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ABSTRACT 

Principles of the photorefractive perceptron learning algorithm are 
described. The influences of the finite response time and hologram 
erasure of the photorefractive gratings on the convergence property of 
the photorefractive perceptron learning are discussed. A novel neural 
network which could resolve these constraints is presented. It is a hybrid 
system which utilizes the photorefractive holographic gratings to imple- 
ment the inner product between the input image and the interconnection 
matrix. A personal computer is used for storing the interconnection 
matrix and the updating procedure, and it also functions as a feedback 
means during the learning phase. After training the weight vectors are 
recorded in the volume hologram of an optical processor. This novel 
method combines the advantages of the massive parallelism of optical 
systems and the programmability of electronic computers. Experimental 
results of image classification are presented. It shows that the system 
cduld correctly classify the input patterns into one of the two groups 
afrer training on four examples in each group during successive 
iterations. The system has been extended to perform multi-category 
image classification. 

1 INTRODUCTION 

In recent years neural networks have been extensively studied.‘,’ The 
motivation of this research is stimulated by the interest to look for a 
computing architecture which shares some characteristics of the biolog- 
ical system such that it could address problems such as pattern 
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recognition that animals do well but current computers do not. The 
most interesting property of neural networks is the capability of 
learning. During the learning stage, the network is exposed to a proper 
set of training samples with an appropriate training algorithm. The 
networks then adjust their interconnections until each input produces 
the desired response. After the training is complete the network could 
be used for information processing such as pattern classification, 
associative memory and speech recognition. Several types of neural 
networks have been proposed and demonstrated successfully.%-’ 

On the other hand, optics has been considered as one of the 
technologies for the implementation of neural networks because the 
parallel nature of optical systems matches well with that of the neural 
network. Furthermore, recent progress in photorefractive holography 
provides a very promising technique for realizing the dynamic intercon- 
nections in the neural network. Several optical systems have been 
proposed and demonstrated. C10 In these systems, the learning behavior 
of the neural network is simulated by updating the holographic dynamic 
gratings stored in the photorefractive crystal, which responds in real 
time to the input light intensity distribution. Several problems are 
encountered in the implementation of photorefractive perceptron 
networks. First, the dynamic characteristics of the photorefractive 
grating imply that the stored interconnections are, in addition to being 
updated by the particular patterns, subject to erasure problems during 
the training cycles. This results in a restriction to the period of exposure 
time in the learning process. The mathematical derivation of condi- 
tional convergence of this type of neural network was discussed 
previously.1**‘2 It was shown that the sufficient condition for the learning 
iteration to converge is that the exposure time in each learning iteration 
be much less than the time constant of the photorefractive crystal. 
Otherwise, the learning may not converge to a solution. Furthermore, 
after the training the interconnection weights of the network, which are 
stored in the photorefractive crystal, will decay during the read-out 
illumination. Finally, the photorefractive hologram will be erased 
completely. Therefore, it is difficult to use the same crystal volume for 
training for the recognition of a new category of images. In other 
words, the system is difficult to extent to a multi-class case. 

In this paper, we present a hybrid method for implementing the 
perceptron algorithm. It can combine the merits of parallelism of optics 
and the programmability and non-volatile memory of electronics. In the 
training stage, the optical part performs the inner product operation of 
the perceptron. The learning algorithm and the interconnection weights 
are stored in a personal computer. The influences of the finite response 
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time and hologram erasure problems on learning behavior in the pure 
photorefractive network can be avoided. Furthermore, the interconnec- 
tion is easy to copy and can be used for post-processing. After training, 
the final weights are transformed into a volume holographic memory in 
the photorefractive crystal by the angular multiplexing technique. This 
holographic memory can then be used for optical image classification. 
In Section 2, principles of the photorefractive optical perceptron are 
first reviewed. The problem of hologram erasure and its effect on the 
convergence property of the network are addressed. In Section 3, the 
hybrid system is presented. The inner product is performed optically 
using a thin photorefractive crystal plate. On the other hand, the 
learning algorithm and the interconnection weights are stored in a 
personal computer. The technique of using a liquid crystal television 
(LCTV) for performing the bipolar inner product is described. In 
Section 4, experimental results on using the system for real-time 
two-category pattern classification are presented. Extension of the 
system for multi-class image classification is also described. Finally, in 
Section 5, conclusions are presented. 

2 THE PHOTOREFRACTIVE NEURAL NETWORK 

In this paper we consider a single layer perceptron network.13 The 
network consists of N-input units, an N-dimensional interconnection 
weight vector w and one output neuron. Typically, the network is 
trained to classify a set of training patterns {x,, x2, . . . , x,} into two 
classes Cl and C2, depending on whether the value of the inner product 
Iw . x,,j is greater or smaller than the threshold value 8. During the 
learning stage, the network is trained according to the learning 
algorithm to find an appropriate w for the desired classification. 

Several types of photorefractive (PR) neural networks have been 
proposed and demonstrated for the .implementation of the perceptron 
learning algorithm. In these systems the interconnection weights are 
recorded as holographic gratings stored in PR crystals such as LiNb03 
and BaTiO,. The PR crystals respond in real-time to the input light 
intensity distribution, with response time in the range of several tens of 
milliseconds to a few minutes under an illumination intensity approxim- 
ately in the range of Watts per cm 2. This finite response property 
provides the capability for updating the interconnection weights during 
the learning iterations. The quantity of the weight change for each step 
can be expressed as a(p)[l - e-“‘lx(p), where r is the writing time 
constant of the crystal, t is the exposure time for each pattern, cr(p) is 
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the updating or error signal and x(p) is the input pattern at the pth 
iteration. Since all the holographic gratings are stored in the same 
volume of the photorefractive crystal, the previously recorded gratings 
are also illuminated and decayed when an exposure is made to either 
add or subtract weights to the crystal. Thus, the updating rule of the 
photorefractive perceptron can be described by the following 
expression: 

w(p + 1) = w(P)e- In(p)lrir + a(p)[l - e-“‘lx(p), (1) 

where w(p) is the interconnection weight vector at the pth iteration and 
the updating signal LX(~) is expressed by: 

1 

0 if x(p) is correctly classified 

a(p) = 1 if x(p) E Cl, but /w(p) .x(p)] < 0 (2) 
-1 if x(p) E C2, but /w(p) .x(p)1 > 13 

Note that, in general, the decay time constant for erasing photorefrac- 
tive holograms and the writing time constant for recording the 
holograms may be different. The convergence behavior of this case has 
been shown in Ref. 12. The crystal that we used for the training 
experiments was BaTiO,, of which the writing and decay time constants 
are almost equal. Hence, for a simpler illustration, the two time 
constants are assumed to be equal in eqn (1). Also note that, in the 
above expression, the absolute value of the inner product is utilized for 
comparison with the threshold. This is because the photodetectors 
detect the intensity rather than the amplitude of the light beam. The 
result is that the threshold value 8 for the classification can only be 
chosen to be positive. Thus, a proper selection of 8 is crucial for the 
learning procedure. If the value of 0 is set too low then the patterns in 
the C2 class will be easily misclassified as class Cl, and if 8 is chosen too 
high then it is difficult to obtain a correct w for classifying the Cl 
patterns. In either case, the learning will take a large number of 
iterations to converge or will never converge. 

We present the result of computer simulation. The eight patterns 
shown in Fig. 1 are used as the training set. The four roman letters 
{A, C, S, V} are specified as class Cl and the four Arabic numbers 
{2,3,4,5} are specified as class C2. The sampling grid of each pattern 
for the computer simulation is 32 X 32 pixels. The patterns are 
presented one by one into the system and the value of the inner product 
jw . XI is compared with 8. If the classification is correct then the next 
pattern is presented; if it is misclassified then the interconnection weight 
is updated using eqn (1). Each update is called an iteration. The check 
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Fig. 1. The training system. 

of the eight training patterns is called one cycle. The network is said to 
be converged when all the eight patterns are correctly classified in a 
single cycle. The simulation results are shown as the curve with open 
circles in Fig. 2. The figure shows the number of training cycles for the 
photorefractive perceptron as functions of the normalized threshold 
value 8, where 8 is normalized, without loss of generality, with respect 
to the inner product of the character IA. A(. It is seen that the network 
converges within six training cycles when 8 is chosen between O-04 and 
0.25. On the other hand, the number of training cycles increases rapidly 
when 8 is outside this range. Specifically, if 8 is smaller than O-03 or 
larger than O-27 then the error rate remains 100% for all training cycles 

-+- simulation --•-- experiment 

24 

# 
6 

Threshold 

Fig. 2. The number of training cycles as functions of the normalized threshold values. 
Open circle curve: computer simulations. Filled circle curve: optical experiments. 
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Fig. 3. Optical system for the implementation of the photorefractive perceptron. 

and the system does not converge. This is in agreement with our 
prediction in the previous paragraph that the threshold value must be 
selected in a proper region for the unipolar photodetectors. 

An optical system that was designed to implement the learning 
algorithm of eqn (1) is shown in Fig. 3. The detailed principle and 
experimental demonstration of this system have been described in Refs 
10 and 13. The system utilizes a photorefractive BaTiO, crystal for 
recording the holographic interconnection weight vectors. Shutters Sl, 
S2 and S3 and two beam-splitters form a double Mach-Zehnder 
interferometer for realizing the addition and erasure of the holographic 
gratings by using the Stoke theorem for wave reflection and transmis- 
sion. This interferometer provides a phase control of either 0 (with 
shutters Sl, S3 opened and S2 closed) or z (with shutters S2, S3 opened 
and Sl closed) phase-shift relative to the initial reference interference 
fringes. For example, if O-phase was chosen as the reference, then 
subtraction of the interconnection strength in the BaTiO, crystal can be 
achieved by using the n-phase setting in the subsequent exposures, and 
addition can be achieved by using the original phase setting (O-phase). 
By combining these two operations, the learning algorithm of the 
photorefractive perceptron has been implemented. In our optical 
experiment, the patterns shown in Fig. 1 are used as the training set. In 
the training phase, each of the training patterns is sent one by one by 
the computer to the LCTV as the input to the perceptron. The 
magnitude of the inner product of the input pattern and the intercon- 
nection weights is detected by the photodetector and then compared 
with the desired value which is stored in the personal computer. The 
error signal is generated and sent by the computer to turn on the 
appropriate shutters (S3 and Sl or S2) for updating the weights. The 
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learning procedure continues until all the patterns are correctly 
classified. Experimental results are shown as the curve with filled circles 
in Fig. 2. It is seen that the number of cycles leading to convergence in 
the optical experiment match well with that of the simulation results, 
which again confirms our discussion on the restriction of the threshold 
value. 

Next, we discuss the effect of the learning time in each iteration on 
the convergence of the photorefractive learning network. It is interest- 
ing to see from eqn (1) that the existing interconnection weight of w(k) 
is reduced by a hologram decay factor exp (--t/r) because of the 
illumination during each of the weight changes. It is clear that the 
exposure time t plays an important role in determining the magnitude 
of the incremental weight change, which is in proportion to [l - exp 
(-t/r)], as well as the weight decay factor. The derivation for the 
conditional convergence of photorefractive perceptron learning was 
given in Refs 11 and 12. Briefly, the perceptron learning will converge 
provided that the exposure time t is short relative to the time constant z 
of the crystal. When the exposure time is too long, then the photore- 
fractive perceptron learning algorithm may not converge to a solution. 
We have to note that the network discussed in this paper is with a 
unipolar photodetector which detects the intensity of the output, 
whereas the results derived in Refs 11 and 12 are based on the learning 
algorithm that the photodetectors are bipolar and measure the ampli- 
tude of the inner products. In the long exposure time region, both 
networks have the same characteristics for either unipolar or bipolar 
detections, because in this region the holograms of w(k) decay 
completely and there is no memory for learning. In the short time 
region, however, the convergences of the two networks are different.14 
In the bipolar case discussed in Refs 11 and 12, the network can 
converge for small intervals of exposure, e.g. t/z = 0.0005 for 8 = 0. On 
the other hand, for the unipolar case described in eqn (l), the network 
cannot converge if the exposure time is too short. The curve with open 
circles in Fig. 4 represents the results of computer simulation. The 
training patterns shown in Fig. 1 are used in this simulation. In Fig. 4 
the number of training cycles leading to convergence is shown as a 
function of the normalized exposure time t/z. It is seen that when t/z is 
smaller than 0.05 the number of training cycles increases rapidly and 
finally the network may not converge. Optical experiments using the 
systen of Fig. 3 are performed and the results are shown as the curve 
with filled circles in Fig. 4. The experimental results are in good 
agreement with the computer simulations. 

The previous discussion shows that there are two factors that affect 
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Fig. 4. The number of training cycles as functions of the normalized exposure time. 
Open circle curve: computer simulations. Filled circle curve: optical experiments. 

the convergence behavior of the unipolar photorefractive perceptrons: 
the photodetector threshold value 8 and the normalized exposure time 
t/z. Only an appropriate selection of these factors can lead to 
convergence. One possible way to avoid the influence imposed by the 
exposure time is using an algorithm with a learning rule which does not 
depend on the updating time t. Furthermore, in order to release the 
constraint by the threshold value, bipolar signals should be used for 
comparing with the threshold value.14 Conventional perceptron learning 
provides these properties. In the next section we describe a hybrid 
method for the implementation of the conventional perceptron 
algorithm. 

3 THE ARCHITECTURE OF THE HYBRID PERCEPTRON 

The algorithm of conventional perceptron learning can be written as” 

W(P + 1) = W(P) + &MP), (3) 
where 

0 if x(p) is correctly classified 

4P) = 1 if x(p) E Cl, but w(p). x(p) < 8 

-1 if x(p) E C2, but w(p). x(p) > 8 

(4) 
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R 

Fig. 5. The joint transform correlation structure for performing the optical inner 
product. 

Three operations have to be performed for the implementation of this 
algorithm: (1) updating rule; (2) memorizing the interconnection 
weights w; (3) inner product operation w .x and the thresholding. In 
our system the first two operations are achieved using a personal 
computer and the third operation is performed by an optical system. 
This hybrid system removes the constraints on learning by the hologram 
erasure problem and the finite response time of the photorefractive 
perceptron. In addition, it combines the advantages of parallelism of 
optical computing and the programmability of electronic computers. 

We now describe how to implement the optical inner product using 
thin photorefractive crystal plates. The architecture is based on the joint 
transform correlator.” Figure 5 shows the schematic diagram. In 
operation the two patterns w(p) and x(p) are presented simultaneously 
onto the LCTV. Each pattern occupies half the screen of the LCTV and 
they are Fourier transformed by lens Ll. A thin photorefractive plate, 
which is an iron-doped LiNbO, plate in our case, is put at the Fourier 
plane of Ll. The interference fringes of the Fourier spectra W(p) and 
X(p) induce phase gratings in the photorefractive plate. The gratings 
are read out by a read beam incident from the back side of the crystal. 
In our experiments, the incidence angle 28 = 4O, d = 49 pm. Therefore, 
the hologram parameter Q < 1, and the Raman-Nath diffraction 
condition for the thin hologram is satisfied. Under this condition, the 
first order diffraction amplitude of the read beam can be expressed as” 

Ed, 
w n,d 

“J, -- ( > c cos 8 ’ (5) 

where 5, is the Bessel function of the first kind, c is the speed of light, w 
is the light frequency and n, is the photorefractive index change of the 
LiNbO, plate. Normally, 11, is less than 10m4; thus wnld/c cos 8 << 1 and 
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the above Bessel function can be approximated by its argument in 
parentheses, i.e. 

(6) 

Furthermore, since YZ] is proportional to the interference fringes, 
WX* + W*X, thus, by combining these equations, the first order 
diffraction is expressed by 

Eli, - wx* + w*x. (7) 

Finally, EdI is Fourier transformed by lens L2 and the output signal is 
detected at the center of the Fourier plane. The detected signal can be 
written as 

output signal - ~~{Edl}~x=o,y=o~ 

- I~w*wIx=o,y=“l 
- lw ’ xl, (8) 

where 9 represents the Fourier transformation. Therefore, the inner 
product Iw . xl is obtained. 

In this paper we consider the case where x are patterns with positive 
value elements (O-255 grey levels), whereas w can be bipolar because it 
is the result of addition and subtraction of the patterns x. Thus, we need 
a bipolar spatial light modulator for displaying the bipolar weighted 
patterns. In our experiments, the LCTV is operated in amplitude 
modulation mode, which has only unipolar grey levels from zero to 255. 
To resolve this problem, the bipolar w is expressed as the summation of 
two positive unipolar vectors: 

w=w+-w-, (9) 

where w+ is the vector whose positive elements are equal to the 
corresponding positive elements of w, with the other elements of w+ set 
to zero, which corresponds to zero and negative elements of w. In a 
similar way, w- corresponds to the non-positive part of w. In the 
experiment, there are two steps for each inner product operation. In the 
first step, w+ and x are presented on the LCTV and w+ . x is detected by 
the optical detector. In the second step, w- and x are displayed and 
W- .x is detected.‘Then the two signals are subtracted in the personal 
computer. Since 

W+ .x-w-.x=(w+-w-).x 

=w.x, (10) 

the inner product w . x is obtained. Thus, w .x is bipolar and the 
threshold value f3 can also be selected as zero or in bipolar values. 
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Fig. 6. The set-up for the implementation of hybrid perceptron learning. 

4 EXPERIMENTAL RESULTS 

The hybrid system shown in Fig. 6 was assembled to implement the 
conventional perceptron learning. In the system, a collimated argon 
laser beam at 514.5 nm wavelength is used for writing the joint 
transform hologram of the input pattern x and the interconnection 
weight vector w. The holograms are recorded in the thin photorefrac- 
tive LiNb03 plate. A He-Ne laser is used for reading the holographic 
gratings. The readout signal is Fourier transformed by lens L2 to obtain 
the inner product. This product is detected by the photodetector and 
sent to the personal computer for the learning control. In the 
experiment, the initial values of w are set to zero, and the patterns in 
Fig. 1 were used as the training samples x, of which {A, C, S, V} were 
specified as class Cl and {2,3,4,5} were specified as class C2. The 
threshold value was arbitrarily set to zero. Figure 7 shows the training 

20 

0 
6 

Cycles 

Fig. 7. The learning curve of hybrid perceptron learning. 
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curve. It is seen that the patterns are correctly classified after two cycles 
of training. After the training is complete, the desired interconnection 
weight vectors w+ and w- are obtained and stored in the personal 
computer. The weight interconnections w+ and w- are non-volatile and 
the system is ready for pattern classification application. 

Note that, in principle, we can use the joint transform correlator to 
perform the inner product operations in the calculation of w .y for 
image classification. However, this calculation needs three steps: w+ . y, 
w- . y and the subtraction (w’ . y - w- . y). In order to make further use 
of the parallelism of optical systems for information processing, w+ and 
w- are transformed into holographic memories in one crystal volume by 
using a multiplexing technique. By doing this, we obtain an optical 
processor which performs two-channel inner products, w+ . y and w- . y, 
in parallel. The subtraction of w+ . y and w- . y is obtained electroni- 
cally. Thus, the inner product w . y can be achieved in one step. There 
are several techniques for recording multiple holograms in a crystal 
volume, such as angular, wavelength and phase multiplexing 
techniques.‘S22 In our experiment, we chose angular multiplexing. 
Figure 8 shows the schematic diagram of the complete system; an 
optical processor is added into the learning system. In the figure, the 
parts outside the dashed block form the learning network, whereas 
rotated mirror Ml, lenses L3, L4, L5, photorefractive crystal 
Fe:LiNbO, and the detector pair form the optical processor. This 
processor is, in fact, the structure of a correlation system. For recording 
the memories of w+ and w-, first w+ is presented at the position of w 

Argon laser (514Snm) 

I 
Rotated mirror , 

MI I 
I 
I 

Fig. 8. The complete set-up for the hybrid perceptron and the optical processor. PC, 
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on the LCTV. The Fourier transform hologram of w+ is recorded on 
the Fe:LiNbO, crystal. A plane wave as the reference beam for this 
recording is provided by the argon laser through beam-splitter BS, 
mirror M2 and the telescope structure of Ml, L3 and L4. The reference 
beam intersects with the Fourier spectra W’ at an angle of 90”. Then, 
similarly, w- is displayed at the same position of w on the LCTV and its 
Fourier transform hologram is recorded in the crystal using the 
reference beam at a slightly different angle. The multiplexing of the 
reference beam is provided by rotating Ml of the telescope structure. 
After the Fourier transform holograms are recorded, the system is 
ready for the pattern classification operation. The patterns to be 
classified, for example y, are presented at the position of w on the 
LCTV. Then, the inner products w+ . y and w- . y are obtained 
simultaneously and are detected by the detector pair. Subtraction of the 
two detected values provides the final output. Table 1 shows the results 
of the experiments. The first column shows the input pattern. Corres- 
ponding to each input there are two optical signals, w+ . y and w- . y, 
the values of which are shown in the second and third columns. Then, 
the inner product w . x is obtained and is shown in the fourth column. 
Finally, according to whether the inner is higher or lower than the 
threshold value, the fifth column shows the classification of each 
pattern. It is seen from the table that the patterns are correctly 
classified. 

TABLE 1 
Experimental Results of Optical Pattern Classification 
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Fig. 9. The optical processor for multi-class image classification. 

An additional advantage for using the multiplexing holograms to 
perform the inner product operation is that the system can easily be 
extended to the multi-category cases.23 In order to perform the 
multi-class inner product operation, we need an optical processor to 
replace that in the two-category case. To achieve this, the interconnec- 
tion weight vector for each class is firstly obtained one by one using the 
hybrid perceptron learning shown in Fig. 6. Each weight vector is stored 
in the computer. After the training for all the classes is complete, each 
weight vector is recorded as a Fourier transform hologram in the 
photorefractive crystal using the angular multiplexing technique. The 
holograms for the w+ and w- pair of each class are recorded at the 
neighboring angles. Thus, there is an M-pair detector array for the 
M-class classifier, with the neighboring detectors forming a pair for the 
detection of w+ . y and w- . y. In this way, the two-category classifica- 
tion is extended to the M-class case. The schematic diagram of the 
M-class optical processor is shown in Fig. 9. 

In our experiment, a system is assembled for the recognition of 10 
handwritten Chinese characters. Therefore, there are 10 pairs of 
holographic interconnection vectors, 10 for w+ and the other 10 for w-. 
The 20 weight vectors are recorded in the LiNb03 crystal using the 
angular multiplexing technique. When an input image is displayed at 
the position of w on the LCTV, the output of the multi-channel inner 
product is detected by the linear array of photodetectors. The signal is 
sent to the computer to produce the array of the recognition signal. The 
experimental results are shown in Table 2. The first column shows the 
input images. The second column shows the relative value of the inner 
product produced by the output array. The third column shows the 
recognized output. From the upper two rows of the table, it is seen that 
both the rotated versions of one character produce a high inner product 
at the first position of the output array. Both are recognized as class Cl. 
Also, from the lower two rows of the table, it is seen that both 
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TABLE 2 
Experimental Results of Multi-class Image Classification 

Input 
pattern Inner product w .y Recognized 

output 

Cl 

Cl 

c4 

c4 

distorted versions of another character produce high values of inner 
product at the fourth position of the array. They are recognized as class 
C4. The experimental results show that the system can perform 
multi-class image classification in parallel, and it has the capability of 
rotation and distortion invariance. 

5 CONCLUSION 

We have described the principles of the photorefractive perceptron 
learning network. The influences of the finite response time and 
hologram erasure problem on the convergence properties of the 
photorefractive perceptron are discussed. To overcome these con- 
straints for learning, we have presented and demonstrated a novel 
system which utilizes thin photorefractive plates for performing optical 
inner product and a personal computer for the learning control and 
storage of the interconnection weights. Our system is, in fact, the 
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implementation of the conventional perceptron algorithm. Therefore, 
the system can work for both the binary images (with levels 0 and 1) 
and the grey level images. Also, the storage capacity, or the maximum 
numbers of patterns that can be classified, is equal to two times the 
number of the input neurons. After the learning is complete, the 
interconnection weights are transformed into holographic memories 
using the angular multiplexing technique. The system has been ex- 
tended to a multi-channel case to perform parallel processing of 
multi-category image classification. Experimental results of using the 
optical system for pattern classification are presented. The system 
combines the advantages of the learning capability of the perceptron 
network and the parallel processing of information of optical systems. 
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