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Abstract—Multiple-input–multiple-output (MIMO) linear
receivers are often of more practical interest than maximum-
likelihood (ML) receivers due to their low decoding complexity
but at the cost of worse diversity gain performance. Such a
statement on performance loss is due to the assumption of using
an independent identically distributed complex Gaussian vector
as channel input. By removing this assumption, we find that
the diversity performance of MIMO linear receivers can be
significantly improved. In an extreme case, it can be the same as
that of ML receivers. Specifically, in this paper, we investigate the
diversity–multiplexing tradeoff (DMT) performance of MIMO
linear receivers with colored and possibly degenerate Gaussian
channel inputs. By varying the rank of the covariance matrix of
the channel input vector and by allowing temporal coding across
multiple channel uses, we show that the MIMO linear receiver
can achieve a much better DMT performance than the currently
known one. Explicit optimal code constructions are provided,
along with simulation results, to justify the above findings. For
the case of (2 × 2) and (3 × 3) MIMO linear receivers, simulation
results show that the newly proposed codes provide significant
gains of 10 and 12.08 dB in Eb/N0 at bit error rate 10−4

compared to the conventional schemes, respectively.

Index Terms—Diversity–multiplexing tradeoff (DMT), explicit
optimal code constructions, linear receivers, precoding matrix,
quasi-static multiple-input–multiple-output (MIMO) channel.

I. INTRODUCTION

THE WIRELESS multiple-input–multiple-output (MIMO)
communication system equipped with nt transmit and nr

receive antennas can simultaneously provide a much higher
rate and a much better error performance than the conventional
single-input–single-output (SISO) system [1], [2]. Such per-
formance advantages are measured by the notions of (spatial)
multiplexing gain and diversity gain, respectively. There is also
a fundamental tradeoff between these two quantities, termed
diversity-multiplexing gain tradeoff (DMT) [3], which can be
achieved by any MIMO system.

Consider a quasi-static (nt × nr) MIMO Rayleigh fading
channel with a targeting transmission rate R = r log SNR
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(in bits per channel use or bpcu), where r is termed the multi-
plexing gain, and the logarithm is taken to the base 2. Assuming
that the number of channel uses ≥ nt + nr − 1, Zheng and
Tse [3] showed that the optimal diversity gain d∗(r) that can
be achieved by any space–time coding scheme is a piecewise
linear function1 connecting the points (r, (nt − r)(nr − r))
for r = 0, 1, . . . ,K, where K := min{nt, nr} is commonly
known as the channel degree of freedom. Moreover, given nt

and r, there are space–time codes constructed explicitly from
some cyclic division algebra (CDA) [4] that can achieve the
optimal diversity gain d∗(r) in nt channel uses at the high
signal-to-noise ratio (SNR) regime provided that maximum-
likelihood (ML) or bounded-distance decoding is employed.
While the computational complexity of ML decoding is ex-
tremely high, the CDA-based codes can be represented in a
linear-dispersion form [5] and hence could be decoded by the
use of sphere decoding [6], [7]. The sphere decoder is known
to be ML equivalent but has a relatively lower complexity.
In [8], El Gamal et al. introduced the minimum mean-square
error generalized decision-feedback equalizer (MMSE-GDFE)
to decode the class of LAttice Space Time codes, which is DMT
optimal. The MMSE-GDFE receiver also falls in the class of
sphere decoding [8].

Sphere decoding of linear-dispersion space–time codes in
general has a complexity in the form of O(|A|e), where A ∪
Z is the base alphabet, and e is some exponent depending
upon the dimension of the code lattice. The value e is often
quite large and can be much larger if the MIMO system is
underdetermined, i.e., when nr < nt. For the overdetermined
MIMO system, i.e., nt ≤ nr, it is known [9], [10] that the
expected number of visited nodes in the sphere decoder is lower
bounded by (|A|ηnt − 1)/(

√
|A| − 1), where η = (1/2)(1 +

(4(|A| − 1)/3σ2)SNR)−1, and σ2 = Ea∈A|a|2. Thus, in case
of large-size base alphabet, i.e., |A| � 1, there is a great
concern whether the sphere decoder could meet the requirement
on decoding latency and low power consumption in practical
mobile and vehicular MIMO communications. Hence, it is very
often of much practical interest to replace the sphere decoder
with the linear detector, whose complexity is roughly O(n2.3

t )
[11] for matrix inversion and is independent of |A|, even
knowing that the latter could lead to considerable performance
degradation beforehand [12]–[15]. Implementations of MIMO
communication using linear receivers have been extensively
investigated for mobile and vehicular communications, see, for
example, [12]–[22].

1For simplicity, in this paper we will write d∗(r) = (nt − r)(nr − r)
directly.
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Assuming that the receiver has full channel state information,
the DMT performance of MIMO linear receivers such as zero-
forcing (ZF) or minimum mean-square error (MMSE) receiver
has been studied in several works. In [16], it is shown that if the
code has finite size (hence r approaches 0 as SNR → ∞) and is
transmitted in single channel use, the maximal diversity gain is
given by nr − nt + 1, which is significantly smaller than the
optimal diversity value d∗(r = 0) = ntnr. Kumar et al. [23,
Th. 1] extended the DMT analysis to the case when the code
has size SNRr, growing as the SNR increases, and showed
that ZF and MMSE receivers have the same DMT performance
given by (nr − nt + 1)(1 − (r/nt))

+ for multiplexing gain r,
where (x)+ := max{0, x}. For the sake of completeness, we
reproduce this result in the following theorem.

Theorem 1 [23, Th. 1]: The DMT of the nt-transmit nr-
receive independent identically distributed (i.i.d.) Rayleigh
MIMO channel with nr ≥ nt, constrained to use Gaussian
codes under either MMSE or ZF linear receivers, is given by

d∗lin(r) = (nr − nt + 1)

(
1 − r

nt

)+

for both cases of coding across antennas or pure spatial
multiplexing.

It should be noted that the above result is based on the as-
sumption of an i.i.d. complex Gaussian channel input in single
channel use. To compensate for the performance loss due to the
use of linear receivers, several modified MMSE receivers have
been proposed [17], [18], [24]–[35]. In particular, [17], [18],
and [24]–[29] proposed performing the Lenstra–Lenstra–Lováz
(LLL) lattice basis reduction algorithm [36] on the channel
matrix prior to linear equalization. It is shown [37] that with
the additional LLL reduction, the maximal diversity gain can
be increased to nr for a finite code rate R, corresponding to
the case of r ↓ 0, in single channel use, where r ↓ 0 means
r approaches 0 from the right, i.e., r → 0+. A recent result
given by Jaldén and Elia [26] shows that with LLL lattice basis
reduction in preprocessing, the MMSE receivers can achieve
the optimal ML performance in the DMT sense.

A. Main Contributions of This Paper

The contributions of this paper are the following. First, we
remark that although the i.i.d. complex Gaussian channel input
is sufficient for achieving the optimal DMT in general MIMO
channel under ML decoding, as was established by Zheng and
Tse [3], such channel input is in general not optimal for linear
receivers. Second, based on [23], we extend the DMT analysis
to the case when multiple channel uses and temporal coding
are allowed. As most of the existing space–time codes can be
represented in linear-dispersion forms, it makes so much sense
to study the DMT performance for MIMO linear receivers in
multiple channel uses by taking into account the possibility of
temporal coding, even when the channel remains fixed through-
out. Motivated by the above, in this paper, we investigate
the DMT performance of MIMO linear receivers with general
Gaussian codebooks. By which we mean that colored (and
possibly degenerate) complex Gaussian random matrices will
be used as channel input. We show that with such relaxation, a

much better DMT performance is indeed achievable by linear
receivers. Specifically, we report the following contributions in
this paper.

1) Our main result is reported in Theorem 5, where we
show that by varying the rank of the covariance matrix of
the colored, degenerate, Gaussian input and by allowing
temporal coding at the transmitter, the linear receiver
indeed can achieve the maximal possible diversity gain
ntnr as r approaches 0. This is much larger than all
previously known results.

2) Similar improvements of DMT performance are also
obtained for r > 0 through our approach. We report in
Theorem 4 that the optimal DMT for MMSE linear
receiver is lower bounded by

dnMMSE(r) ≥ max
n,m∈Z+:
1≤nm≤nt

(nnr −m+ 1)
(

1 − nr

m

)+
while the existing best result [23, Th. 1] had (nr − nt +
1)(1 − (r/nt))

+ due to an assumption of a full rank i.i.d.
Gaussian input.

3) We provide a systematic construction of temporal codes
in Section IV that can achieve the above lower bound
on the DMT for linear receivers. For the (2 × 2)
and (3 × 3) MIMO linear receivers, the simulation results
show that the newly proposed codes provide significant
gains of 10 and 12.08 dB in bit SNR Eb/N0 at bit
error rate 10−4 compared to the conventional schemes,
respectively.

Our findings are well justified by the simulations of outage
probabilities of the newly proposed schemes as well as the bit
error rates of the proposed codes.

Notation: Underlined lowercase letter x represents a vector,
and uppercase letter A denotes a matrix of certain size. The
(i, j)th entry of matrix A is denoted by Ai,j . A† (respectively
A�) denotes the Hermitian transpose (respectively transpose)
of matrix A, and ‖A‖ denotes its Frobenius norm. In is the
(n× n) identity matrix, and 0n denotes the all-zero (n× n)
matrix. Matrix inequalities such as 
, �, �, and ≺ represent the
partial orderings of positive semidefinite matrices [38, Sec. 7.7].
For example, we say A 
 B if A−B is a nonnegative definite
matrix. x ∼ CN (m,Kx) stands for a circularly symmetric
complex Gaussian random vector x with mean m and covari-
ance matrix Kx. f(x) and g(x) are said to be exponentially
equal, denoted by f(x)

.
= g(x), if limx→∞(log f(x)/ log x) =

limx→∞(log g(x)/ log x), provided that the limits exist. Expo-
nential inequalities, indicated by ≤̇, ≥̇, <̇, and >̇, are defined
similarly. U(n) denotes the multiplicative group of (n× n)

unitary matrices over C. d(n)MMSE(r) is the DMT of MIMO linear
receivers with multiplexing gain r in n channel uses. The unit
“bpsu” is for bits per subchannel use.

II. IMPROVED DIVERSITY-MULTIPLEXING TRADEOFF FOR

LINEAR RECEIVERS

In this section, we investigate the DMT performance of
MIMO linear receivers using colored and possibly degenerate
complex Gaussian vector as channel input. For brevity, we
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will restrict ourselves to the study of MMSE receivers. Our
techniques can be directly applied to the study of ZF receivers,
and all the results will hold the same. Although there are
modified MMSE receivers with improved performance such as
those reported in [30]–[34], in this paper, we will focus only on
the elementary one.

For simplicity, in Section II-A, we will first conduct the DMT
analysis of the MIMO linear receiver subject to single channel
use. It will be shown that even in this case, by varying the rank
of the covariance matrix of the channel input vector, the re-
sulting maximal diversity gain can already be increased to the
value nr compared to the original value of (nr − nt + 1) given
in [16], [23]. In Section III, we will extend the results to the
case of multiple channel uses with temporal coding allowed.

A. DMT of Linear Receiver Under Single Channel Use

Consider an (nt × nr) MIMO channel with the following
channel input–output relation:

y =
√

SNRHx+ w (1)

where x ∼ CN (0,Kx) is the transmitted code vector subject to
a power constraint of Tr(Kx) ≤ 1. H is the (nr × nt) channel
matrix with i.i.d. CN (0, 1) entries and is assumed to be known
to the receiver, but not to the transmitter. w ∼ CN (0, Inr

)
is the additive complex Gaussian noise. We assume nt ≤ nr

throughout.
From the spectral theorem for Hermitian matrices [38, Th.

2.5.6], let Kx = UxΛxU
†
x be the eigen-decomposition of Kx,

where Ux ∈ U(nt) is an (nt × nt) unitary matrix, and Λx is a
diagonal matrix consisting of eigenvalues of Kx. Then, we can
rewrite (1) as

y =
√

SNRH̃x̃+ w

where H̃ = HUx and x̃ = U †
xx such that Kx̃ = Ex̃x̃† = Λx.

Let m := rank(Λx) ≤ nt. We can assume without loss of gen-
erality that the first m diagonal entries of Λx are all nonzero.
The transmitted vector x̃ is statistically equivalent to

x̃ =

[
s
0(nt−m)×1

]

for some s ∼ CN (0,Λ), where Λ is the (m×m) diagonal
submatrix of Λx, consisting of the nonzero eigenvalues of Kx.
Finally, the channel model (1) simplifies to

y =
√

SNRHss+ w (2)

where Hs is the (nr ×m) equivalent channel matrix formed
by the leftmost m columns of H̃ . Observing that H̃ = HUx

and H share the same statistical distribution, and that Hs is
an (nr ×m) channel matrix with i.i.d. CN (0, 1) entries, (2)
can be regarded as an (m× nr) MIMO channel with channel
matrix Hs and channel input vector s ∼ CN (0,Λ) subject to
the constraints of Λ � 0m and Tr(Λ) ≤ 1. It then follows from
[23, Th. 1] that we have the following theorem.

Fig. 1. DMTs for ML receivers [3, Sec. IV], MMSE receivers [23], and that
from (5) for the (3 × 3) MIMO in single channel use.

Theorem 2: Given Λ = (1/m)Im, the DMT of (nt × nr)
i.i.d. MIMO Rayleigh channel with m ≤ nt ≤ nr and multi-
plexing gain r, using either linear MMSE or ZF receivers in
single channel use, is given by

d
(1)
MMSE(r)|Λ= 1

m Im
= (nr −m+ 1)

(
1 − r

m

)+
. (3)

�
It is clear from the foregoing theorem that even in the case of

single channel use, the maximal diversity gain of either MMSE
or ZF linear receiver can be significantly improved to nr after
setting m = 1 and r = 0. The value is much larger than the
previously known (nr − nt + 1) in [16] and [23].

While Theorem 2 focuses only on the case Λ = (1/m)Im,
below we give a much stronger result that the same DMT
(3) holds for all covariance matrices Kx satisfying Kx 
 0nt

,
Tr(Kx) ≤ 1, and rank(Kx) = m.

Theorem 3: The DMT of the (nt × nr) i.i.d. MIMO
Rayleigh channel with rank(Kx) = m ≤ nt ≤ nr and multi-
plexing gain r, using either linear MMSE or ZF receivers in
single channel use, is given by

d
(1)
MMSE(r)|rank(Kx)=m = (nr −m+ 1)

(
1 − r

m

)+
. (4)

�
By varying the values of m, in Fig. 1 we show the best

DMT performance offered by Theorem 3 for the (3 × 3) MIMO
channel in single channel use. That is, for each r, we find

d
(1)
MMSE(r) = max

m∈Z:
1≤m≤nt

(nr −m+ 1)
(

1 − r

m

)+
. (5)

It can be clearly seen that the colored degenerate Gaussian
input can achieve a much larger DMT than that in [23],
which uses an i.i.d. Gaussian input. We shall also em-
phasize that the DMT for the ML receiver in the case
of single channel use is nr(1 − (r/nt)) in Fig. 1. See
[3, Sec. IV-D] for details.
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B. Proof of Theorem 3

To prove the theorem, we note that the linear MMSE equal-
izer for (2) is given by

WMMSE :=
√

SNRΛH†
s

(
SNR ·HsΛH

†
s + Inr

)−1
(6)

=
√

SNR
(
SNR · ΛH†

sHs + Im
)−1

ΛH†
s (7)

where the second equality is immediate from the following
identity based on the associative law for matrix2

(
SNR · ΛH†

sHs + Im
)
ΛH†

s=ΛH†
s

(
SNR ·HsΛH

†
s + Inr

)
.

The corresponding equalized output is then given by

ŷ := WMMSE y = Gs+ n (8)

where the equivalent channel matrix is

G :=
√

SNR ·WMMSEHs

= SNR ·
(
SNR · ΛH†

sHs + Im
)−1

ΛH†
sHs

=
(
SNRΛH†

sHs + Im
)−1 [(

SNR · ΛH†
sHs + Im

)
− Im

]
= Im −

(
SNR · ΛH†

sHs + Im
)−1

. (9)

After obtaining ŷ, the MMSE receiver makes an independent
decision for each entry of s. Hence, the channel model (8)
can be interpreted as m parallel fading subchannels. Each
subchannel is given by

ŷ� = g�
�
s+ n� = G�,�s� + z�, � = 1, 2, . . . ,m (10)

where g�
�

is the �th row vector of G. z� is the lump noise in
the �th subchannel, i.e., it is the sum of the Gaussian noise n�,
which is correlated with other noise ni, and the interference
from other transmitted antennas. Specifically, it is given by

z� =

m∑
i=1,i�=�

G�,isi + n�.

Although the lump noises z� are correlated, the MMSE detector
simply ignores this fact and makes an independent decision for
each s�, thereby yielding a low complexity detection. �

For convenience, let

P :=
(
SNR · ΛH†

sHs + Im
)−1

.

Then, the channel input–output mutual information for the
nonergodic �th subchannel is given by

I(s�; ŷ�) = log(1 + SINR�) = − logP�,� (11)

where SINR� denotes the signal-to-interference-plus-noise
power ratio (SINR) of the �th subchannel. The proof of the

2An alternative derivation of (7), (9), (11) for the case of Λ = (1/m)Im can
be found in [19], [39]. The approach presented here is more general and follows
from a much simpler and more elementary technique.

second equality in (11) is relegated to the Appendix for ease
of reading. A further justification of 0 < P�,� ≤ 1 will also be
provided therein.

We also emphasize that the overall spatial multiplexing gain
is kept constant for having a fair comparison between the
previous and proposed schemes. Specifically, a system with
rank(Kx) = m has m subchannels, as shown in (10). The total
sum rate of the m subchannels is set at R = r log SNR bpcu, or
equivalently at spatial multiplexing gain r. It follows that each
subchannel transmits on the average at a rate of (R/m) bpsu,
where we have assumed an equal-rate split. This is the best rate-
split scheme since the transmitter has no channel knowledge.

Now, given Λ with rank m and transmission rate R, the
overall channel outage probability is

Pout,MMSE(r|Λ) = Pr

{
m⋃
�=1

{
Hs : I(s�; ŷ�) ≤

R

m

}}
.

Note that the foregoing outage probability is conditioned on
the explicit choice of Λ. It can also be easily seen that at
high SNR regime the above outage probability is exponentially
dominated by the worst outage probability associated with each
subchannel, i.e.,

Pout,MMSE(r|Λ) .
= max

1≤�≤m
Pr

{
Hs : I (s�; ŷ�|Hs) ≤

R

m

}
.

Thus, given constraint of rank(Kx) = m and
R = r log SNR, the smallest outage probability with respect to
the choice of Λ in our case, when minimized over all possible
Λs, is given by

Pout,MMSE (r|rank(Kx) = m) (12)

.
= inf

Λ�0m
Tr(Λ)≤1

max
1≤�≤m

Pr

{
Hs : I(s�; ŷ�|Hs) ≤

R

m

}
. (13)

With the above, the proof of Theorem 3 calls for upper and
lower bounds of (13). Clearly, setting Λ = (1/m)Im yields a
valid upper bound on the outage probability, which in turn
gives a lower bound on the diversity gain. It is already given
in Theorem 2, and we only need to develop a lower bound
for (13).

To bound Pout,MMSE(r |rank(Kx) = m) from below, we let
Λ = diag(λ1, . . . , λm) for convenience. It should be noted that
λ1, . . . , λm are constants for power allocation. Specifically, λi

denotes the ratio of the power used by the ith subchannel to the
total power. It is a predetermined, fixed, unitless constant and is
independent of the SNR.

As the matrix P can be factored into

P =
(
SNR ·H†

sHs + Λ−1
)−1

Λ−1

we will focus on the first term in the foregoing product. From
the obvious inequality 0m ≺ Λ ≺ Im, we have(

SNR ·H†
sHs + Λ−1

)
≺
(
SNR ·H†

sHs + λ−1
minIm

)
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Fig. 2. Outage probabilities for MMSE receivers with various values of
rank(Kx) for (3 × 3) MIMO in single channel use at a constant sum rate
R = 6 bpcu. The dash lines represent theoretical high SNR slopes for diversity
gains.

where λmin := min1≤�≤m λ� > 0. It follows that(
SNR ·H†

sHs + Λ−1
)−1

�
(
SNR ·H†

sHs + λ−1
minIm

)−1[(
SNR ·H†

sHs + Λ−1
)−1
]
�,�

>
[(

SNR ·H†
sHs + λ−1

minIm
)−1
]
�,�

for � = 1, . . . ,m since both matrices are positive definite. It is
then clear that

I(s�; ŷ�|Hs) = − logP�,�

< − log
[(
λminSNR ·H†

sHs + Im
)−1
]
�,�

+ log λ� − log λmin.

Since λ� is independent of SNR and λ�
.
= SNR0 for all �,

following the Laplace principle as used in [3] and [40], we can
neglect the last two terms in the above and

Pout,MMSE (r|rank(Kx) = m)

>̇ max
1≤�≤m

Pr

{
− log

[(
SNR ·H†

sHs + Im
)−1
]
�,�

≤ R

m

}
.
= SNR−(nr−m+1)(1− r

m )+ (14)

where the last exponential equality can be obtained following
arguments similar to [23, Th. 1], and details are omitted for
brevity. Finally, combining the upper bound (3) (obtained by
setting Λ=(1/m)Im) and lower bound (14) proves Theorem 3.

In Fig. 2, we provide computer simulations of the outage
probabilities of the (3 × 3) MIMO channel in single channel
use at a constant rate of R = 6 bpcu for various values of m.
We emphasize that we have assumed throughout this paper that
the overall spatial multiplexing gain is kept constant for having
a fair comparison between the previous and proposed schemes.
Thus, for example, in the case of rank(Kx) = 1, there is only
one subchannel, and hence, it transmits at 6 bpsu. The case of
rank(Kx) = 3, on the other hand, has three subchannels, and
each transmits at 2 bpsu. In other words, a system with a lower

rank of Kx, in keeping the total sum rate R a constant, each
subchannel would have to transmit at a higher rate. Therefore,
it does not necessarily imply that systems with smaller m would
yield a better outage performance, as seen from Fig. 2.

The dash lines in Fig. 2 represent theoretical high SNR slopes
for diversity gains based on (4) in Theorem 3. The simulated
diversity gains match perfectly with the result given in Theorem
3 at high SNR regime. We note that while the scheme of
rank(Kx) = 1 yields the largest diversity gain of 3 at the high
SNR regime, it does not necessarily mean that the scheme
has the smallest outage probability at low and moderate SNR
values. Moreover, we find that for SNR value below 24 dB,
the scheme of rank(Kx) = 2 actually delivers the best possible
outage performance in single channel use.

III. DIVERSITY -MULTIPLEXING TRADEOFF FOR

LINEAR RECEIVER WITH TEMPORAL

CODING ALLOWED

So far, we have characterized the exact DMT performance
of MIMO linear receivers in single channel use. In this section,
we will extend the work to the case of multiple channel uses,
when temporal coding is allowed and the channel remains fixed
throughout. Almost all of the existing space–time codes include
temporal coding. One such scheme, termed linear dispersion
space–time code [5], [41], can be easily incorporated into the
context of MIMO linear receivers. To elaborate, in a linear
dispersion code, each code matrix is associated with a point
in some lattice. It is obtained from an integer combination of
some basis matrices, which together form a generator matrix
of the lattice. In other words, each transmitted code matrix
is obtained by a fixed lattice generator matrix multiplied by
a coordinate vector [see (17)]. At the receiving end, the code
matrix will be left-multiplied by the channel matrix. Thus, the
linear channel equalization can be taken upon the product of the
channel matrix and the fixed lattice-generator matrix. Now, we
give the following theorem to provide a general lower bound on
the DMT of the linear MMSE or ZF receiver.

Theorem 4: For an (nt × nr) i.i.d. quasi-static MIMO
Rayleigh fading channel with nt ≤ nr that is fixed for at least n
channel uses, given multiplexing gain r, the DMT of the linear
MMSE or ZF receiver is lower bounded by

d
(n)
MMSE ≥ max

m,n∈Z+:
1≤nm≤nt

(nnr −m+ 1)
(

1 − nr

m

)+
(15)

where m is the rank of Gaussian input covariance matrix.
Proof: Assume that temporal coding is applied in n uses

of the (nt × nr) quasi-static MIMO channel within which
the channel matrix remains fixed. The channel input–output
relation is given by

y
i
=

√
SNRHxi + wi, i = 1, . . . , n

where xi satisfies the constraintE‖xi‖2≤1. By vertically stack-
ing the receive signal vectors, the n-shot channel is equivalent to

y =

⎡
⎢⎣
y
1
...
y
n

⎤
⎥⎦ =

√
SNR

⎡
⎣H . . .

H

⎤
⎦

︸ ︷︷ ︸
:=H̃

x+ w (16)
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where x = [x�
1 · · · x�

n ]
� and w = [w�

1 · · · w�
n ]

�. Let
x ∼ CN (0,Kx) with rank(Kx) = m and power constraint
Tr(Kx) ≤ n. Decompose Kx as Kx = UxΛU

†
x, where Ux is

an (nnt ×m) matrix 1 ≤ m ≤ nnt satisfying U †
xUx = Im but

UxU
†
x �= Innt

. Λ is a (m×m) diagonal matrix with nonzero
diagonal entries. Then, the stacking channel (16) can be
rewritten as

y =
√

SNRH̃Uxs+ w =
√

SNRHss+ w (17)

where s ∼ CN (0,Λ) and Hs = H̃Ux. We remark that unlike
the case of single channel use, the entries of Hs are not of
i.i.d. CN (0, 1). This is because H̃ is a block diagonal matrix
consisting of n repetitions of the same matrix H . �

Given transmission rate R = r log SNR (bits per channel
use) with rank(Kx) = m in n channel uses, the overall channel
outage probability is

Pout,MMSE(r|rank(Kx) = m,nchannel uses, Ux)

.
= inf

Λ�0m,Tr(Λ)≤n
max
1≤�≤m

Pr

{
Hs : I(s�; ŷ�|Hs) ≤

nR

m

}
.

The remaining discussion is similar to that in the previous
section. The upper bound on the smallest outage probability can
be obtained by setting Λ = (n/m)Im with an extra condition of
U †
xUx = Im that should be taken into account. Specifically, it is

given by

Pout,MMSE(r|rank(Kx)

= m,nchannel uses)

≤̇ inf
Ux∈U

max
1≤�≤m

× Pr

{[( n

m
SNRH†

sHs + Im

)−1
]
�,�

≥ SNR−nr
m

}

≤ inf
Ux∈U

Pr

{
Tr

[( n

m
SNRH†

sHs + Im

)−1
]
≥SNR−nr

m

}

(18)

where U = {Ux ∈ C
nnt×m : U †

xUx = Im}. The second in-
equality follows from the fact that the diagonal entries of
((n/m)SNRH†

sHs + Im)−1 are all positive. It is seen from
(18) that the upper bound actually depends on the choice of
“precoding matrix” Ux, which would affect the outage perfor-
mance of MIMO linear receivers.

For simplicity, we consider the following specific type of Ux

Ux :=

⎧⎨
⎩Ux=

⎡
⎣ U1

...
Un

⎤
⎦ : Ui∈C

nt×m, U †
iUj=

δi,j
n

Im

⎫⎬
⎭ (19)

where δi,j = 1 if i = j and δi,j = 0 if i �= j. The column
vectors of each submatrix Ui are of length nt and are mu-
tually orthogonal to each other due to the second constraint

of U †
iUj = (δi,j/n)Im. It follows that the set Ux is nonempty

if and only if nm ≤ nt. Moreover, we remark that there is a
one–one correspondence between elements in the set Ux and
those in the unitary group U(nt). Now, given any Ux ∈ Ux, Hs

can be expressed as

Hs = H̃Ux =

⎡
⎣HU1

...
HUn

⎤
⎦ .

To find the statistical distribution of entries of Hs, note
that any two rows of Hs are in the form of h�

i Uk and h�
j Ul

for some i, j, k, l, where h�
i and h�

j are the ith and jth
rows of H , respectively. The correlation matrix formed by
the rows is E{(h�

j Ul)
†h�

i Uk} = δi,jU
†
l Uk = (1/n)δi,jδl,kIm,

where the last equality follows from (19). Thus, the entries of
Hs are i.i.d. CN (0, (1/n)).

Thus, with the specific type Ux, the channel model (17)
can be seen as an (m× nnr) i.i.d. MIMO Rayleigh fading
channel in single channel use. Note that Ux ∪ U . By directly
applying the results from the previous section to the present
case, the smallest outage probability of MIMO linear receivers
in n channel uses and with rank(Kx) = m can be bounded from
the above by

Pout,MMSE (r|rank(Kx) = m,n channel uses)

≤̇ inf
Ux∈Ux

Pr

{
Tr

[( n

m
SNR H†

sHs + Im

)−1
]
≥ SNR−nr

m

}
.
= SNR−(nnr−m+1)(1−nr

m )+ .

We remark that by setting n = nt and m = rank(Kx) = 1,
Theorem 4 provides the following series of inequality on the
DMT:

d∗(r) ≥ d∗MMSE(r) ≥ d
(nt)
MMSE(r) ≥ ntnr(1 − ntr)

+

where d∗MMSE(r) denotes the best possible DMT that can be
achieved by MIMO MMSE receivers. Thus, for multiplex-
ing gain r ↓ 0, the maximal diversity gain ntnr can indeed
be achieved by the use of MIMO linear receivers without
any further help from preprocessing, such as the LLL lattice
reduction.

Before concluding this section, we further discuss the design
of precoding matrix Ux. We offer the following theorem for the
case of mn ≤ nt.

Theorem 5: For an (nt × nr) i.i.d. quasi-static Rayleigh
fading MIMO channel with nt ≤ nr that is fixed for at least
n channel uses, let

Ux =

⎡
⎢⎣ u11 · · · u1m

...
. . .

...
un1 · · · unm

⎤
⎥⎦

be the (nnt ×m) precoding matrix defined as before, i.e., we
have Kx = UxΛU

†
x, rank(Kx) = m and Tr(Kx) ≤ n. If the set

of vectors {u11, . . . , unm} is linearly independent over C, then
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Fig. 3. DMTs for ML receivers [3], MMSE receivers [23], and temporal
coded MMSE receivers for (2 × 2) MIMO in multiple channel uses.

given multiplexing gain r, the DMT resulting from the use of
linear MMSE or ZF receiver is exactly

dnMMSE|Ux
= (nnr −m+ 1)

(
1 − nr

m

)+
.

�
We remark that the condition of Theorem 5 is much weaker

than that in (19) and is therefore giving more insight to the
design of precoders. Furthermore, as the vectors uij are of
length nt, a necessary and sufficient condition for Theorem 5
to hold is mn ≤ nt.

Proof: Although the entries of the equivalent chan-
nel matrix Hs = H̃Ux are correlated, with the set of vec-
tors {u11, . . . , unm} being linearly independent over C, the
(nnrm× nnrm) covariance matrix of the entries of Hs must
have full rank nnrm. It then follows from the proof of [42,
Th. 3] that the joint ordered eigenvalue distribution of H†

sHs is
exponentially equal to that of Ĥ†Ĥ , where Ĥ is an (nnr ×m)
random matrix with i.i.d. CN (0, 1) entries. Having seen the
above, following similar arguments as in Section II-A, it can be
shown that the outage probability for such precoding matrix Ux

is upper and lower bounded by

Pout,MMSE(r| rank m, n channel uses, Ux)

≤ Pr

{
Tr

[(
SNR
m

H†
sHs + Im

)−1
]
≥ SNR−nr

m

}
.
= SNR−(nnr−m+1)(1−nr

m )+

Pout,MMSE(r| rank m, n channel uses, Ux)

>̇ max
1≤�≤m

Pr

{
− log

[(
SNR ·H†

sHs + Im
)−1
]
�,�

≤ nR

m

}
.
= SNR−(nnr−m+1)(1−nr

m )+ .

Combining the upper and lower bounds proves Theorem 5. �
We provide in Figs. 3 and 4 the DMT performances of (2 ×

2) and (3 × 3) MIMO linear receivers based on results obtained

Fig. 4. DMTs for ML receivers [3], MMSE receivers [23], and temporal
coded MMSE receivers from Theorem 5 for (3 × 3) MIMO in multiple
channel uses.

Fig. 5. Outage probabilities of ML receivers [3], MMSE receivers [23], and
temporal coded MMSE receivers for (2 × 2) MIMO in multiple channel uses at
a constant sum rate R = 4 bpcu. The dash lines represent theoretical high SNR
slopes for diversity gains.

in Theorem 5, respectively. It is seen that the DMT performance
of the MMSE receiver can be dramatically improved by using
degenerate Gaussian channel input. We further remark that in
Fig. 6 our scheme has the same DMT performance as [23]
when 1 ≤ r ≤ 3. This is because that in such a region the
DMT is dominated by the case of single channel use. Similar
observations can also be made in Fig. 3.

In Figs. 5 and 6, simulations of outage probabilities of
various ranks of the covariance matrices and various multiple
channel uses at a constant sum rate of R = 4 bpcu are provided.
In particular, we see from Fig. 6 that the outage probabilities of
ZF and MMSE receiver with i.i.d. complex Gaussian channel
input are very close. The simulation results also justify our
claims that using degenerate Gaussian random matrices as
channel inputs could yield a much higher diversity gain. Fur-
thermore, we observe that in all temporal coding schemes with
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Fig. 6. Outage probabilities of ML receivers [3], MMSE receivers [23], and
temporal coded MMSE receivers for (3 × 3) MIMO in multiple channel uses at
a constant sum rate R = 4 bpcu. The dash lines represent theoretical high SNR
slopes for diversity gains.

rank(Kx) = 1, the diversity gains increase with the number of
channel uses.

We remark also that all the outage probabilities associated
with rank-1 schemes follow directly from the χ2 distribution
and can therefore be explicitly evaluated. For example, the
outage probability for n=1 and rank(Kx)=1, for the (3× 3)
MIMO, can be obtained in close form by

Pr
{
log
(
1 + SNR‖h1‖2

)
≤ R

}
= Pr

{
‖h1‖2 ≤ eR − 1

SNR

}

= F6

(
eR − 1
SNR

)

where h1 is a (3 × 1) random channel vector, and F6(·) is the
cumulative distribution function of the central χ2 random vari-
able with six◦ of freedom. We have also numerically simulated
these outage probabilities, and they match perfectly with the
above theoretical values, shown in dash lines in Fig. 6.

Finally, we point out that it is not necessarily true that
schemes having larger diversity gain would have lower outage
probabilities as well. It can be seen from the curves in Figs. 5
and 6 that such a statement is true only at the high SNR
regime. It should be noted that the diversity gain is obtained by
evaluating the outage/error performance at high SNR regime.
Therefore, for low and moderate SNR values, it is often possible
that schemes with inferior diversity gain could have smaller
outage/error probability. System designers are well advised to
consult the results in Figs. 5 and 6 and find what the best scheme
is in the SNR region of their interest before designing codes for
the use of MIMO linear receivers.

IV. OPTIMAL CODE CONSTRUCTION AND

PERFORMANCE SIMULATIONS

In Section II, we have seen that in the case of single channel
use, assuming that the covariance matrix of the channel input

has rank m, the output of MIMO MMSE and similarly ZF
equalizer can be regarded a set of m parallel SISO fading
channels, each given by

ŷ� = G�,�s� + z�, � = 1, 2, . . . ,m

where the equivalent channel coefficient G�,� = 1 − [(SNR ·
ΛH†

sHs + Im)−1]�,�. We then showed that the DMT perfor-
mance achieved by the rank-m scheme is given by

d
(1)
MMSE|rank(Kx)=m = (nr −m+ 1)

(
1 − r

m

)+
(20)

and is independent of the choice of matrix Kx as well as Λ
once rank(Kx) = m. As long as Gaussian random codebook is
of concern, one can simply randomly choose s� following an
i.i.d. CN (0, (1/m)) distribution. Then, the resulting random
code achieves the desired DMT performance given in (20).
However, random Gaussian codebooks are hardly useful in
practical systems. For designing a deterministic code, it turns
out that one could replace the i.i.d. random variables s� by
scaled quadrature amplitude modulation (QAM) constellation
symbols, and the resulting deterministic code is still DMT
optimal, in the sense of having a MIMO linear receiver. We have
the following theorem for constructing DMT optimal codes for
MIMO linear receivers.

Theorem 6: For the single-channel-use case, given the de-
sired rank m and multiplexing gain r, the following code
achieves the optimal DMT of a MIMO linear receiver:

X :=

⎧⎨
⎩x = κ · Ux

[
s

0nt−m

]
:

s� ∈ Z[ı],
|s�|2≤̇SNR

r
m

� = 1, . . . ,m

⎫⎬
⎭

for any Ux taken from U(nt), the unitary group of nt. κ is some
constant such that EX ‖x‖2 = 1 and κ

.
= SNR−(r/2m) for large

SNR. Z[ı] with ı =
√
−1 denotes the usual ring of Gaussian

integers, and Z[ı] = {a+ bı|a, b ∈ Z}.
Proof: First, it is straightforward to see that |X | .

= SNRr

and EX ‖x‖2 ≤̇ 1 from construction. Hence, X has the desired
rate and meets the required power constraint. To show the DMT
optimality, it suffices to note that each entry s� in the foregoing
code is a QAM symbol and is therefore an approximately
universal code [4], [43] for a SISO channel with any type of
channel statistics. In other words, simply by the property of
approximately universal, the QAM symbol s� forms a DMT
optimal code for the �th SISO subchannel with channel coef-
ficient G�,�, which is a random variable of certain distribution.

�
A similar result holds for the case of multiple channel uses

as well.
Corollary 7: Given the desired rank m, multiplexing gain r,

and number of channel uses n, let the precoding matrix

Ux =

⎡
⎣ U1

...
Un

⎤
⎦
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Fig. 7. Bit error rate for codes constructed from Theorem 6 and Corollary 7
for the (2 × 2) MIMO system at R = 4 bpcu.

Fig. 8. Bit error rate for codes constructed from Theorem 6 for the (3 × 3)
MIMO system at R = 6 bpcu in single channel use.

be any (nnt ×m) matrix satisfying the linearly independent
criterion given in Theorem 5, where each submatrix Ui is of
size (nt ×m). Then, the following code

X =

⎧⎪⎨
⎪⎩X = [x1, . . . , xn] :

xi = κ · Uis,
s� ∈ Z[ı],

|s�|2≤̇SNR
nr
m

� = 1, . . . ,m

⎫⎪⎬
⎪⎭

achieves DMT of (nnr −m+ 1)(1 − (nr/m))+. κ is some
constant such that EX ‖X‖2 = n and κ

.
= SNR−(nr/2m) for

large SNR. �
Based on the optimal construction of codes given in

Theorem 6 and Corollary 7, we provide performance simula-
tions of the proposed codes in Figs. 7 and 8 for the (2 × 2) and
(3 × 3) MIMO systems, respectively. The error performances
are plotted in bit error rate. The diversity gain achieved by
each scheme coincides perfectly with the theoretical result. We
remark that in Fig. 7 (and similarly in Fig. 8), to achieve a

constant sum rate of R = 4 bpcu, the two simulated coding
schemes take on a different base alphabet. For example, in the
case of rank(Kx) = 2 and n = 1, there are two subchannels,
and the transmission is done in one channel use. It means that
each subchannel transmits at 2 bpcu; hence, a quadrature phase-
shift keying (QPSK) constellation is sufficient from Theorem
6. For the other case of rank(Kx) = 1 and n = 2, there is
only one subchannel but the transmission requires two channel
uses to complete. Therefore, this subchannel must transmit at
2 ×R = 8 bpsu, resulting in a 256-QAM constellation from
Corollary 7.

Furthermore, the results in Figs. 7 and 8 echo exactly what
we have seen in the outage probability simulations, that is,
schemes having larger diversity gain do not necessarily have
lower bit error rate. For example, in Fig. 7, we see that to reach
4 bpcu in (2 × 2) MIMO system using linear receivers, if the
Eb/N0 value is below 19.16 dB, a better scheme would be to
send two independent QPSK symbols in two transmit antennas
in each channel use. On the other hand, if the Eb/N0 value is
above 19.16 dB, the scheme of sending one 256-QAM symbol,
but rotated in four different ways for two transmit antennas
in two channel uses, would yield a much lower bit error
rate. Finally, one of the most important observations from the
simulation results is the following. Compared to the common
use of MIMO linear receivers, where system designers are used
to make use of full multiplexing gains, i.e. set rank(Kx) = nnt,
the simulation results show the newly proposed degenerate
schemes can provide a significant performance gain. For ex-
ample, in Fig. 7, the rank-1 scheme beats the conventional full
multiplexing scheme by approximately 10 dB in SNR at bit
error rate 10−4 for the (2 × 2) MIMO linear receiver. A similar
result, but with a much larger gain of 12.08 dB in bit error rate,
is reported in Fig. 8 for the (3 × 3) MIMO linear receiver in
single channel use again at bit error rate equal to 10−4.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed using colored and possibly degen-
erate Gaussian random vectors as channel input to the MIMO
linear receiver. The DMT resulting from such input is much
larger than the currently known one which was based on an
assumption of i.i.d. Gaussian input. By taking into account the
possibility of having temporal coding at the transmitter, we
show that the DMT of the MIMO linear receiver can be further
improved so that in the extreme case the simple MIMO linear
receiver achieves the same maximal diversity gain of ntnr as
the ML receiver but at a significantly lower complexity. We also
observed that in terms of outage probability, it is not necessarily
true that a rank-m scheme with larger diversity gain would
have lower outage probability. System designers should first
determine the value m of the rank-m scheme that yields the best
outage performance in the SNR region of interest. Given any m,
optimal constructions of codes for MIMO linear receivers are
also provided. For the case of (2 × 2) and (3 × 3) MIMO linear
receivers, we reported by simulation that the newly proposed
rank-1 codes provide significant gains of 10 and 12.08 dB in
Eb/N0 at bit error rate 10−4 compared to the conventional
schemes, respectively.
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In our main result, Theorem 5, we have seen that the design
of Ux for different combinations of n and m affects the range
of DMT. In this paper, we only managed to prove the DMT
performance for our specific Ux, thereby obtaining a lower
bound, yet significantly larger than the current best, on the
optimal DMT for linear receivers. In general, it is possible that
our bound is not tight, and there might be better designs of
the precoding matrices Ux that can lead to larger DMT. At the
moment, we do not know what the optimal design is. It will
require more substantial research in this direction in the future.
Second, it should be noted that Theorem 5 only states for a fixed
combination of n and m, the precoding matrices Ux satisfying
the prescribed condition given therein would have the same
diversity gain performance. It does not necessarily mean that
all such Ux would yield the same error performance, as each
of them can provide a different coding gain. We also remark
that this resulting performance is still rather far away from the
performance of ML detection. Therefore, the problem of how to
design precoding matrices that have better coding gains remains
open. Furthermore, in view of the decision feedback type of
detectors that has the favorable property of somewhat closing
the performance gap between linear and ML detectors with
limited complexity, the proposed degenerate Gaussian input
may also be beneficial in this case. However, it still requires
further efforts to investigate the resulting DMT performance.

APPENDIX

To determine the SINR of the �th subchannel in (11), we
recall that

ŷ := WMMSE

(√
SNR ·Hss+ w

)
= Gs+ n

and that

G := SNR ·
(
SNR · ΛH†

sHs + Im
)−1

ΛH†
sHs

= Im −
(
SNR · ΛH†

sHs + Im
)−1

= Im − P

from (7) and (9), where

WMMSE :=
√

SNR
(
SNR · ΛH†

sHs + Im
)−1

ΛH†
s

P :=
(
SNR · ΛH†

sHs + Im
)−1

.

The covariance matrix of ŷ is given by

Kŷ=Eŷŷ† = GΛG† +WMMSEW
†
MMSE

WMMSEW
†
MMSE=SNR ·

(
SNR · ΛH†

sHs+Im
)−1

ΛH†
sHs

× Λ
[(

SNR · ΛH†
sHs + Im

)−1
]†

=GΛ
[(

SNR · ΛH†
sHs + Im

)−1
]†

=GΛ
(
Im −G†) = GΛ−GΛG†.

Combining the above shows Kŷ = GΛ. Furthermore, we re-
mark that as Kŷ is Hermitian symmetric and Λ is a diagonal
positive definite matrix, the former equality implies that 0 ≤
G�,� ∈ R for all � = 1, 2, . . . ,m.

Next, we let Λ = diag(λ1, . . . , λm), where λ� = E|s�|2.
Then, the SINR of the �th subchannel is given by

SINR� =
G2

�,�E|s�|2

E|ŷ�|2 −G2
�,�E|s�|2

=
G2

�,�λ�

G�,�λ� −G2
�,�λ�

=
1

1 −G�,�
− 1 =

1
P�,�

− 1.

This proves the second equality in (11).
Furthermore, we remark that (11) shows 0 < P�,� ≤ 1 for all

� due to the nonnegativity of mutual information. The same
conclusion can be obtained from an algebraic reasoning. Below
we provide an alternative proof.

Theorem 8: Let P = (SNRΛH†
sHs + Im)−1, where Hs

is of size (nr ×m) with m ≤ nr and has rank m; then, P�,� ∈
(0, 1] for all �.

Proof: Recall that G =
√

SNRWMMSEHs = Im − P .
Hence, it suffices to show G�,� ∈ [0, 1). We also recall
from (7) that WMMSE can be represented alternatively as√

SNRΛH†
s(SNR ·HsΛH

†
s + Inr

)−1. Hence, we can rewrite
G as

G =
√

SNRWMMSEHs

= SNRΛH†
s

(
SNR ·HsΛH

†
s + Inr

)−1
Hs.

Since H†
s(SNR ·HsΛH

†
s + Inr

)−1Hs is positive definite, we
must have G�,� ≥ 0, and the boundary point 0 is achieved if and
only if SNR = 0. It suffices to consider the case of SNR > 0,
and we only need to show for every � = 1, . . . ,m

[
H†

s

(
SNR ·HsΛH

†
s + Inr

)−1
Hs

]
�,�

<
1

SNRΛ�,�
.

To establish the above, let Hs = UΣV † be the singular-value
decomposition of Hs. Then, we can rewrite the matrix at the
left-hand side as

H†
s

(
SNR ·HsΛH

†
s + Inr

)−1
Hs

= V Σ�U † (SNR · UΣV †ΛV Σ�U † + Inr

)−1
UΣV †

= V Σ� (SNR · ΣV †ΛV Σ� + Inr

)−1
ΣV †. (21)

Note that since m ≤ nr, the matrix Σ must take the following
form:

Σ =

[
Σ̃m×m

0(nr−m)×m

]
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where Σ̃m×m � 0 is an invertible diagonal matrix. Then, after
a few algebraic manipulations, we can simplify (21) to

V Σ� (SNR · ΣV †ΛV Σ� + Inr

)−1
ΣV †

= V Σ̃
(

SNR · Σ̃V †ΛV Σ̃� + Im

)−1

Σ̃V †

(a)
=
(

SNR · Λ +
(
H†

sHs

)−1
)−1

(b)
≺ (SNR · Λ)−1

where (a) is because V is unitary and Σ̃ is invertible, and (b)
follows from(

SNR · Λ +
(
H†

sHs

)−1
)
� (SNR · Λ).

In summary, we have shown that[
H†

s

(
SNR ·HsΛH

†
s + Inr

)−1
Hs

]
≺ (SNR · Λ)−1.

This completes the proof. �
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