]. The research was then pursued in a flurry of papers

[4,3,15,10,12,11,6,5]. It is now known that �k(A), 1 � k � n, is always convex [15], and, moreover, it

consists of those λ’s in C for which Re (e−iθλ) � λk(Re (e−iθA)) for all real θ [10, Theorem 2.2]. Here,

and for our later discussions, we use Re X = (X + X∗)/2 and Im X = (X − X∗)/(2i) to denote the real

and imaginary parts of a finite matrix X , and, for an n-by-n Hermitian matrix Y , λ1(Y) � · · · � λn(Y)
denote its (ordered) eigenvalues. Note that the rank-one numerical range �1(A) coincides with the
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classical numerical range W(A) = {〈Ax, x〉 : x ∈ C
n, ‖x‖ = 1} of A, where 〈·, ·〉 and ‖ · ‖ are the

standard inner product and its associated norm in C
n.

The purpose of this paper is to determinewhen twomatrices of the same size have all their higher-

rank numerical ranges equal to each other. The following is the main theorem, which provides the

answer.

Theorem 1. The following conditions are equivalent for n-by-n matrices A and B:

(a) �k(A) = �k(B) for all k, 1 � k � �n/2� + 1,

(b) det(xRe A + yIm A + zIn) = det(xRe B + yIm B + zIn) for all complex x, y and z, and

(c) the eigenvalues of Re (e−iθA) and Re (e−iθB) coincide (with the same multiplicities) for all real θ .

Here �n/2� denotes the largest integer which is less than or equal to n/2. For an n-by-n matrix

X , we call pX(x, y, z) = det(xRe X + yIm X + zIn) the Kippenhahn polynomial of X . It is a degree-n

homogeneous polynomial in x, y and z with real coefficients.

Note that when the n-by-n matrices A and B are such that pA or pB is irreducible, the equality

of �1(A) and �1(B) already guarantees that pA and pB coincide (cf. [7, Corollary 2.4]). On the other

hand, the number �n/2� + 1 in Theorem 1(a) cannot be further reduced as the 3-by-3 matrices

A = diag (0, 1, 1) and B = diag (0, 0, 1) with �1(A) = �1(B) = [0, 1], pA(x, y, z) = z(x + z)2 and

pB(x, y, z) = z2(x+ z) show. Also, the conditions in Theorem 1 cannot be strengthened to the unitary

equivalence of A and B. For example, if

A =

⎡
⎢⎢⎢⎣

0 1

0 2

0

⎤
⎥⎥⎥⎦ and B =

⎡
⎢⎢⎢⎣

0 2

0 1

0

⎤
⎥⎥⎥⎦ ,

then �1(A) = �1(B) = {z ∈ C : |z| �
√

5/2}, �2(A) = �2(B) = {0}, �3(A) = �3(B) = ∅ and

pA(x, y, z) = pB(x, y, z) = z3 − (5/4)(x2 + y2)z, but A and B are not unitarily equivalent (cf. [16,

Example 4]). However, for certain special-type matrices, we do have the unitary equivalence.

Corollary 2. Let A and B be n-by-n matrices. If n = 2 or A and B are both normal or both companion

matrices, then the conditions in Theorem 1 are equivalent to the unitary equivalence of A and B.

Proof. It is well-known that if X =
⎡
⎣a c

0 b

⎤
⎦, then �1(X) equals the elliptic disc with foci a and b

and with minor axis of length |c|. Hence, for 2-by-2 matrices, �1(A) = �1(B) implies the unitary

equivalence of A and B. For general matrices, if pA(x, y, z) = pB(x, y, z) for all x, y and z, then plugging

in x = 1 and y = i yields det(A + zIn) = det(B + zIn) for all z, which implies that the eigenvalues

of A and B coincide (with the same algebraic multiplicities). In particular, if A and B are normal or

companion matrices, then obviously they are unitarily equivalent (in fact, equal in the latter case). �

To prepare for the proof of Theorem 1, we review some basic properties of the Kippenhahn polyno-

mials and numerical ranges. Recall that the complex projective plane CP
2 consists of the equivalence

classes of ordered triple [x, y, z] of complex numbers x, y and z which are not all equal to zero under

the equivalence relation: [x, y, z] ∼ [x′, y′, z′] if [x, y, z] = λ[x′, y′, z′] for some nonzero scalar λ.
The point [x, y, z] in CP

2 with z �= 0 corresponds to the point (x/z, y/z) in C
2 and, conversely, (u, v)

in C
2 corresponds to [u, v, 1] in CP

2. For a homogeneous polynomial p in x, y and z, the dual of the

algebraic curve p(x, y, z) = 0 in CP
2 is the curve

{[u, v,w] ∈ CP
2 : ux + vy + wz = 0 is a tangent line of p(x, y, z) = 0}.

It is known that the dual of the dual curve is the original one (cf. [14, Theorem 1.5.3]). They have

bearings on the numerical range because of Kippenhahn’s result [8]: the numerical range W(A) of an
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n-by-n matrix A equals the convex hull of the real points (u/w, v/w) of the dual curve of p(x, y, z) =
0. In the following, we also need Bézout’s theorem [9, Theorem 3.9], which counts the number of

intersection points of two algebraic curves: if two homogeneous polynomials p and q in x, y and z of

degrees m and n, respectively, have no common factor, then the number of common zeros of p and q is at

most mn.

We now proceed to prove Theorem 1. The main part is to show the implication (a)⇒(b). This is

done via a series of lemmas. Note that the Kippenhahn polynomial pA of an n-by-n matrix A can be

factored as the product of irreducible (real homogeneous) polynomials: pA = q
n1
1 · · · qnmm , where the

qj ’s are distinct and nj � 1 for all j. Under the condition in Theorem 1(a), we will show that each q
nj
j is

also a factor of pB and thus pA divides pB. Condition (b) then follows by symmetry. We start with the

following lemma dealing with an irreducible q having degree at least two.

Lemma 3. Let q be an irreducible real homogeneous polynomial in x, y and z with degree at least two. If

C is the curve in the plane consisting of the real points of the dual of q(x, y, z) = 0, then the convex hull of

C has no corner.

Recall that, for a nonempty compact convex subset� of the plane, a pointλ on the boundary of� is

a corner of� if� hasmore than one supporting lines passing through it; otherwise,λ is a differentiable

point of ∂�.

Proof of Lemma 3. Let λ be a corner of the convex hull � of C. Then there are some θ1 and θ2,

θ1 < θ2, such that x cos θ + y sin θ = Re (e−iθλ) is a supporting line of � for all θ in (θ1, θ2).

By duality, this implies that q(cos θ, sin θ, −Re (e−iθλ)) = 0 for all such θ ’s. On the other hand,

[cos θ, sin θ, −Re (e−iθλ)] is also a zero of the linear polynomialλ1x+λ2y+z, whereλ1 = (λ+λ)/2

and λ1 = (λ − λ)/(2i). Bézout’s theorem then implies that λ1x + λ2y + z is a factor of q, which con-

tradicts the irreducibility of q. Hence � cannot have any corner. �

Essentially the same arguments as above were used in [8] to prove that every corner ofW(A) for a
finite matrix A is an eigenvalue of A.

Another observation which we need is the following lemma, whose proof we omit.

Lemma 4. Let� be a nonempty nonsingleton compact convex subset of the plane. Let � = ∩θ∈[0,2π)Hθ ,

where Hθ = {x + iy ∈ C : x cos θ + y sin θ ≤ d(θ)} with θ �→ d(θ) continuous, and let λ be a point in

the boundary of �.

(a) If� is not a line segment andλ is a differentiable point of∂�, then some∂Hθ is the unique supporting

line of � which passes through λ.
(b) If � is not a line segment and λ is a corner of �, then there are θ1 and θ2 in [0, 2π) with θ1 < θ2

such that ∂Hθ1 and ∂Hθ2 are supporting lines of � and ∂Hθ1 ∩ ∂Hθ2 = {λ}. If we further require

that (θ2 − θ1) (mod π ) be maximal, then θ1 and θ2 are unique.

(c) If � is a line segment, then there are unique θ1 and θ2 in [0, 2π) with θ2 − θ1 = π such that

� ⊆ ∂Hθ1 ∩ ∂Hθ2 .

In the following, this will be applied for an n-by-n matrix A with � = �k(A) and Hθ = {x + iy ∈
C : x cos θ + y sin θ ≤ λk(Re (e−iθA))}, 1 ≤ k ≤ n. Note that in this case ∂Hθ is in general not a

supporting line of � nor the converse. One example is

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1/
√

2 −1/2 1/(2
√

2) 1/4

−1/
√

2 −1/2 −1/(2
√

2)

1/
√

2 −1/2

1/
√

2

⎤
⎥⎥⎥⎥⎥⎥⎦
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as it is known that �2(A) has exactly two corners, around which the ∂Hθ ’s and the supporting lines

are completely different (cf. [13, Example 7]).

We now proceed to obtain a characterization of pA with the power of an irreducible factor of degree

at least two in terms of the relative positions of the �k(A)’s.

Lemma 5. Let A be an n-by-n matrix, q be an irreducible real homogeneous polynomial in x, y and z with

degree at least two, and C be the real part of the dual curve of q(x, y, z) = 0. Then qm divides pA (m ≥ 1) if
and only if ∂�k0(A)∩∂�k0−1(A)∩· · ·∩∂�k0−m+1(A) contains an arc of C for some k0, 1 ≤ k0 ≤ �n/2�.

A result we need in the proof is Weyl’s perturbation theorem for (ordered) eigenvalues of Her-

mitian matrices (cf. [1, Theorem VI.2.1]): if X and Y are n-by-n Hermitian matrices with eigenvalues

λ1(X) ≥ · · · ≥ λn(X) and λ1(Y) ≥ · · · ≥ λn(Y), respectively, then |λj(X) − λj(Y)| ≤ ‖X − Y‖ for all

j, 1 ≤ j ≤ n.

Proof of Lemma 5. Let � be the convex hull of C. Assume first that qm divides pA. Let k0 be the

largest integer for which� is contained in �k0(A). Since� ⊆ �1(A) by Kippenhahn’s result, we have

k0 ≥ 1. On the other hand, since ��n/2�+1(A) is either a singleton or an empty set [2, Proposition

2.2], if k0 > �n/2�, then � ⊆ ��n/2�+1(A) and hence � is a singleton. By duality, this says that q is

of degree one, contradicting our assumption that q has degree at least two. Thus 1 ≤ k0 ≤ �n/2�.
Note that, by Lemma 3, � has no corner. Hence, for each real θ , � has a unique supporting line

x cos θ + y sin θ = d(θ) with x cos θ + y sin θ ≤ d(θ) for all x + iy in �. Since � is not contained

in �k0+1(A), there is some λ0 in � \ �k0+1(A). By the Li-Sze characterization [10, Theorem 2.2] of

�k0+1(A), we have Re (e−iθ0λ0) > αk0+1(θ0) for some θ0. Here αk(θ) denotes λk(Re (e−iθA)) for

1 ≤ k ≤ n and θ in R. Weyl’s perturbation theorem then implies that there is some δ > 0 such that

Re (e−iθλ0) > αk0+1(θ) for all θ in (θ0 − δ, θ0 + δ). On the other hand, since λ0 is in� and� is con-

tained in�k0(A),wealsohaveRe (e−iθλ0) ≤ d(θ) ≤ αk0(θ) for allθ . Thusαk0+1(θ) < d(θ) ≤ αk0(θ)
for all θ in (θ0 − δ, θ0 + δ). Since [cos θ, sin θ, −d(θ)] is a zero of q(x, y, z) by duality, the fact that

qm divides pA implies that [cos θ, sin θ, −d(θ)] is a zero of pA(x, y, z) with multiplicity at leastm. We

infer from above that d(θ) = αk(θ) for all k, k0 − m + 1 ≤ k ≤ k0, and all θ in (θ0 − δ, θ0 + δ). We

then obtain from � ⊆ �k(A) that x cos θ + y sin θ = d(θ) is the unique supporting line of �k(A) for
all such k’s and θ ’s. Hence ∂�k0(A) ∩ ∂�k0−1(A) ∩ · · · ∩ ∂�k0−m+1(A) contains an arc of C.

For the converse, if ∂�k0(A) ∩ · · · ∩ ∂�k0−m+1(A) contains an arc of C, then the supporting line

x cos θ + y sin θ = d(θ) of � is also a supporting line of �k(A) for all k, k0 − m + 1 ≤ k ≤ k0,

and all θ in some (θ1, θ2). This implies by the Li-Sze characterization [10, Theorem 2.2] of �k(A) and
Lemma 4(a) that d(θ) = αk(θ). Hence [cos θ, sin θ, −d(θ)] is a zero of pA(x, y, z)withmultiplicity at

least m for all such θ ’s. Since [cos θ, sin θ, −d(θ)] is a zero of q(x, y, z) for all θ by duality, we obtain

that pA(x, y, z) and q(x, y, z) have infinitely many common zeros of the form [cos θ, sin θ, −d(θ)].
Bézout’s theorem yields that the irreducible q divides pA. Next we claim that the number of θ ’s in

[0, 2π) for which −d(θ) is a zero of q(cos θ, sin θ, z) with multiplicity at least two is finite. Indeed, if

otherwise, then p(x, y, z) ≡ ∂q(x, y, z)/∂z and q(x, y, z) have infinitely many common zeros of the

form [cos θ, sin θ, −d(θ)]. Since q is irreducible, Bézout’s theorem implies that q divides p, which is

impossible for the degree of q(cos θ, sin θ, z) is one bigger than that of p(cos θ, sin θ, z). Hence again

we can apply Bézout’s theorem to pA/q and q to obtain that q divides pA/q. Repeating these arguments

yield that q divides pA/q
j for all j, 0 ≤ j ≤ m − 1. Thus qm divides pA, completing the proof. �

Corollary 6. An n-by-n matrix A is normal if and only if �k(A) is a (closed) polygonal region for all k,

1 ≤ k ≤ n.

Here a polygonal region is one whose boundary is a polygon. In the degenerate case, this may be

an empty set, a singleton or a line segment.
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Proof of Corollary 6. The necessity follows from [10, Corollary 2.4]. The sufficiency is an easy conse-

quence of Lemma 5 since the latter implies that pA has only linear factors. �

Weremark that, in relation to thepreceding corollary, somegeometric properties of thehigher-rank

numerical ranges of normal matrices have been studied in [5].

The next corollary is another consequence of Lemma 5.

Corollary 7. Let A and B be n-by-n matrices with �k(A) = �k(B) for all k, 1 � k � �n/2� + 1. Then pA
and pB contain the same powers of irreducible factors with degrees at least two.

To show that pA and pB contain the same powers of linear factors under the above conditions, we

need a characterization, analogous to the one in Lemma 5, for powers of linear factors. Unfortunately,

a complete analog of Lemma 5 is not true. We have only had the following necessary condition.

Lemma 8. Let A be an n-by-n matrix. If (ax + by + z)m divides pA(x, y, z), where a and b are real and

m � 1, then there is a k0, k0 � m, such that a + bi is a corner of �k(A) for all k, k0 − m + 1 � k � k0,

and is not in �k0+1(A).

Proof. Let k0 = max{k � 1 : a + bi is in �k(A)}. Then a + bi is in �k(A) for all k, 1 ≤ k ≤ k0, and

is not in �k0+1(A). Because a + bi is not in �k0+1(A), there is some θ0 such that a cos θ0 + b sin θ0 >

αk0+1(θ0) ≡ λk0+1(Re (e−iθ0A)). By Weyl’s perturbation theorem, we obtain a cos θ + b sin θ >
αk0+1(θ) on (θ0 − δ, θ0 + δ) for some δ > 0, where, for 1 � k � n and θ in R, αk(θ) denotes

λk(Re (e−iθA)). On the other hand, a + bi being in �k0(A) implies that a cos θ + b sin θ � αk0(θ) for
all real θ . Since [cos θ, sin θ, −(a cos θ + b sin θ)] is a zero of (ax + by + z)m and hence a zero of

pA(x, y, z)withmultiplicity at leastm, a cos θ +b sin θ is an eigenvalue of Re (e−iθA)withmultiplicity

at leastm. Hencek0 ≥ m anda cos θ+b sin θ = αk(θ) for allk,k0−m+1 � k � k0, on (θ0−δ, θ0+δ).
This means that a + bi is a corner of �k(A) for all such k’s. �

The next example shows that the converse of the assertion in Lemma8 is not necessarily true. Recall

that, for any subset � of the plane, �∧ denotes its convex hull.

Example 9. Let A = diag (1, i, −1, −i, 1/2, i/2, −1/2, −i/2, (1+ i)/3). Then �1(A) = {±1, ±i}∧,
�2(A) = {±1/2, ±i/2, (±1± i)/3}∧,�3(A) = {0, 1/4, i/4, (1+ i)/3}∧,�4(A) = {0} and�k(A) =
∅ for 5 � k � 9 (cf. Fig. 1). Hence (1+ i)/3 is a corner of�2(A) and�3(A), but ((1/3)x+(1/3)y+z)2

does not divide pA(x, y, z) = (x2 − z2)(y2 − z2)((1/4)x2 − z2)((1/4)y2 − z2)((1/3)x+ (1/3)y+ z).

For an n-by-nmatrix A and 1 ≤ 	 ≤ �n/2�, let
V	(A) = {a + bi : ax + by + z is a real linear factor of pA(x, y, z) with multiplicity

m, 1 ≤ m ≤ �n/2� − 	 + 1, and a + bi ∈ �	+m−1(A) \ �	+m(A)}.
Weremark that ifax+by+z is a real linear factor ofpA(x, y, z)withmultiplicitym, then Lemma8yields

that there is a k0, k0 � m, such that a+bi is a corner of�k(A) for all k, k0−m+1 � k � k0, and is not in

�k0+1(A). If,moreover, k0 ≤ �n/2�or, equivalently, a+bi �∈ ��n/2�+1(A), then a+bi is inVk0−m+1(A).
Conversely, if a + bi is in V	0(A) and a + bi ∈ �k0(A) \ �k0+1(A), then the definition of V	0(A) yields
that a + bi �∈ ��n/2�+1(A), 	0 ≤ k0 ≤ �n/2� and ax + by + z is a real linear factor of pA(x, y, z)
with multiplicity k0 − 	0 + 1. Obviously, the V	(A)’s and ��n/2�+1(A) are mutually disjoint and

V1(A)∪V2(A)∪· · ·∪V�n/2�(A)∪��n/2�+1(A) = {a+bi : ax+by+z is a real linear factor of pA(x, y, z)}.
For the proof of the latter, note that��n/2�+1(A) is either empty or a singleton (cf. [2, Proposition 2.2]).

Henceweneedonly showthat if��n/2�+1(A) = {a+bi}, thenax+by+z is a factorofpA(x, y, z). Indeed,

in this case, [cos θ, sin θ, −λ�n/2�+1(Re (e−iθA))] is a zero of both pA(x, y, z) and ax+by+z for all real

θ by the Li-Sze characterization of ��n/2�+1(A). The assertion then follows from Bézout’s theorem. As
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1-1

i

-i

1/2-1/2

-i/2

i/2

1/40

i/4
(1+i)/3

(1-i)/3

(-1+i)/3

(-1-i)/3

1(A) 

2(A) 

3(A) 
x

y

Fig. 1. Higher-rank numerical ranges of A.

an example, in Example 9, we have V1(A) = {±1, ±i}, V2(A) = {±1/2, ±i/2}, V3(A) = {(1 + i)/3}
and V4(A) = ∅.

The next lemma would help us to conclude the proof of Theorem 1.

Lemma 10. Let A and B be n-by-n matrices with �k(A) = �k(B) for all k, 1 � k � �n/2� + 1. Then

V	(A) = V	(B) and λ	(Re (e−iθA)) = λ	(Re (e−iθB)) for all 	, 1 ≤ 	 ≤ �n/2�, and θ in R.

Proof. For 1 ≤ k ≤ n and real θ , let αk(θ) = λk(Re (e−iθA)) and βk(θ) = λk(Re (e−iθB)). We now

prove our assertion by induction on 	.
If 	 = 1, then, since A and B have the same numerical range, we have α1(θ) = β1(θ) for all real θ .

We now check that V1(A) ⊆ V1(B). Indeed, if a + bi ∈ V1(A) and ax + by + z is a real linear factor of

pA(x, y, z) with multiplicity m, 1 ≤ m ≤ �n/2�, then Lemma 8 says that a + bi is a corner of �k(A),
1 ≤ k ≤ m, and is not in�m+1(A). Since�k(A) = �k(B) for all k, 1 � k � �n/2�+1, andm ≤ �n/2�,
we obtain that a + bi is also a corner of �k(B) for 1 � k � m and is not in �m+1(B). As a + bi is a

corner of �1(B), it is an eigenvalue of B and ax+ by+ z divides pB(x, y, z). Moreover, there are θ1 and

θ2, θ1 < θ2, such that a cos θ + b sin θ = β1(θ) for all θ in (θ1, θ2). On the other hand, a + bi being

in �m(B) implies that a cos θ + b sin θ � βm(θ) for all real θ by the Li-Sze characterization of �m(B).
We thus have a cos θ +b sin θ = β1(θ) = · · · = βm(θ) and therefore (a cos θ +b sin θ + z)m divides

pB(cos θ, sin θ, z) for θ in (θ1, θ2). Using Bézout’s theorem repeatedly,we conclude that (ax+by+z)m

divides pB(x, y, z). This means that ax + by + z is a real linear factor of pB(x, y, z) with multiplicity

at least m. But since a + bi ∈ �m(B) \ �m+1(B), 1 ≤ m ≤ �n/2�, by Lemma 8 and the definition of

V1(B), we deduce that ax + by + z is a real linear factor of pB(x, y, z) with multiplicitym and a+ bi is

in V1(B). Therefore, we have V1(A) ⊆ V1(B). By symmetry, we also obtain V1(B) ⊆ V1(A). Hence we

conclude that V1(A) = V1(B).
Next assume that our assertion is true for all	, 1 ≤ 	 < 	0, and	0 ≤ �n/2�.Weprove its validity for

	0. Firstly, we check that α	0(θ) = β	0(θ) for all real θ . Indeed, if otherwise, then we have α	0(θ0) �=
β	0(θ0) for some θ0.Without loss of generality,wemay assume thatα	0(θ0) < β	0(θ0).Weyl’s pertur-

bation theorem then yields that α	0(θ) < β	0(θ) for all θ in some neighborhood I ≡ (θ0 − δ, θ0 + δ)
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of θ0 (δ > 0). Since β	0(θ) is an eigenvalue of Re (e−iθB), we have pB(cos θ, sin θ, −β	0(θ)) = 0 for

all real θ . Note that pB has only finitely many irreducible factors. Thus there is some irreducible factor

q of pB and an infinite subset I1 of I such that q(cos θ, sin θ, −β	0(θ)) = 0 for all θ in I1.

If q is of degree at least two, then, by Corollary 7, q is also a factor of pA. Hence pA(cos θ, sin θ,
−β	0(θ)) = 0 and thusβ	0(θ) is an eigenvalue of Re (e−iθA) for all θ ∈ I1. Moreover, by the induction

hypothesis, we have α	0−1(θ) = β	0−1(θ) ≥ β	0(θ) > α	0(θ) for all θ ∈ I, and thus β	0(θ) =
α	0−1(θ) = β	0−1(θ) > α	0(θ) and q(cos θ, sin θ, −α	0−1(θ)) = 0 for all θ in I1. Let m be the

multiplicity of q(x, y, z) in pA(x, y, z). Then α	0(θ) < α	0−1(θ) = · · · = α	0−m(θ) for all θ ∈ I1.

The induction hypothesis says that α	(θ) = β	(θ) for all 	, 1 ≤ 	 < 	0, and all real θ , and thus

β	0−m(θ) = · · · = β	0−1(θ) = β	0(θ) for all θ ∈ I1. Since the set I1 is infinite, using Bézout’s

theorem repeatedly (as in the proof of Lemma 5), we obtain that qm+1 divides pB. This means that q is

an irreducible factor of pB withmultiplicity at leastm+1, which contradicts the assertion of Corollary

7. Hence q must be linear.

Let q(x, y, z) = ax+by+z. Thenα	0(θ) < β	0(θ) = a cos θ+b sin θ for all θ ∈ I1, andhence a+bi

is not in�	0(A) = �	0(B) by the Li-Sze characterization of �	0(A). This implies that a+ bi is in V	(B)
for some 	 < 	0. The induction hypothesis yields that a + bi is also in V	(A) (= V	(B)). In particular,

ax+by+ z is a real linear factor of pA(x, y, z). Hence pA(cos θ, sin θ, −β	0(θ)) = 0 and thusβ	0(θ) is

an eigenvalue of Re (e−iθA) for all θ ∈ I1. Moreover, by the induction hypothesis, we have α	0−1(θ) =
β	0−1(θ) ≥ β	0(θ) > α	0(θ) for all θ ∈ I. This forces thatα	0−1(θ) = β	0(θ) > α	0(θ) for all θ ∈ I1.

Letm be themultiplicity of ax+ by+ z in pA(x, y, z). Then α	0(θ) < α	0−1(θ) = · · · = α	0−m(θ) for
all θ ∈ I1. The induction hypothesis implies thatβ	0−m(θ) = · · · = β	0−1(θ) = β	0(θ) for all θ ∈ I1.

Using Bézout’s theorem repeatedly, we obtain that (ax + by + z)m+1 divides pB(x, y, z). This means

that ax+by+ z is a linear factor of pB(x, y, z)withmultiplicity at leastm+1. On the other hand, since

a+ bi ∈ V	(A) = V	(B), under Lemma 8 and our assumption, a+ bi is a corner of �k(A) = �k(B) for
	 � k � 	 + m − 1 and is not in �	+m(A) = �	+m(B). Hence the definition of V	(B) yields that the
multiplicity of ax + by + z in pB(x, y, z) is m, a contradiction. Thus α	0(θ) = β	0(θ) for all real θ as

asserted.

We now show that V	0(A) ⊆ V	0(B). Suppose that a + bi ∈ V	0(A) and ax + by + z is a real

linear factor of pA(x, y, z) with multiplicity m. Lemma 8 yields that a + bi is a corner of �k(A) for

	0 � k � k0 and is not in �k0+1(A), where k0 = 	0 + m − 1. Note that a + bi �∈ ��n/2�+1(A)
implies k0 ≤ �n/2�. Since �k(A) = �k(B) for all k, 1 ≤ k ≤ �n/2� + 1, a + bi is also a corner

of �k(B) = �k(A) for 	0 � k � k0 and is not in �k0+1(B) = �k0+1(A). The former implies

that a cos θ + b sin θ � αk0(θ), βk0(θ) for all real θ while the latter, by Lemma 4(b) and (c), that

a cos θ0 + b sin θ0 > αk0+1(θ0), βk0+1(θ0) for some common θ0, both by the Li-Sze characterization

of the higher-rank numerical ranges. Weyl’s perturbation theorem then yields that a cos θ + b sin θ >
αk0+1(θ), βk0+1(θ) for all θ in some neighborhood I ≡ (θ0 − δ, θ0 + δ) of θ0 (δ > 0). Since (ax +
by+ z)m divides pA(x, y, z), a cos θ + b sin θ appears asm (= k0 − 	0 + 1) values of the αk(θ)’s. Thus
a cos θ + b sin θ = αk0(θ) = · · · = α	0(θ) for θ in I. Since we have proved that α	0(θ) = β	0(θ) for
all real θ , thus a cos θ + b sin θ = β	0(θ) for all θ in I. It follows that a cos θ + b sin θ = βk0(θ) =
· · · = β	0(θ) for θ in I. Using Bézout’s theorem repeatedly, we obtain that (ax + by + z)m divides pB.

This means that ax + by + z is a real linear factor of pB(x, y, z) with multiplicity at leastm. Moreover,

from the definition of the V	(B)’s, a + bi ∈ �	0+m−1(B) \ �	0+m(B) implies that a + bi ∈ V	1(B) for
some 	1 ≤ 	0. If 	1 < 	0, the inductionhypothesis yields that a+bi is also inV	1(A), which contradicts

the mutual disjointness of the V	(A)’s. Hence we conclude that 	1 = 	0 or a+ bi ∈ V	0(B) as desired.
For the converse, interchanging A with B in the above arguments, we also obtain V	0(B) ⊆ V	0(A).
Thus V	0(A) = V	0(B), completing the proof. �

We are now ready to prove Theorem 1.

Proof of Theorem 1. The implication (b)⇒(c) is trivial and the implication (c)⇒(a) follows from

the Li-Sze characterization of the higher-rank numerical ranges. We need only prove (a)⇒(b). Sup-

pose that q(x, y, z) is an irreducible factor of pA(x, y, z) with multiplicity m. If q is of degree at least

two, then Corollary 7 implies that q(x, y, z) is also an irreducible factor of pB(x, y, z) with multi-
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plicity m. Assume next that q is of degree one, say, q(x, y, z) = ax + by + z. If a + bi is not in

��n/2�+1(A), then a + bi is in V	0(A) and a + bi ∈ �	0+m−1(A) \ �	0+m(A) for some 	0 with

	0 + m ≤ �n/2� + 1. Lemma 10 and the condition in (a) implies that a + bi is also in V	0(B) and

a + bi ∈ �	0+m−1(B) \ �	0+m(B). Hence ax + by + z is also a factor of pB(x, y, z) with multi-

plicity m. Therefore, if ��n/2�+1(A) is empty, then, since pA and pB have the same degree, we have

pA = pB.

On the other hand, if ��n/2�+1(A) is nonempty, then it must be a singleton, say, ��n/2�+1(A) =
{c + di}. We have ��n/2�+1(B) = ��n/2�+1(A) = {c + di}, and cx + dy + z is a real linear factor of

both pA(x, y, z) and pB(x, y, z) (cf. the paragraph after Example 9). Since the degrees of pA and pB co-

incide,we infer fromwhatwere proved before that pA(x, y, z) = pB(x, y, z), completing the proof. �

The study of the higher-rank numerical ranges is useful in understanding the structure of matrices

in general. How special features of the former and properties of the latter are related is worthy of

further explorations. For example, what can be inferred about a matrix A if some of its �k(A)’s have
a common corner or a common line segment on their boundaries? and, conversely, which matrix

A has such common corners or common line segments? The interplay between them should make

interesting research topics.
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