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Abstract. How a local perturbation affects a propagating wave traveling in
a homogeneous medium is a general physics question widely investigated in
condensed materials. Intuitively, one might expect that a perturbation would
suppress the transport ability of the medium if it is quasi one dimensional.
This is generically true as defects and impurities influence numerous non-
excitable systems such as carbon nanotubes, nanowires and DNA double
helixes. However, if the system is excitable, such as a neuron, a defect
may generate a highly non-trivial dynamical behavior. In this paper, using
the Hodgkin–Huxley model, we explored this diversity generated by locally
non-uniform ion channel densities caused by toxins, diseases, environmental
disorders or artificial manipulations. These channel density defects could induce
several exotic behaviors, in contrast with the normal destructive role of defects in
solid-state physics. They may behave as an electric signal generator exhibiting
spontaneous or stimulated emissions, as well as trap, reflect, rectify, delay or
extinguish propagating signals or be switched to different functions by a signal.
Nonlinear analysis and phase diagrams were used to quantify this dynamical
complexity. The results may contribute to research on signal manipulation in
biotechnology, neuronal diseases and damages, channel distribution-related cell
functions and defect dynamics in general excitable mathematical models.
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1. Introduction

Ion channels are crucial for the propagation of electric signals on excitable cells [1]. In the
landmark work of Hodgkin and Huxley [2], these channels were postulated as ‘molecules with a
charge or dipole moment’ to account for the voltage-dependent ion permeability of an excitable
membrane. Although the types of ion channels and their mechanisms were unknown at the time
of that work, these authors had speculated that the density of ion channels is relatively low. After
the existence of the ion channel was directly confirmed in the 1970s [3], an increasing number
of natural non-uniform channel distributions were uncovered, most of which are believed to
play a role in specific neural functions. For instance, aggregations of Na and K channels at the
axon initial segment generate action potentials (APs) [4, 5] integrate slow subthreshold signals
and control neuronal activity [6, 7]. The gradient distributions of the same channels in dendrites
control back propagation, regulate dendritic excitability and modify synaptic plasticity [8–12].
Even small clusters containing several tens of Ca and K channels are thought to optimize the
response to small stimuli during cell signaling [13–17]. Undoubtedly, intrinsic channel density
heterogeneity is common in neurons and, in addition to channel type, essential for controlling
neural behavior [18].

These heterogeneous channel distributions are created through a delicate channel targeting
machinery that includes channel trafficking, retention and endocytosis pathways. Although the
number of molecules involved in this machinery is still unclear, several channels are known
to anchor to the cytoskeleton through protein scaffolds, specific channel motifs, auxiliary
subunits, as well as ankyrin G, βIV-spectrin and filamin A [18–22]. Thus, toxins, mutations,
cytokines, abnormal phosphorylation, actin filament depolymerization, damage or diseases that
disrupt this targeting machinery or immobilization proteins can readily perturb ion channel
densities [10, 23–28]. Some of these perturbing factors can be implemented artificially to
obtain the desired channel distributions. For instance, latrunculin B and cytochalasin B have
been used to depolymerize local actin filaments in order to remove different types of channels
simultaneously [28]. Toxins such as tetrodotoxin and tetraethylammonium can be applied
through micropipettes to cripple specific types of channels locally on a neuron [10]. Under
these perturbed conditions, the distribution of the remaining functioning channels is referred to
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as an extrinsic channel distribution. If a homogeneous channel density is perturbed locally, its
extrinsic distribution will contain a local channel density defect.

To gain insight into the influence of this defect on the electric properties of neurons,
one may consider applying the techniques of phase space analysis in nonlinear science. This
approach has been instrumental in extracting the key behavior of several neural models from the
vector field structure of their reduced dynamics. A typical example is the FitzHugh–Nagumo
reduction that combines the fast- and slow-varying variables of the Hodgkin–Huxley (HH)
model to reduce the number of variables from 4 to 2 [29, 30]. However, the simplicity of
this analysis largely rests on the requisition that the reduced system is low dimensional.
The inhomogeneous channel distributions discussed below belong to an infinite-dimensional
problem, which does not conform to that requisition, and a dimension reduction there usually
leads to a completely irrelevant dynamics. On the other hand, one might seek clues from a
variety of reported studies that aimed at finding appropriate conductances for the neuronal
systems of one’s interest. Unfortunately, these studies mainly pertain to generic neurons of
moderate channel density variations and are incapable of predicting the influence of the
following abrupt local channel density perturbations. Thus, although the complexity of defect
dynamics is qualitatively to be expected, it lacks a quantitative analysis and remains elusive. To
our knowledge, even basic questions such as those on the critical defect size that can lead to
qualitatively different neural dynamics and the number of different dynamics that can emerge
under a perturbation have not been answered. These questions and their related neural properties
are the central issues this work is intended to analyze and classify.

2. Results

2.1. The shapes of channel density defects

The defect effect caused by the aforementioned extrinsic channel non-uniformity was studied
using the HH model. The original constant Na and K conductances therein were multiplied
by a weight w(x) to characterize channel non-uniformity along the neuronal axis x (see
the appendix). If w(x) was uniform except around x0, the channel density would have a defect
at x0. For instance, the Gaussian weight w(x) = 1 − γ exp[−(2x − 2x0)

2/σ 2] and the square
weight w(x) = 1 − γ [1 + (2x − 2x0)

n/σ n]−1 described a density defect at x0 with the defect
width σ and the defect ratio (or relative depth) γ , where 06 γ 6 1 (figure 1). Both w(x)

were analytical functions lying between 0 and 1. While the former had smooth boundaries, the
latter could have arbitrarily sharp boundaries for large n. For γ → 0, both weights approached
w(x) ≡ 1 and the system returned to the original defect-free HH equations. The neural dynamics
caused by these defects was calculated by NEURON,4 with the parameter values of squid in [2],
omitting the leakage current owing to its negligible effect.

2.2. Individual channel density defects

Na and K channels underlie the depolarization and repolarization of the neuronal membrane,
respectively. For uniform Na and K channel distributions, the equilibrium membrane voltage
Vm remains at the position-independent resting potential. If Na channels are slightly blocked
around x0, the resting Vm will be hyperpolarized and form a dip at that site. If K channels are

4 www.neuron.yale.edu/neuron/.
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Figure 1. The space–time plot of the APs emitted around a K channel density
defect of a Gaussian form with (γK, σK) = (1, 10). The deficient region of the K
channel density is plotted by the red solid curve, in comparison with the intact
uniform channel density represented by the red dashed line. This plot shows the
‘hypersensitivity’ of a K channel density defect.

inactivated locally instead, the resting Vm will be depolarized and form a hump there. With the
increased width or depth of the defect, the dip or hump of Vm will grow. This deformed Vm will
remain stable during the Na channel density defect growth, but may abruptly become unstable
and begin to oscillate when the K channel density defect reaches a critical size. Beyond that size,
the K channel density defect will behave like a pulse generator, eliciting APs regularly (figures 1
and 2(a)). Below but close to that size, some deformed resting potentials can be stimulated by
an oncoming AP to fire regularly (figure 2(b)).

These properties indicate three kinds of phase space structures for the K defect-containing
HH equations: (I) a stable fixed point (resting potential); (II) a stable limit cycle (spontaneous
emission), i.e. Vm(x, t) = Vm(x, t + T ) for all x and t with a constant T ; and (III) a stable fixed
point plus a stable limit cycle (stimulated emission). For a Gaussian K channel density defect
characterized by (γ, σ ), these three phases are divided by the two red solid curves in figure 3(a).
These curves reveal the critical defect sizes beyond which one can see qualitatively different
neural dynamics. According to the numerical results, the transitions from (I) to (II), (III) to
(II) and (I) to (III) look like the supercritical, subcritical Hopf bifurcations and the saddle node
bifurcation of limit cycle, respectively. Along the σ -axis at γ = 0.97, the bifurcation through
these three phases seems to undergo a Mexican hat scenario illustrated in figure 3(b), whose
inset shows the attracting (red) and repelling (green) solutions from the side view. For an Na
channel density defect, the long-term behavior is much simpler and only exhibits phase (I).
However, such defects may extinguish an oncoming AP, which never occurs on a K channel
density defect. If the Na channel density defect has a Gaussian shape, the (γ, σ ) values to the
right of the blue solid curve in figure 3(a) indicate the extinction phase of this defect, and to the
left of that curve, the transit phase.

The minimum γ to find phases (III) and (II) of a Gaussian K channel density defect is
approximately 0.94 and 0.72 and that to find the extinction phase of a Gaussian Na channel
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Figure 2. The contours of Vm in the space–time plots around various Na and K
channel density defects, described by blue and red curves, respectively, under
each panel. (a) The spontaneous emission of a pulse generator made from a K
channel density defect. (b) The stimulated emission of a pulse generator made
from a K channel density defect. (c) A left stimulated left pulse generator. (d) A
left stimulated right pulse generator. (e) A bilateral pulse generator. (f) A three-
pulse generator. (g) A signal trap. (h) A rectifier allowing right-going APs (left)
and a reflector (right). (i) A switch allowing only one AP to transmit (left) and a
reflector (right). The defect parameters (γNa, σNa, γK, σK, d) for different panels
are (a) (0, 0, 1, 9, 0), (b) (0, 0, 1, 4, 0), (c) (1, 5, 1, 5, −2.4), (d) (1, 2, 1, 5, 1),
(e) (1, 1.4, 1, 5.6, 1), (f) (1, 5, 1, 5, −2.394), (g) (0.9, 10, 1, 4, −2.5), (h) left
(1, 4.8, 1, 4.8, −0.5), right (1, 5, 1, 5, −2.37) and (i) left (0.4, 18, 1, 3, 0), right
(1, 5, 1, 5, −1.785), where γNa and γK are dimensionless and σNa, σK and d are
in units of 104 µm. Most defects are Gaussian except for the squares with n = 50
in panel (g) and on the left in panel (i).

density defect is approximately 0.89. That is, at least 70% of ion channels must be damaged
at the defects to generate qualitatively different neural behaviors. These high ratios reflect
the fact that ion channels are more abundantly expressed than required for normal neural
functions [31]. The pattern of the phase boundaries for Gaussian defects (red and blue solid
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Figure 3. The dynamics induced by individual Na and K channel density defects.
(a) Phase diagram for individual Na and K channel density defects (blue and
red, respectively) of Gaussian (solid) and square (dash) weights. The red curves
divide three kinds of long-term neural behaviors on a K channel density defect:
(I) a stable fixed point (resting potential); (II) a stable limit cycle (spontaneous
emission); and (III) a stable fixed point plus a stable limit cycle (stimulated
emission). The blue curves divide two kinds of short-term neural behaviors on an
Na channel density defect: the oncoming AP can pass through or be extinguished
by the defect. (b) For a Gaussian K channel density defect, the system bifurcates
through three phases along the σ -axis at γ = 0.97. The unstable and stable
solutions are plotted in red and green, respectively, both on the Mexican hat
in the main plot and in its side view in the inset.

curves in figure 3(a)) is rather typical of other defects. Even the square defect with extremely
sharp boundaries (n = 50) has a similar structure, as shown by the dashed curves in figure 3(a).
Since the square defect has larger areas in phases (II) and (III), it is more excitable than
the Gaussian defect. For general defect shapes, there might exist several equally appropriate
definitions of defect width. Although the phase diagram will vary with the width definition, its
main structure is essentially the same as that in figure 3(a). This insensitivity to defect shape
highlights the influence of the diffusion term in the HH equation (see (A.1) in the appendix).
This crucial term blurs the defect identity and leads to the ‘universal’ feature in the phase
diagram.

2.3. Blended channel density defects

If both Na and K channels are deficient around the same site, perhaps owing to local cytoskeletal
disruption, a blended defect is formed. This defect may become a stimulated pulse generator,
which will generically elicit APs on the same side of the stimulation (figure 2(c)). However,
some defects can elicit APs on the opposite side (figure 2(d)) or with different frequencies
on different sides (figure 2(e)). Under incommensurate frequencies, the latter dynamics will
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become a quasi-periodic motion distinct from the three phases in figure 3(a). Some exceptional
defects cease firing after a particular number of pulses and behave like a bursting generator
(figure 2(f)). Moreover, some defects will trap an approaching AP and freeze the depolarization
at the defect site (figure 2(g)). This dynamical system has at least two fixed-point attractors,
corresponding to two different resting potentials. Some defects resemble an elastic scatter (right
in figure 2(h)), where the time lag during the collision is reminiscent of a soft wall collision.
Some defects resemble a signal rectifier, allowing a leftward-moving AP to pass through, but
blocking a rightward-moving AP (left in figure 2(h)). Some defects resemble a switch, with a
low Vm hump state (ON) that can be turned to the high Vm hump state (OFF) by a signal. The
ON state allows an AP to pass, whereas the OFF state blocks all APs (left in figure 2(i)). That
is, such defects allow at most only one signal to pass through.

In these patterns, one has to distinguish (A) the pulses induced by the defects from (B) the
pulses generated externally to stimulate and probe the defects. In figures 1 and 2(a), the pulses
belong to (A) and any initial neural state will evolve to such a kind of cyclic motion, irrespective
of whether an external pulse is launched to stimulate the defect or not. In figures 2(b)–(f),
the pulses before and after around 10 ms belong to (B) and (A), respectively. If the defects
in figures 2(b)–(f) are absent, an external pulse is not able to trigger any ceaseless firing and
any initial neural state will converge to the resting state. If they are present, an initial state
will converge either to the resting state or cyclic pulse emission, depending on the basins
where the initial state is located. The initial states with incoming pulses (those before about
10 ms) in figures 2(b)–(f) are examples that evolve to cyclic pulse emissions. In figures 2(g)–(i),
the defects are not pulse generators. After the external pulses of type (B) pass through those
defects, the systems converge to different resting states. Note that an initial state here can have
two different interpretations. Firstly, it can be a state around the defect area and the externally
generated pulse is not a part of the state. Secondly, it can be a state of the whole neuron and
different external pulses belong to different inertial states. The first interpretation has a vivid
physical picture, while the second one is mathematically more rigorous.

The contour patterns demonstrated in figure 2 reveal several basic types of defect dynamics
generated by combined Na and K channel density heterogeneities. Some of these patterns are
easy to understand. For example, our intuition might tell us that the one-sided pacemaker in
figure 2(c) is created by a two-sided pulse generator with a pulse suppressor on its right-hand
side to extinguish rightward pulses. Indeed, an Na defect is closely adjacent to a K defect, as
shown at the bottom of figure 2(c). However, a slight modification on each of these defects could
largely change the pattern. It is generally hard to predict beforehand which pattern will come out
of a given defect combination. Some of the basic defect dynamics in figure 2 are reminiscent of
the fundamental neurocomputational properties generated, for instance, by Izhikevic’s simple
model [32]. Examples include the typical bursting and pacemaker-like dynamics, which can be
found in both the simple model and our systems with channel density defects. Nevertheless,
while the former is controlled by the input current, the latter is tuned by the defect shape. Note
that the neuron lengths considered in figure 2 are sufficiently long, so that most patterns in the
panels are robust against small variations of the parameters γNa, σNa, γK, σK and d. Exceptions
are the defect in (f) and the reflectors in (h) and (i), whose parameters still slightly depend on
the selected neuron lengths.

The blended defects in figures 2(c)–(i) can be characterized by the widths σNa and σK,
the ratios γNa and γK of the Na- and K-deficient regions and the position d of the K depletion
center relative to the Na depletion center. For γNa = γK and σNa = σK, this five-parameter space
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Figure 4. Phase diagram for blended defects of Gaussian (solid) and square
(dash) weights. The four red curves denote the Hopf bifurcations at d = 10,
9, 8 and 7.5 × 104 µm (left to right). The seven blue curves represent the
transit–extinction transition for a leftward-moving AP at d = 10, 7.5, 5, 3, 2,
1.1 and 0 × 104 µm, whereas the green curve represents the same transition
for a rightward-moving AP at d = 5 × 104 µm. The four black dashed curves
indicate the Hopf bifurcations at d = 5, 4.5, 4 and 3.5 × 104 µm (left to right)
for square defects. The outer cyan extinction funnel and the inner orange Hopf
bifurcation funnel are formed by lifting the blue and red curves, respectively, to
the corresponding d’s.

is projected onto a three-dimensional diagram in figure 4. The red curves on the (γ, σ ) plane
correspond to the Hopf bifurcations at different d’s. The (γ, σ ) values to the left of each red
curve have a resting potential solution, whereas those to the right indicate the spontaneous
emission of APs. The blue curves denote the transit–extinction phase boundary in analogy to
that in figure 3(a). The (γ, σ ) values to the left of each blue (green) curve allow a leftward-
(rightward-)moving signal to pass, whereas those to the right block transmission. The existence
of the non-zero narrow area enclosed by the blue and green curves at the same d, say d =

5 × 104 µm, allows us to find the rare rectifier defect (left in figure 2(h)).
Apparently, the spontaneous pulse generator regime denoted by phase (II) in figure 3(a)

shrinks to a smaller area in figure 4 and the stimulated pulse generator regime represented by
phase (III) in figure 3(a) even disappears in figure 4. This excitability suppression is due to
the involvement of the Na channel deficiency in the blended defect. The suppression extent
is significant for Gaussian weights with long tails (red solid curves in figure 4), but weak for
square weights with sharp boundaries (black dashed curves in figure 4). Lifting the blue and
red curves to the corresponding d’s results in the formation of an outer cyan extinction funnel
and an inner orange Hopf bifurcation funnel plotted in the three-dimensional space (figure 4).
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While the former converges to the rightmost blue curve on the (γ, σ ) plane at d → 0, the latter
disappears in the same limit. The disappearance at d ≈ 0 is because the Na- and K-deficient
regions almost overlap each other and the depolarization effect of the K deficiency is nearly
completely compensated by the hyperpolarization effect of the Na deficiency. In this limit, the
blended defect cannot become a pulse generator and the system looks like it is defect-free.
But it differs from the defect-free case in that this defect can extinguish an approaching signal.
The size of the extinction funnel indicates the suppression ability of the blended defect or,
more explicitly, how likely a defect chosen from figure 4 can extinguish an oncoming signal.
Moreover, the size of the Hopf funnel represents the defect excitability or how likely it is that a
chosen blended defect will be a pulse generator.

If the restriction σNa = σK is lifted, the shapes of the two funnels in figure 4 will vary
with σNa and σK independently. For σK < σNa, the blended defect becomes less excitable and
the whole Hopf funnel under a given σNa will shrink to zero at σK → 0. This limiting case
corresponds to a pure Na channel density defect, which will never generate any pulses. In
contrast, for σNa < σK, the defect becomes more excitable and the Hopf funnel under a given
σK will deform to a d-independent perpendicular funnel at σNa → 0. In that case, only a pure K
channel density defect is present. The behavior caused by this defect is obviously independent
of its distance d to any virtual Na density defect of zero width. The projected curve of that
d-independent funnel on the (γK, σK) space is exactly the red solid boundary of phase (II) in
figure 3(a). Interestingly, the stimulated emission denoted by phase (III) in figure 3(a) does not
exist in the phase diagram of blended defect in figure 4, but appears and grows up gradually in
the limit σNa → 0 when the suppression effect of the Na density defect diminishes. Finally, the
funnel deformation trends under different defect relative depths, γNa 6= γK, are similar to those
under σNa 6= σK.

2.4. Asymmetric channel density defects

The asymmetry of a defect can affect other neural transport properties such as the signal
propagation speed. This effect can be readily detected by measuring the speed of an AP running
on a repeated asymmetric defect like a ratchet, as the triangular example of period L and ratio
γ in the inset of figure 5. The main plot of figure 5 shows that this speed will rise slightly
above the standard AP speed on a defect-free neuron (green line) for the K ratchet and decline
considerably below that for the Na ratchet. For L larger than the typical AP width, around
2 × 104 µm, of the squid giant axon, the AP stays mostly on a rising or falling ramp during its
running time. When L exceeds the values marked by the crosses, the AP will be extinguished
because the channel densities there are too dilute to support signal propagation. The crosses
appear only for those channel density defects with a large γNa close to 1. It reflects again the
fact of abundantly expressed ion channels, as the large γ for observing phases (II) and (III) in
figure 3(a) indicates. A clear trend illustrated in figure 5 is that a leftward-moving signal (blue)
always propagates faster than its rightward-moving (red) counter signal on an Na ratchet. The
speed difference can reach 1 m s−1 for γNa = 1. It is comparable with the conduction velocity
difference 12–18 m s−1 under a temperature variation of 6.3–18.5 ◦C [33]. For infinitely dense
ratchet zigzags at L → 0, the ramp period shrinks to zero. The traveling AP will behave like a
shape-invariant soliton running on a defect-free neuron. Nevertheless, its speed will differ from
the defect-free speed (green line), since the total channel amount at L → 0 is less than that
of the defect-free case if γ > 0. How the speed approaches its limiting value at L = 0 cannot
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Figure 5. In the inset, a rightward-moving signal (red) and a leftward-moving
signal (blue) travel on a ratchet defect of ratio γ and period L . These traveling
signals are externally generated and not induced by the ratchet defects. The main
plot depicts how the rightward-moving (red) and leftward-moving (blue) speeds
vary with γ and L . Therein, γNa and γK marked on the curves denote the defect
ratios of the corresponding Na and K ratchets, respectively, and the green straight
line represents the defect-free speed.

be solved numerically, owing to the increasing non-smoothness of the differential equation at
L → 0. Consequently, the curve information is missing at small L in figure 5.

3. Discussion

A neuron is an intriguing biological structure, which is frequently integrated into and/or
manipulated using manmade solid devices for applications in bionanotechnology and neural
engineering [34]. For instance, nanowire arrays have been put on neurons for non-invasive
and highly sensitive detection, stimulation and inhibition of neuronal signal propagation [35].
Carbon nanotubes have been integrated with neurons to promote neuronal electrical
activity [36]. Furthermore, reconstitution methods have been developed for inserting voltage-
gated ion channels into cell-sized giant unilamellar vesicles, allowing for the study of the electric
dynamics of different ion channel distributions [37]. Clearly, the effects of inhomogeneous
channel density demonstrated above may further enrich the manipulation versatility in these
newly emerging fields. Experimentally, it should not be difficult to observe the neural dynamics
predicted in this study, since the defects considered here are about a centimeter wide and located
on a squid giant neuron, which is typically several centimeters long. A defect of this scale can
be precisely positioned and controlled, for instance, by micropipettes filled with solutions of
channel blockers or filament depolymerization agents [10]. The injected solutions will diffuse
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and most likely generate a density defect close to a Gaussian form as depicted in figures 1
and 2. Such an experiment should also be feasible for other thinner neurons, as long as the
channel density perturbation can be controlled locally.

In addition to applications in engineering, the present results might provide information
on some neuronal diseases. It is well known that improper channel localization can cause
communication problems in neuronal networks [18], and channel dysfunction can lead to
diseases in many tissues [38]. However, most reports on such diseases are limited to
macroscopic descriptions and seldom discuss their origin at the subcellular level. In fact, the
channels in some diseases could be non-uniformly crippled, blocked or transported during
the channel trafficking process. Thus, some abnormal behaviors might be a combined effect
of the several basic dynamical patterns shown in figure 2. For instance, recent studies have
demonstrated that a reduced expression of A-type K channels in primary sensory neurons led
to mechanical hypersensitivity [39] and that genetic elimination of the K channel Kv4.2 in the
dorsal horn neurons enhanced sensitivity to tactile and thermal stimuli [40]. Unless the channels
on neurons are uniformly eliminated, this reduction might cause hypersensitivity phenomena
similar to the irregular firing occurring after the K channel density defect demonstrated
in figure 1. To compare other patterns in figure 2 with possible channel density-related
neural diseases, subcellular measurements of the distributions of channels, or their anchoring
proteins [41], are crucial. Upon comparison, we still need to note that the patterns in figure 2
are for unmyelinated squid giant axons. If a channel density disease occurs on a myelinated
axon, its dynamics will be more complex, since the system contains more degrees of freedom.
Nevertheless, some complex dynamics might share common properties with and could be more
easily understood through the simpler patterns in figure 2.

Another intriguing comparison is between the current findings and those in other excitable
systems. It is widely known that heterogeneity is a big issue of concern in excitable
systems such as cardiac tissues. Therein, heterogeneous cellular types in a multicellular
system can cause active activities. For instance, modeling studies have shown that passive
defects, such as non-excitable fibroblasts, coupled to excitable ventricular myocytes can
cause spontaneous oscillations [42–44], which has been demonstrated in experiments as
ectopic excitations [46, 52]. Normal ventricular myocytes coupled to ischemic myocytes cause
spontaneous oscillations [47, 48] due to elevated resting potential of the ischemic cells. In the
present study, reducing the local density of K channel in the HH model also elevates the local
resting potential. Thus, the pacemaker patterns of neurons in figures 1 and 2(a) can be regarded
as a subcellular version of the oscillatory behaviors of heterogeneous tissues. However, to our
knowledge, other patterns in figure 2 have not been reported in tissues. It might be ascribed to
two differences between the current neuron system and usual tissue models. Firstly, whereas
the voltage dynamics in figure 2 evolves in a continuous space along the axon, that in usual
tissue models lives in discrete networks. Secondly, usual tissue models do not contain cell types
playing the role of an excitability suppressor such as the Na channel defect in neurons. From
this aspect, the dynamics of excitable neurons seem to be more versatile than those of excitable
tissues.

4. Conclusion

In summary, the present study systematically demonstrates how the physical properties of a
biological mesoscopic system will be changed by a local defect. Generally, a local defect is
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an inhomogeneous position deviating from a uniform phase. This slight deviation usually has
a dramatic impact on the transport properties and wave propagation of a system, especially a
quasi-one-dimensional system. Intuitively, a defect would be expected to suppress the mass and
energy flow and to monotonically reduce the conductance or information transfer through a
system; this is indeed true for normal solid materials, which are usually non-excitable [49–53].
However, how a defect will change the behavior of an excitable one-dimensional cable, such as
a neuron, is highly non-trivial and hard to predict. To investigate this, we focused on a family
of basic local ion channel density perturbations in this study. A systematic survey of the defect
parameter spaces revealed several fundamental short- and long-term defect dynamics in the
HH model and yielded the critical defect size for qualitatively different neural dynamics. Our
results may (i) serve as a simple example illustrating the typical defect dynamics in general
excitable cables, (ii) give hints on how to utilize defects for manipulating neuronal signals for
biotechnological applications, (iii) quantitatively elucidate disease-related irregular firings at the
subcellular level and (iv) enrich our understanding of the challenging issue of channel density
heterogeneity-induced neural behaviors [18]. We expect that the present study will stimulate
further theoretical and experimental works in these areas.
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Appendix

Here we briefly introduce the Hodgkin–Huxley model of heterogeneous ion channel densities
used in our calculations. Generally, neurons contain numerous types of voltage-dependent ion
channels; in contrast, the squid giant axon has only Na and K ion channels. Let d, Ri and Cm

denote the axon diameter, specific resistance of the axoplasm and transmembrane capacitance of
a squid giant axon, respectively. The dynamics of the transmembrane voltage Vm(x) at position
x along the axon can be described by a resistor–capacitor circuit equation furnished with a
diffusion term caused by current leakage [54],

∂Vm

∂t
=

1

Cm

[
d

4Ri

∂2Vm

∂x2
− (INa + IK + IL)

]
, (A.1)

where the Na, K and leakage (L) transmembrane currents INa, IK and IL follow the Ohm’s law
IS = gS(Vm − VS) with the equilibrium potentials VS and the conductances gS, where S stands
for Na, K and L. These conductances are voltage dependent and given by

gK(Vm, t) = ḡK n4(Vm, t), (A.2)

gNa(Vm, t) = ḡNa m3(Vm, t) h(Vm, t), (A.3)

gL(Vm, t) = ḡL, (A.4)

where the constants ḡNa and ḡK denote the maximum conductances when the Na and K
channels, respectively, are completely open and ḡL represents the voltage-independent leakage
conductance. The gating probabilities m, n and h describe how the fast and slow gates of the
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Na ion channel, as well as the gate of the K ion channel, change with Vm , respectively. They
follow the first-order kinetic

dX

dt
= αX(1 − X) − βX X (X = m, n, h) (A.5)

with the empirical Vm-dependent rate constants

αm =
−0.1(Vm + 40)

e−0.1(Vm+40)−1
, βm = 4e−(Vm+65)/18,

αh = 0.07e−0.05(Vm+65), βh =
1

1 + e−0.1(Vm+35)
,

αn =
−0.01(Vm + 55)

e−0.1(Vm+55) − 1
, βn = 0.125 e−0.0125(Vm+65).

Equations (A.1)–(A.4) form the original four-dimensional HH equations on the (Vm, m, n, h)

space. Since the system described by this equation is homogeneous in space, how an AP
evolves is independent of where it is initiated. This translational symmetry will be broken by
a local perturbation like a channel density defect. To describe such inhomogeneous channel
distributions, the constants ḡS in (A.2)–(A.4) are multiplied by some position-dependent weights
wS(x),

gK(Vm, t, x) = wK(x) ḡK n4(Vm, t), (A.6)

gNa(Vm, t, x) = wNa(x) ḡNa m3(Vm, t) h(Vm, t), (A.7)

gL(Vm, t, x) = wL(x) ḡL. (A.8)

These weight functions lying between 0 and 1 characterize to what extent the conductance
is reduced at x . For wS(x) ≡ 1 for all x , the gS in (A.6)–(A.8) return to those conductances
in (A.2)–(A.4) in the original HH equations for homogeneous axons. If the conductance
is linearly proportional to the density of the functioning channels, wS(x) represents the
percentage of the density of these channels at x over the uniform channel density in the
original HH model. In the calculation, the following standard parameter values were used:
Ri = 35.4 � cm−1, d = 476 µm, (ḡNa, ḡK, ḡL) = (120, 36, 0) mS cm−2, Cm = 1 µF cm−2 and
(VNa, VK, VL) = (50, −77, 0) mV.
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