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1. Introduction

Piezoelectric material is a widely used, smart or intelligent material, because of the intrinsic effects of coupling between
electric fields and mechanical deformation. Piezoelectric materials have been extensively applied in actuators, resonators,
oscillators, conductors and sensors. The most interesting feature of piezoelectric materials is that they can serve not only
as actuators, providing driving signals, but also as sensors for smart structures. In the practical applications, electroelastic
singularities are commonly observed at a sharp corner or because of discontinuity in material properties. Accordingly, either
local mechanical failure or dielectric failure can occur at a sharp corner. Understanding of the electroelastic singularity
behaviors of piezoelectric wedges is essential to optimize the design of piezoelectric devices and further advance smart
material technology.

Since Williams [1,2] pioneered the investigation of the stress singularities at a sharp corner of a thin plate under exten-
sion or bending with various boundary conditions along the intersecting edges, numerous studies of geometrically-induced
stress singularities in isotropic elastic wedges have been conducted. These are based on plane elasticity theory [3-5], three-
dimensional elasticity theory [6,7], classical plate theory [8-10], first-order shear deformation plate theory [11-13], third-
order plate theory [14], and higher-order plate theory [15]. Nevertheless, much less research has been done on the geomet-
rically-induced electroelastic singularities at the vertex of a piezoelectric wedge.

A few studies of the geometrically-induced electroelastic singularities at the vertex of a piezoelectric wedge (Fig. 1) are
based on the assumption that all physical quantities under consideration depend on the planar coordinates. Based on the
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Fig. 1. Coordinate systems for a wedge.

plane strain assumption (&,,,, €2 and E,, which are defined in Section 2, equal zero), Xu and Rajapakse [16] extended Lekh-
nitskii’s complex potential functions for in-plane stresses and electric displacement components to examine the electroelas-
tic singularities at the vertex of a piezoelectric wedge that has a direction of polarization on the x-y plane (see Fig. 1). Based
on an assumption of generalized plane deformation, Chue and Chen [17] presented a decoupled formulation of piezoelectric
elasticity and applied it to examine the stress singularities near the apex of a rectilinearly polarized piezoelectric wedge, con-
sidering its direction of polarization in the x-y plane or along the z-axis. Hwu and Ikeda [18] proposed an extended Stroh
formulation in an (x, y) coordinate system by considering a generalized plane strain and short circuit (¢, =0 and E, = 0)
and presented numerical results for the electroelastic singularities at the vertices of piezoelectric wedges and multi-material
wedges with the directions of polarization in the x-y plane. Because different plane assumptions were made in these three
cited papers, they employed different constitutive laws in their solutions. Notably, Xu and Rajapakse [16] treated the piezo-
electric material as transversely isotropic material as they began to develop solutions while Chue and Chen [17] and Hwu
and Ikeda [18] treated piezoelectric material as generally anisotropic. The solutions of Xu and Rajapakse [16] include only
in-plane physical quantities, while those of Chue and Chen [17] and Hwu and Ikeda [18] included in-plane and out-of-plane
physical quantities. Following the assumptions in Chue and Chen [17], Chen, Chu and Lee [19] employed the extended Lekh-
nitskii formulation to determine the eletroelastic singularity behaviors near the apex of a piezoelectric wedge that was
polarized in the radial, circular, or axial direction. Chu and Chen [20] applied the Mellin transform to determine anti-plane
stress singularities in a bonded bi-material piezoelectric wedge. Neglecting all out-of-plane physical quantities, Shang and
Kitamura [21] utilized a modified version of the general solution that was developed by Wang and Zheng [22] and Shang
et al. [23] to investigate the stress singularities at the interface edge of a wedge made of two piezoelectric materials with
the direction of polarization parallel to the x-axis.

There are several finite element solutions other than the aforementioned analytical solutions in the published literature.
Utilizing three-dimensional formulations but assuming all the physical quantities under consideration independent of z (see
Fig. 1), Sze et al. [24] combined the eigenfunction expansion technique and a one-dimensional finite element approach to
investigate the singularities at the vertex of a piezoelectric wedge. Based on the plane strain assumption, Scherzer and Kuna
[25] presented a numerical technique combining asymptotic solutions and a regular finite element approach to solve the
piezoelectric field problem of sharp notches at interface configurations. Chen et al. [26] adapted the approach of Sze et al.
[24] to investigate in-plane electroelastic singularities at the vertices of piezoelectric wedges and multi-material wedges.
Chen and Ping [27,28] further extended the studies in Chen et al. [26] and proposed a super corner-tip element by using
the generalized Hellinger-Reissner variational functional.

Although there are some published studies (i.e., [29-32]), which have employed the three-dimensional theory of piezo-
electricity to determine the mechanical and electrical fields near a crack tip in a piezoelectric body, no investigation has con-
ducted three-dimensional analyses of geometrically-induced electroelastic singularities at the vertex of a piezoelectric
wedge. The main purpose of this paper is to present a three-dimensional asymptotic solution for the electroelastic singular-
ities at the vertex of a piezoelectric wedge without assuming that the direction of polarization of the material is either along
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the z-axis or in the x-y plane. An eigenfunction expansion scheme is combined with a power series method to solve the equi-
librium and Maxwell’s equations in terms of mechanical displacement components and electric potential in a cylindrical
coordinate system. The correctness of the proposed solution is ensured by comparison with the published results based
on the generalized plane strain assumption. The solution is further employed to examine thoroughly the effects of polariza-
tion direction, wedge angle, and boundary conditions on the electroelastic singularities of wedges that comprise a single
material (PZT-5H), bounded piezo/isotropic elastic materials (PZT-5H/Si), or piezo/piezo materials (PZT-5H/PZT-4). The
numerical results concerning the order of the singularity are expressed in graphic form, and are shown herein for the first
time.

2. Basic formulation

Consider a rectilinearly anisotropic piezoelectric wedge that is polarized in the z direction, as presented in Fig. 1. The con-
stitutive equations of the piezoelectric material are expressed in the material coordinate system (&,y,2), as

{6} = [c){&} — [e]"{E}, (1a)
{D} = [&]{&} + [A{E}, (1b)

where {6} = {0 0y 0z 05 Ox 0Oy} is the stress vector;

{8} ={ew &y &n 2&; 25 2y }T is the strain vector; {ﬁ} ={Dy Dy D, }T is the electric displacement vector;
{E}y = {Ex E; E;}"isthe electric field vector, and [¢], [¢] and [i}] are the mechanical elastic constant matrix, the piezoelectric
constant matrix and the dielectric constant matrix, respectively.

It is easy to solve for the eletroelastic singularities at the vertex of the wedge in the cylindrical coordinate system (r, 6, z)
given in Fig. 1. In the cylindrical coordinate system, the equilibrium and Maxwell’s equations in terms of stress components
(o) and electric displacements (D;) without body force and charges are [33]

aGrr l 80-r() 8011 (O-rr - 0-00)
or r 90 0z r

-0, (2a)

0Gry 1004 00y, Orp
o troo T 2y 0 (2b)

80rz 1 0 0, 8022 O

ar r 90 0z r =0, (2¢)
10(D,) 10D, oD,
roor troo oz @d)

The constitutive equations of the piezoelectric material in the cylindrical coordinate system are
{0} = [cl{e} — [e]'{E}, (32)
{D} = [el{e} + [n{E}, (3b)

where {O'}T: {On Ow Oz 0Oy 0x O }T, {ey={¢en &ew &z 2&p 2&4 2&y }T. {D}={D, D, D, }T7 {E} =
{Er E(J Ez} ’

Ci1 Ci2 €13 Ci4 Ci5 Ci6
Ciz Cxp C3 (g4 Cp5 Co6

€11 €2 €13 €14 €15 €16
C13 C3 (€33 (34 C35 C36

[c] = , le]=]€ex exn €3 eu exs exp
Cia Ca4 (34 Cag C45 Cg

€31 €3 €33 €334 €35 €36
Cis Cx5 C35 C45 Cs5 Cse
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M1 M2 s
M= M2 N My |- 4)
M3 Ma N33

The components of [c], [e] and [#] are related to the components of [¢], [é] and [#]], respectively; and are functions of 6 and
depend on the direction cosines between (X,7,2) and (x, y, z). These relations are given in Appendix I.

Substituting strain—-displacement relations and electric field-potential relations into Eqgs. (3) and (4) enables the stress
components and electric displacements to be expressed in terms of mechanical displacement components (u,u, and u,)
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and electric potential (¢), given in Appendix II. Substituting those expressions into Egs. (2) yields the governing equations in
terms of mechanical displacement components and electric potential as
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3. Construction of asymptotic solution

To determine the asymptotic solution of Egs. (5) as r approaches zero, the mechanical displacement components and elec-
tric potential in the double series can be conveniently expanded as follows;

(1, 0,2) ZZV’”*”U (6a)

m=0n=0
uy(r,0,2) ZZr’W”V (6b)
m=0n=0
(r,0,2) = 3 P (6c)
m=0n=0

$(r,0,2) ZZr”'"*”CD (6d)

m=0n=0
where the characteristic values /, are assumed to be constants and can be complex numbers. The real part of /., has to be
positive to satisfy the regularity conditions for mechanical displacement components and electric potential at r = 0 (such as
finite displacement and electric potential at r=0).
Substituting Egs. (6) into Eqs. (5) and carefully arranging the resulting equations yields,
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To investigate the behaviors of the solutions around r = 0, only the parts of the solutions with the lowest order of r have to
be considered. That is the solution corresponding to n =0 in Egs. (7). Accordingly, the following equations must be solved.
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Appendix III defines p;, qi, r;, and s; in Egs. (8).

Egs. (8) are a set of ordinary differential equations with variable coefficients that depend only on 6. The solutions to Egs.
(8) are independent of z. The exact closed-form solutions to Egs. (8) are intractable, if they exist. The power series method
can be directly adopted to develop a general solution for ordinary differential equations with variable coefficients. Very high-
order terms must be considered to obtain an accurate solution and this requirement can cause numerical difficulties. To
overcome these difficulties, a domain decomposition technique is used in conjunction with the power series method to
establish a general solution of Egs. (8).

The range of 0 under consideration is first divided into a number of sub-domains (see Fig. 2). A series solution to Egs. (8) is
established in each sub-domain. Consequently, a general solution over the whole § domain is constructed from these series
solutions in the sub-domains by imposing the continuity conditions between each pair of adjacent sub-domains. This pro-
cess is a very convenient means of constructing solutions that can be used to analyze multi-material wedges, which are also
considered in this work.

To establish the power series solution for sub-domain i of 6, the variable coefficients in Eqs. (8) are expanded in terms of
the power series of § with respect to the middle point of the sub-domain, 6;:

K . B K ) B K ) B K ) B
pi0) =Y (O =0, qi(0) =D (S (0—0)"15(0) = D (&) O —0), 5(0) =D (W) (00" (9)
k=0 k=0 k=0 k=0
Similarly, the solutions of Egs. (8) in sub-domain i are expressed as,
J I . A J .. R J . .
=AY -0,V =S "BY(0 - 0y, Wi =S "CP(0 - 07, ) = > DY (0 - 0:). (10)
j=0 j=0 j=0 j=0

Substituting Egs. (9) and (10) into Egs. (8) and carefully rearranging yields the following relations among the coefficients
in Egs. (10),

AL+ (13)' B, + ()5 CYy + (110)y' DY,
-1 & i) Al
:W{Z [(k+2)( k+1)((#3)] k k+2+(#6)] k k+2 (/19)] k k+2 +Z[ (k+1)( #1), k k+1 +(/’t2);jkAl(<)
k=0
+ (k+ 1) (1) BELy + () BY + (k+ 1) () Gy + ()i G + (K + 1) (pag) " Dy + () DT (11a)
BY, + <c3>8’> )+ (26)5 Y, + (So)y DY,
j-1 . o j o
O Tk +2)(k + 1)((c3) A, + (o) C, + (o)D) + (k4 1)) By
(]+2(]+1 z; 3)j—k* *k+2 6/j—k“k+2 9/j—k~k+2 k:o 1/j—k“k+1
+ () B + (k+ 1)) AL + (65) A + (k+ 1) (6" City + (So) 5 Ch + (k+ 1)(S10) " Dy + (40 DT

(11b)

Fig. 2. Sub-domains for 0 € [0, y].
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al £ (0 A(D) = (DR OF) (!)
Cj+2 +(&3)p Aj+2 (&6)o Bj + (o)p D

m{z [k +2)(k+1)((&) AL + (Go) B, + (¢ )]nkbfflzn SOk + 1 + @l

k=0
+(k+ 1) E)DAL + E)PAY + (k+1)(E) DB + () BY + (k+1)(E10) " DL + (G DT} (11¢)
DY, + (93)g Ay + ()5 Bl + (99)5 €1l
-1 ! A )
7%2)%1 {Z [(k+2)(k+ 1)((93)" A, + (96)", B, + (199), Loy +Z[ (k+ 1) (1) Dy + (92))" DY
k=0
(k+ 1)(194)1 kAI<+1 (195)1 Kk (k+ 1)(197)1 kBk+1 (198)] k (k+ 1)(1910)1 kck+1 + (19”)] ké;:-z-l}} (11d)

Close examination of Egs. (11) reveals that if A}, A, By, BY", C}), C{", DO‘) and D" are determined, then the other coeffi-
cients in Egs. (10) (A", B, C{" and D", j > 2) can be found by solving the linear algebraic equations in Eqs. (11). Conse-
quently, the solutions to Eqs. (8) in sub-domain i of 6 can be expressed as

U™ (0,2) = AY UG (0) + AV UL (0) + BY UG (0) + B U (0) + CYUS (0) + CYULY (0) + DYUS (0) + DU (0),

VG (0.2) = APV (0) + AV (0) + By Vi (0) + BY VS (0) + €V (0) + € Vigg (0) + DY Vi (0) + DYV (0),
(12b)

WE)T)(G’Z):A()WOIO( )+A Won( )+B WUIZ( )*B W013( )+ C(l Worzrzll( )*C Wo;s( )+D Wo;e( )*D W017(9)

(12c)

DM (0,2) = AV DI (0) + AV DY (0) + BV D (0) + BY DI () + CL DI (0) + CLDI (0) + DY DY () + DY DU (6)

0i ’ 0i1 0i2 1 703 0 ~0i4 1 70i5 0 ~0i6 1 70i7 :
(12d)

The asymptotic solution in sub-domain i of 6 is,

(r,0,2) ermu (0,2) +O(r'm ) = u(r, 0,2, im) + O(r'"*1), (13a)
(r,0,2) Zr”"v (0,2) + O(r" 1) = 4 (0,2, Jm) + O(rn*1), (13b)
ud(r,0,z) Zr’mw (0,2) + O 1) = U9 (r, 0,2, An) + O(r*+1), (13¢)
'(r,0,2) Zr’md)“” (0,2)+0(r'"™*1) = ¢O(r,0,2, im) + O(r ). (13d)

When the range of 0 is decomposed into n sub-domains, a total of 8n coefficients must be determined in all of the sub-
domain solutions that are constructed using the above procedure. These solutions must satisfy the continuity conditions be-
tween pairs of adjacent sub-domains. These include continuities of tractions, mechanical displacements, electric displace-
ments and electric potential. These continuity conditions yield 8(n—1) algebraic equations. Homogenous boundary
conditions at 0 = 0y and 0 = 0,, must be satisfied, yielding another eight equations. As a result, 8n coefficients are to be deter-
mined from 8n homogenous algebraic equations. A nontrivial solution for the coefficients yields an 8nx 8n matrix with a
determinant of zero. The roots of the zero determinant (4,), which can be complex numbers, are obtained herein using
the numerical approach of Miiller [34].

4. Verification of solution

To validate the proposed solution, convergence studies for minimum Re[/,] (real part of 4,,) are conducted by increasing
the number of sub-domains or increasing the number of polynomial terms in each sub-domain, and the convergent solutions
are compared with the published results. The wedges under consideration are made of piezoelectric material PZT-4, which is
transversely isotropic. Table 1 presents the material properties of PZT-4.
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Table 1
Material properties.
Material Stiffness [GPa] Piezoelectric const. [C/m?] Dielectric const. x107'° [F/m]
611 (:12 é131 633 644 éli é31 é33 fl]] ’;’33
PZT-4 139.0 77.8 74.3 115.0 25.6 12.7 -5.2 15.1 64.6 56.2
PZT-5H 126.0 55.0 53.0 117.0 353 17.0 -6.5 233 151.0 130.0
Si 166.2 64.6 64.6 166.2 50.8 - - - - -
Table 2
Convergence of minimum Re[/,,] for PZT-4 wedges.
v Boundary Number of sub- Terms Published
conditions domains 5 6 7 3 9 10 12 14 15 results
360° FOFO 3 0.4985 0.4978 0.4916 0.4417 0.4980 0.4998 0.4750 0.5000 0.4999 0.5000 [29]
4 0.4996 0.4963 04993 0.4999 0.4999 0.4984 0.4999 0.4999 0.4999
6 0.5000 0.4993 0.4999 0.4999 0.5000 0.5000 0.4999 0.5000 0.5000
8 0.4999 0.4999 0.4999 0.4999 0.4999 0.5000 0.5000 0.4999 0.5000
360° FOCC 3 0.1769 0.1969 0.2052 0.1602 0.1718 0.1965 0.1724 0.1954 0.1895 0.1869 [18]
4 0.1855 0.1895 0.1847 0.1877 0.1879 0.1857 0.1877 0.1865 0.1869
6 0.1869 0.1869 0.1869 0.1869 0.1869 0.1869 0.1869 0.1869 0.1869
8 0.1869 0.1869 0.1869 0.1869 0.1869 0.1869 0.1869 0.1869 0.1869
180° 2 0.3710 03751 0.3749 03740 0.3736 03735 0.3741 03737 0.3738 0.3739 [18]
3 0.3741 0.3737 03738 03739 03739 0.3739 03739 03739 03737
4 0.3738 0.3739 03739 03739 0.3739 0.3739 03739 03739 03739
6 0.3739 0.3739 03739 03739 0.3739 03739 03739 03739 03739
Table 3
Comparisons between the present and the published /,, for PZT-4 wedges.
b Boundary conditions Direction of polarization Roots of im Published results Present results
360° FOCC Y 2o 0.1869* 0.1869
21 0.3131° 0.3131
J2 0.6869% 0.6869
357° FOFO Y 2o 0.5000° 0.5000
2 0.5094° 0.5094
2 0.5046° 0.5046
z 0 0.5000" 0.5000
s 0.5085" 0.5085
J2 0.5042° 0.5042
330° FOFO Y 0 0.5021° 0.5021
s 0.5499° 0.5498
Ja 0.6109° 0.6109
z 0 0.5015° 0.5014
ps 0.5455° 0.5455
Ja 0.5982° 0.5981
180° FOCC Y 0 0.3739°? 0.3739
1 0.5000° 0.5000
2 0.6261°2 0.6261
Note:

¢ Denotes the results of Hwu and Ikeda [18].
b Denotes the results of Sze et al. [24].

Table 2 considers three cases. Four letters specify the boundary conditions of a wedge at 0 = 0 and 0 = 7. The first and third
letters represent the mechanical boundary conditions at = 0 and 6 = v, respectively; and C and F represent clamped and free
boundary conditions, respectively. Similarly, the second and fourth letters concern the electric boundary conditions with C
and O’s denoting electrically closed and open boundary conditions, respectively. These rules are adopted throughout the
paper.

The first case concerns a crack problem with a material having its direction of polarization in the z direction (see Fig. 1).
The surfaces of the crack are free of surface traction and surface charge. That is g4y = gy, = 64,=D,=0 at 0 =0 and 27. The
results of Sosa and Pak [29] were obtained by using an eigenfunction approach, which is similar to the present approach.
Sosa and Pak [29] examined a piezoelectric parallelepiped with a cut-through crack and having its direction of polarization
in the z direction, so that they could find a closed-form solution for .
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Fig. 3. Variation of minimum Re[ /] with direction of polarization for a 270° PZT-5H wedge (a) o = 0° (on x-z plane), (b) = 90° (on x-y plane), (c) g = 30°,
60° and 90°.

The other two cases involve 180° and 360° wedges with FOCC boundary conditions and polarization along 0 = 180° and
0 =270°, respectively, in the plane x-y. Table 2 also presents the results that were published by Hwu and Ikeda [18]. Notably,
the solutions of Hwu and Ikeda [18] are two-dimensional solutions, depending on x and y, and are based on the assumption
of generalized plane strain and a short circuit. They assumed ¢, =0 and E, = 0, eliminated the terms that were associated
with ¢,, and E, in the constitutive equations, and replaced ¢, and D, by the other stress and electric displacement compo-
nents. Thus, they eliminated ¢;; (i or j = 3), exs and 13 from Egs. (4). Using their assumptions and following the present solu-
tion procedure shown in Sections 2 and 3, one can obtain exactly the same equations as Egs. (8) and the same values of i,
given in the present work. This fact is indirectly evidenced by two observations. The first is that the terms corresponding to
the derivatives with respect to z in Egs. (5) are absent from Egs. (8), indicating that the assumption of all physical quantities
in Egs. (5) independent of z does not affect the establishment of Egs. (8). The other is that the coefficients in Egs. (8), pre-
sented in Appendix III, are independence of ¢;(i or j = 3), exs and 1s.

The comparison in Table 2 of the convergent values obtained herein with those published reveals excellent agreement.
The present convergent solutions can be obtained by increasing the number of sub-domains or increasing the order of
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Fig. 4. Variation of minimum Re[/,,] with wedge angle for PZT-5H wedges (a) FOFO boundary conditions, (b) COCO boundary conditions.

the polynomials. Using a large number of sub-domains in combination with a small number of polynomial terms can yield
convergent results without any numerical difficulty.

It is also interesting to demonstrate the accuracy of the values of 4,, other than minimum Re[4,,] obtained by the present
approach. Herein, 4, are in order of Re[4;] < Re[4i,1] (=0, 1, 2,...). Table 3 compares Ay, 4; and /, determined by the present
approach with the results published by Hwu and Ikeda [18] and Sze and Wang [24] for PZT-4 wedges with different y, bound-
ary conditions and directions of polarization. Notably, the results of Sze and Wang [24] were obtained by a finite element
approach with three-dimensional formulations and assuming all the physical quantities under consideration independent
on z. The material properties of PZT-4, which were used in Sze and Wang [24] and are different from those given in Table 3,
were applied for the wedges with FOFO boundary conditions in Table 3. The different material properties from those in Ta-
ble 1 and used in Sze and Wang [24] are &5 =113GPa, &;5=13.44C/m? @3 =-6.98C/m? &3 =13.84C/m?
11 =60.0 x 107 1°F/m, and 733 = 54.7 x 10~'° F/m. The present results were obtained by dividing the whole domain of 0 into
four sub-domains and using 12 polynomial terms in the solutions for each sub-domain. Table 3 discloses excellent agree-
ment between the present and the published results.
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Fig. 5. Variation of minimum Re[4,,] with direction of polarization for a 180° PZT-5H/Si bi-material wedge (a) o = 0° (on x-z plane), (b) =90° (on x-y
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5. Numerical results and discussion

After the correctness of the proposed solutions was verified by performing the convergence studies and comparisons with
the published results, the proposed solution was further applied to investigate the electroelastic singularities in a piezoelec-
tric wedge with varying directions of polarization. The wedges under consideration are made of a single piezoelectric mate-
rial, a piezoelectric material and an isotropic elastic material, or two piezoelectric materials. Two parameters « and B are
introduced to specify the direction of polarization, where o is the angle between the x-axis and the projection of the polar-
ization axis onto the x-y plane, and g is the angle between the z axis and the polarization axis. The order of electroelastic
singularity at the apex of a wedge is determined by the real part of (1, —1), and the root of primary interest is the one with
the smallest positive real part between zero and one. The following presents the values of minimum Re[/,,] for wedges with
various combinations of boundary conditions along 6 =0 and 6 = y.
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Fig. 6. Variation of minimum Re[/,,] with direction of polarization for a 270° PZT-5H/Si bi-material wedge (a) o = 0° (on x-z plane), (b) g =90° (on x-y
plane), (c) g =30°, 60° and 90°.

5.1. Wedges made of a single piezoelectric material

Figure 3 illustrates the effects of the direction of polarization on the minimum values of Re[ ] for a 270° wedge made of
PZT-5H, whose material properties are given in Table 1. Four combinations of boundary conditions were considered - FOFO,
FCFC, COCO and CCCC. As stated in Section 4, FOFO means free mechanical boundary conditions and open electric boundary
conditions at both of § = 0° and 0 = 270°. In Fig. 3a, o = 0° means that the direction of polarization is in the x-z plane, while
B =90° in Fig. 3b indicates that the direction of polarization is in the x-y plane. Figure 3a only considers 0° < < 90° because
B+90° and 90°—p yield the same A,,. Similarly, Fig. 3b only presents the results for 0° < o < 180° because a+180° and 180°—a.
have the same /. Figure 3a and b demonstrate that the FF mechanical boundary conditions cause more severe electroelastic
singularities than do the CC mechanical boundary conditions. Electric boundary conditions do not affect minimum Re[4,] in
the FCFC and FOFO cases. The variation in minimum Re[4,,] owing to changes in the direction of polarization is less than 5%.
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Figure 4 plots the variation of minimum Re[/,,] of PZT-5H wedges with wedge angle y and under FOFO and COCO bound-
ary conditions. Three different directions of polarization in the x-y plane were considered - « = 0°, 60°, and 120°. The 4, val-
ues that correspond to minimum Re[/,] are all real. As expected, minimum Re|[/,,] decreases as 7y increases; and the FOFO
boundary conditions yield a smaller minimum Re[ 4,,] than do the COCO boundary conditions. When ) = 360° (representing a
crack), both sets of boundary conditions result in 4, = 0.5, and the orientation of the polarization in the x-y plane does not
influence the singularity order.

5.2. Bi-material wedges made of piezoelectric and elastic materials

The integration of piezoelectric films on silicon (Si) substrates is favored in the design and formation of micro electrome-
chanical systems. This section study the electroelastic singularities at the interface in wedges that are made of PZT-5H and Si,
whose material properties are found in Table 1. Two typical wedge configurations - those of 180° and 270° wedges — were
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considered first. In a 180° wedge, Si and PZT-5H occupy 0° < 6 < 90" and 90" < 6 < 180, respectively, while in a 270° wedge,
Si and PZT-5H occupy 0° < 0 < 180" and 180" < 0 < 270, respectively. Figure 5 an 6 plot the values of minimum Re[ /] of
these two wedges versus their directions of polarization, respectively. Again, four sets of boundary conditions were consid-
ered. These are F-FO, F-FC, C-CO, and C-CC, where “-” denotes the absence of any electric boundary conditions at 0 =0°,
according to the rule for defining boundary conditions described in Section 4.

In Fig. 5a and b, the directions of polarization of PZT-5H are in the x-z plane and x-y plane, respectively, while Fig. 5c
displays the results for the wedges with the F-FO boundary conditions and having the directions of polarization on the
surfaces with g =30°, 60° and 90°. It is interesting to observe that the direction of polarization can be especially arranged
to eliminate electroelastic singularities at the interface of the wedge. For example, Fig. 5a reveals no electroelastic singular-
ities when 80" < 8 < 90" and 38" < 8 <90 for boundary conditions F-FO and C-CO, respectively; Fig. 5b shows no electro-
elastic singularities when 90" < o < 180" under boundary conditions F-FO and F-FC, and Fig. 5¢ shows no electroelastic



4532 CS. Huang, C.N. Hu/Applied Mathematical Modelling 37 (2013) 4517-4537

0.66 0.66
270°wedge, u=0" 270°wdege, p=90' y
T FOFO
YR ) [ m—— FCFC
0.64 — d ¥4
y — .= COCO
. Cccc
|
1
062 — =
PZT-4 P W
- >
E PZT-5H

0.58 =

min. Re(2,,)
L
min. Re(2,,)

0.56 —

[T L -

052

LI N B R B N B L B L B B B 052|||||||||||||]|||

0 10 20 30 40 50 60 70 80 920 0 20 40 60 80 100 120 140 160 180
Angle B (degrees) Angle o (degrees)
(a) (b)

0.58

270" wedge, FOFO
p=30°
—_—— = =60

min. Re(},)

052|||||||||||||1|||

0 20 40 60 80 100 120 140 160 180

Angle o (degrees)
(©

Fig. 9. Variation of minimum Re[/,,] with direction of polarization for a 270° PZT-5H/PZT-4 bi-material wedge (a) o = 0° (on x-z plane), (b) g =90° (on x-y
plane), (c) p=30°, 60° and 90°.

singularities when 18° < o < 88° and 23° < o < 72° under the conditions g = 60° and 30°, respectively. Notably, boundary con-
ditions C-CC yield more severe singularities at the interface than do the other three sets of boundary conditions.

According to Fig. 6, in investigating the singularities in 270° wedges, changes in the direction of polarization may yield
considerable changes in minimum Re[/,]. In Fig. 63, the order of the singularity falls by approximately 10% under boundary
conditions F-FO as  changes from 0° to 90°, and in Fig. 6b, it increases by about 25% under boundary conditions F-FC as o
changes from 45° to 135°.

Figure 7a and b plot the variation of minimum Re[Z,,] with the angle of PZT-5H, y;, under boundary conditions F-FO and
C-CO, respectively. In the wedges in Fig. 7, Si occupies 0° < 0 < 180°, and the wedge angle y equals 7, + 180°. The directions
of polarization are in the x-y plane and o = 0°, 60° and 120°. As expected, the strength of the singularity generally increases
with the increase of y,, and the order of the singularity equals 0.5 when ), = 180° (representing a crack). The relatively
abrupt changes of the minimum Re[/,,] around ), = 160° in Fig. 7a are caused by the changes of /,, from real numbers to
complex numbers.
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5.3. Bi-material wedges made of piezoelectric materials

Bi-material wedges that comprise piezoelectric materials are commonly encountered in smart structures. This section
investigates electroelastic singularities at the interface of bi-material wedges comprised of PZT-5H and PZT-4, whose mate-
rial properties are provided in Table 1. The configurations of wedges considered in this section are the same as those in the
preceding section, except in that the elastic material in the previous section is replaced by the piezoelectric material PZT-4.

Figure 8 illustrate the effects of the orientations of polarization on the electroelastic singularities in wedges with a wedge
angle 180°. When the direction of polarization lies in the x-y plane (see Fig. 8b), 2° < & < 88° and 6° < o < 84° yield no singu-
larities under boundary conditions COCO and CCCC, respectively. When the direction of polarization is on the surface with
B =30° (see Fig. 8¢), no singularities are found for 108° < o < 168° under the FOFO boundary conditions. Changes in the direc-
tion of polarization alter the order of the singularity by less than 4%.

Free—free mechanical boundary conditions cause more severe electroelastic singularities in 270° wedges (Fig. 9) than do
clamped-clamped boundary conditions. The orientation of polarization may change the order of the singularity by approx-
imately 9%. For wedges with other angles, that percentage exceeds 10% (Fig. 10).
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6. Concluding remarks

This study found an asymptotic solution to a piezoelectric wedge to investigate geometrically-induced electroelastic sin-
gularities at the vertex of the wedge based on three-dimensional piezoelasticity theory in a cylindrical coordinate system.
The piezoelectric material is first assumed to be anisotropic and its direction of polarization to be arbitrary. The solution
was obtained using an eigenfunction expansion approach in conjunction with a power series technique to solve the equilib-
rium and Maxwell’s equations, which are four coupled partial differential equations in terms of the displacement compo-
nents and electric potential. The present solution is easily reduced to the solution for anisotropic elastic wedges by
eliminating the piezoelastic and dielectric constants. The proposed solution is verified by performing convergence studies
and comparing the results with the published results.

The proposed solution was employed to examine electroelastic singularities in wedges that comprise a single piezoelec-
tric material (PZT-5H), bounded piezo/isotropic elastic materials (PZT-5H/Si), or piezo/piezo materials (PZT-5H/PZT-4). The
minimum Re[ ], which is directly related to the order of the singularity, is displayed for different wedge angles, combi-
nations of boundary conditions, and directions of polarization. As expected, the strength of the singularity generally in-
creases with the increase of wedge angle. Interestingly, the direction of polarization can be set to eliminate the
singularities at the interface of 180°wedges made of PZT-5H/Si or PZT-5H/PZT-4 with free-free mechanical boundary con-
ditions. This phenomenon is particularly important because such wedges are frequently encountered in many smart
structures.
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