
44 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 5, NO. 1, MARCH 2013

Job-Level Proof Number Search
I.-Chen Wu, Member, IEEE, Hung-Hsuan Lin, Der-Johng Sun, Kuo-Yuan Kao, Ping-Hung Lin,

Yi-Chih Chan, and Po-Ting Chen

Abstract—This paper introduces an approach, called generic
job-level search, to leverage the game-playing programs which
are already written and encapsulated as jobs. Such an approach
is well suited to a distributed computing environment, since these
jobs are allowed to be run by remote processors independently.
In this paper, we present and focus on a job-level proof number
search (JL–PNS), a kind of generic job-level search for solving
computer game search problems, and apply JL–PNS to solving
automatically several Connect6 positions, including some difficult
openings. This paper also proposes a method of postponed sibling
generation to generate nodes smoothly, and some policies, such as
virtual win, virtual loss, virtual equivalence, flagging, or hybrids
of the above, to expand the nodes. Our experiment compared
these policies, and the results showed that the virtual-equivalence
policy, together with flagging, performed the best against other
policies. In addition, the results also showed that the speedups for
solving these positions are 8.58 on average on 16 cores.

Index Terms—Connect6, desktop grids, job-level proof number
search (JL–PNS), proof number search, threat-space search.

I. INTRODUCTION

P ROOF NUMBER SEARCH (PNS), proposed by Allis et
al. [1], [3], is a kind of best-first search algorithm that was

successfully used to prove or solve theoretical values [12] of
game positions for many games [1]–[3], [11], [21]–[23], [28],
such as Connect-Four, Gomoku, Renju, Checkers, Lines of Ac-
tion, Go, and Shogi. Like most best-first searches, PNS has a
well-known disadvantage: the requirement of maintaining the
whole search tree in memory. As a result, many variations have
been proposed to avoid this problem, such as PN [5], DFPN
[14], [18], [19], PN [23], PDS [28], and parallel PNS [13], [21].
For example, PN used two-level PNS to reduce the size of the
maintained search tree.
In this paper, we introduce a new approach, named generic

job-level search, where a search tree is maintained by a process,

Manuscript received April 21, 2012; revised July 27, 2012; accepted October
02, 2012. Date of publication October 12, 2012; date of current version March
13, 2013. This workwas supported in part by theNational Science Council of the
Republic of China (Taiwan) under Contracts NSC 97-2221-E-009-126-MY3,
NSC 99-2221-E-009-102-MY3, and NSC 99-2221-E-009-104-MY3.
I.-C. Wu, H.-H. Lin, D.-J. Sun, Y.-C. Chan, and P.-T. Chen are with the

Department of Computer Science, National Chiao Tung University, Hsinchu
30050, Taiwan (e-mail: icwu@csie.nctu.edu.tw).
K.-Y. Kao is with the Department of Information Management, National

Penghu University, Penghu 880, Taiwan.
P.-H. Lin is with the Department of Computer Science, National Chiao Tung

University, Hsinchu 30050, Taiwan and also with the Information and Com-
munications Research Laboratories, Industrial Technology Research Institute,
Hsinchu 31040, Taiwan.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCIAIG.2012.2224659

also called the client in this paper. Search tree nodes are eval-
uated or expanded/generated by leveraging the game-playing
programs which are already well written and encapsulated as
jobs, usually heavyweight jobs requiring tens of seconds or
more. Such an approach is well suited to a distributed com-
puting environment, since these jobs are allowed to be run
independently by remote processors.
In this paper, we present and focus on a job-level proof

number search (JL–PNS), a kind of generic job-level search.
We demonstrate JL–PNS by applying JL–PNS to solving auto-
matically several Connect6 positions, including openings. We
use NCTU6, a Connect6 program, as the job. NCTU6 has won
the gold medal at Connect6 tournaments [16], [26], [31], [34],
[35], [37] several times since 2006, and has defeated many top
level human Connect6 players [17] in man–machine Connect6
championships since 2008.
The generic job-level search approach as well as JL–PNS has

the following advantages.
• It develops jobs (usually heavyweight jobs or well-written
programs) and the JL–PNS independently, except for a few
extra processes required to support JL–PNS from these
jobs. As described in this paper, these processes are rel-
atively low level.

• It dispatches jobs to remote processors in parallel. JL–PNS
is well suited to parallel processing, as mentioned above.

• It maintains the JL–PNS tree inside the memory of clients
without much problem. Since well-written game-playing
programs normally support accurate domain-specific
knowledge to a certain extent, the search trees require
fewer nodes to solve the game positions (when compared
with a pure PNS program using one process only). In
our experiments for Connect6, the search tree usually
contains no more than one million nodes, which fits well
into (client) process memory. For example, assume that it
takes one minute to run a job (to generate one node). A
parallel system with 60 processors takes about 11 days to
build a tree of up to one million nodes. Should we need to
run many more than one million nodes, we can split the
JL–PNS tree into several nodes, each per client.

• It easily monitors the search tree. Since the maintenance
cost for the JL–PNS tree is low, the client that maintains
the JL–PNS tree can support more graphical user interface
(GUI) utilities to let users easily monitor the running of the
whole JL–PNS tree in real time. In fact, our JL–PNS client
is embedded into a game record editor environment. An
extra benefit of this is to allow users or experts to look into
the search tree during the running time, and to help choose
the best move to search in the case that the program does
not find the best move to win (see [30] and [35]).

1943-068X/$31.00 © 2012 IEEE

WU et al.: JOB-LEVEL PROOF NUMBER SEARCH 45

For node generation of JL–PNS, we need to select nodes and
then expand them. For node expansion, this paper proposes a
method, named postponed sibling generation method, to help
expand the selected nodes.
In the preliminary version [31] of this paper, for node se-

lection, we used the virtual-win/virtual-loss (VW/VL) policies
which assume a win/loss for the node being selected for expan-
sion. Since our proposal in [31], JL–PNS has also been applied
to solving the game Breakthrough with 6 5 boards in [20].
Saffidine et al. [20] used JL–PNS based on a PN search tree,
and used a flag mechanism to help select the next node to run,
instead of VW/VL policies.
This paper proposes a new policy, named virtual equivalence

(VE). In this policy, it is assumed that the value of a game posi-
tion is close to (or equal to) that of the position for the best move,
and that the value for the th best move is close to (or equal to)
that for the th best move. We also propose some variants
of VE. Our experiments showed that one of the VE variants per-
formed the best and improved the VW/VL policies by a factor
of about 1.86.
Using JL–PNS with the job, NCTU6, on desktop grids (a

kind of volunteer computing system1 [4], [9], [24], [30]), we
solved several Connect6 positions including several difficult
three-move openings, as shown in Fig. 12. For some of these
openings, none of the human Connect6 experts had been able to
find the winning strategies. These solved openings include the
popular Mickey-Mouse opening,2 [25], as shown in Fig. 12(i).
This paper is organized as follows. Section II defines job-

level computation. Section III reviews PNS, Connect6, and pro-
gram NCTU6. Section IV describes our J–LPNS. Section V
presents experiments for JL–PNS. Section VI discusses some
related work and some miscellaneous issues for JL–PNS, such
as the overhead. Section VII provides concluding remarks.

II. JOB-LEVEL COMPUTATION

This section introduces our job-level computation for com-
puter games applications. The job-level computation model is
proposed in Section II-A. The generic search is described in
Section II-B, while the generic job-level search is described in
Section II-C.

A. Job-Level Computation Model

In the model, the computation is done by a client, which dy-
namically creates jobs to do. For example, in a computer game
application, the client creates one job for each move in a po-
sition, and each job evaluates the value of the corresponding
move.
A job-level system, as shown in Fig. 1, includes a set of

workers, which helps perform jobs. In the system, jobs created
by clients are dispatched to a broker, which selects available
workers to perform.
As shown in Fig. 2, messages between the client and the

job-level system mainly include the following three things: job

1A desktop grid is developed for volunteer computing, which aimed to har-
vest idle computing resources for speeding up high throughput. It is a kind of
distributed computing.
2The opening was called this by Connect6 players because White 2 and Black

1 together look like the face of Mickey Mouse to them.

Fig. 1. The job-level computation model.

Fig. 2. The messages between a client and the job-level system.

submission, notification of an idling worker, and the job result.
The first one is from the client to the system, while the next two
are the other way around.
In the job-level model, the clients wait passively for the avail-

able workers to submit jobs. Whenever a worker is available
for computing a job, it will notify the broker, and the broker
will in turn notify the client that one worker is available. Then,
the client submits one job, if any, to the broker, which in turn
dispatches the job to the worker. When completing the job, the
worker sends the job result back to the client, which then up-
dates according to the result. During the update, more jobs may
be generated for job dispatching.
In the model, the client usually does not actively submit a

large number of jobs to the job-level system in advance. For
example, for a position with ten moves, assume that the client
actively creates ten jobs each per move in advance, and submits
them to a job-level system with two workers only. In the case
that one of these moves turns promising, say nearly winning,
a good strategy is to shift the computing resources from other
moves temporarily to this promising move and its descendants.
However, in the case of submitting a large number of jobs in
advance, the workers still work on other moves, unrelated to
the promising move.
The job-level computation model was realized in a desktop

system designed by Wu et al. [30]. In practice, a job-level
system may also support some other messages, such as abortion
messages, ask-info messages, etc. Abortion messages can be
used to abort running jobs, which are no longer interesting.
For example, if a move is found to be a sure win from a job,
other jobs for its sibling moves are no longer interesting and,
therefore, can be aborted immediately. Ask-info messages can
be used to ask the job-level system to report the job status for
monitoring. The details [30] are omitted in this paper.

B. Generic Search

In this section, we describe generic best-first search, or simply
called generic search, that fits many search techniques, like PNS
and Monte Carlo tree search (MCTS) [6]. Generic search is as-
sociated with a search tree, where each node represents a game

46 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 5, NO. 1, MARCH 2013

Fig. 3. Outline of a job-level computation model for a single core.

position. The process of a generic search usually repeats the fol-
lowing three phases: selection, execution, and update, as shown
in Fig. 3.
First, in the selection phase, a node is selected according to

a selection function based on some search technique. For ex-
ample, PNS selects the most proving node (MPN, which will
be described in more detail in Section III-A); and MCTS selects
a node based on the so-called tree policy (defined in [6] and
[10]). Note that the search tree is supposed to be unchanged in
this phase.
Second, in the execution phase, operation is performed

on the selected node , but does not change the search tree yet.
For example, find the best move from node , expand all moves
of , or run a simulation from for MCTS. After performing
job , a result is obtained. For the above example, the result
is the best move, all the expanded moves, or the result of a sim-
ulation, respectively.
Third, in the update phase, the search tree is updated ac-

cording to the job result. For the above example, a node is gen-
erated for the best move, nodes are generated for all expanded
moves, and the status is updated on the path to the root.

C. Generic Job-Level Search

From Section II-B, operation on the selected node
does not change the search tree. Therefore, operation can
be done as a job by another worker remotely in a job-level
system. The job submission may include some data required
by , such as the neighboring nodes or the path to the root.
Thus, a generic search becomes a generic job-level search, run
in a job-level computation model with one worker only.
However, since a generic search repeats the three phases se-

quentially (as shown in Fig. 3), the job-level system with mul-
tiple workers is not efficient. Thus, in generic job-level search,
the computation model is changed to be run in parallel, as shown
in Fig. 4. The details are described as follows.
As described in Section II-A, the client waits passively for

notification of idling workers.When receiving a notification, the
client selects a node in the selection phase and then dispatches
a job, if any, to the worker for execution. When the job is done,
the worker sends the result back to the client. When receiving
the result, the client runs the third phase to update the search
tree from the result. These are all performed in an event-driven
model.

Fig. 4. Outline of a job-level computation model.

In a job-level system with multiple workers, one issue is that
in the above model the client will select the same node for mul-
tiple notifications of idling workers, if no other results are found
and used to update the search tree in the interim.
In order to solve this issue, we modify the model as in Fig. 4

by adding one phase, called the pre-update phase, after the se-
lection phase and before job submission. In this phase, several
policies can be used to update the search tree. For example, the
flag policy sets a flag on the selected node, so that the flagged
nodes will not be selected again.
Another issue deals with growth of the search tree, such as

node expansion or generation from the search tree. Consider
a case that a leaf node is selected. If job is to expand
all moves, all the child nodes (corresponding to these moves)
are expanded from . However, in many cases, it is inefficient
to expand all moves in the job-level model (as described in
Section III-B).
If is to find the best move, then, in the update phase,

the node corresponding to the best move should be generated
(usually by running a game-playing program for , such as
NCTU6). However, the question is when and how to expand
other nodes such as those for the second best node from , the
third best, etc. For this problem, we propose a more general job

, which finds the best move among all the moves
excluding those in list , where is a list of prohibited
moves. Thus, for , we can use to find the best move
, and then use to find the second best move ,

and so on.

III. BACKGROUND

This paper demonstrates the job-level model by using
job-level proof number search to solve some openings of Con-
nect6 based on a Connect6 program NCTU6. PNS is reviewed
in Section III-A, and Connect6 and NCTU6 are described in
Section III-B.

A. Proof Number Search

For simplicity of discussion about PNS, we follow in prin-
ciple the definitions and algorithms in [1] and [3]. PNS is based
on an AND/OR search tree where each node is associated with
proof/disproof numbers and , which represent the
minimum numbers of nodes to be expanded to prove/disprove
. Basically, all leaves’ are initialized to 1/1. Values

are if the node is proved, and if it
is disproved. PNS repeatedly chooses a leaf called MPN to
expand, until the root is proved or disproved. The details of

WU et al.: JOB-LEVEL PROOF NUMBER SEARCH 47

choosing MPN and maintaining the proof/disproof numbers
can be found in [1] and [3] and, therefore, are omitted in this
paper.
An important property related toMPN is: if the selectedMPN

is proved (disproved), the proof (disproof) number of the search
tree decreases by one. The property, calledMPN property in this
paper, can be generalized as follows.
• If the selected MPN is proved (disproved), the proof (dis-
proof) number of the node, whose subtree includes the
MPN, decreases by one, and the disproof (proof) number
of it remains the same or increases.

B. Connect6 and NCTU6

Connect6 is a kind of six-in-a-row game that was introduced
by Wu et al. [32], [33]. Two players, named Black and White
in this paper, alternately play one move by placing two black
and white stones, respectively, on empty intersections of a Go
board (a 19 19 board) in each turn. Black plays first and places
one stone initially. The winner is the first to get six consecutive
stones of his own horizontally, vertically, or diagonally.
NCTU6 is a Connect6 program, developed by a team led by

I.-C. Wu, as also described in Section I. In this section, we re-
view the results from [27] and [35] as follows. NCTU6 included
a solver that was able to find victory by continuous four (VCF),
a common term for winning strategies in the Renju community.
More specifically, VCF for Connect6, also called VCST, wins
by making continuous moves with at least one four (a threat
which causes the opponent to defend) and ends with connecting
up to six in all subsequent variations.
From the viewpoint of lambda search, VCF or VCST is a win-

ning strategy in the second order of threats, according to the def-
inition in [35], that is, a -tree (similar to a -tree in [27]) with
value 1. Lambda search, as defined by Thomsen [27], is a kind
of threat-based search method, formalized to express different
orders of threats. Wu and Lin [35] modified the definition to fit
Connect6 as well as a family of -in-a-row games and changed
the notation from to .
NCTU6-verifier (Verifier) is a verifier modified from NCTU6

by incorporating a lambda-based threat-space search, and used
to verify whether the player-to-move loses in the position, or to
list all the defensive moves that may prevent the player from
losing in the order . If no moves are listed from a position,
Verifier is able to prove that the position is a loss. If some moves
are listed, Verifier is able to prove that those not listed are losses.
In some extreme cases, Verifier may report up to tens of thou-
sands of moves.
One issue for Connect6 is that the game lacks openings for

players, since the game is still young when compared with
other games such as Chess, Chinese Chess, and Go. Hence, it
is important for the Connect6 player community to investigate
more openings quickly. For this issue, Wu et al. [30] designed
a desktop grid, such as the job-level system, to help human
experts build and solve openings.
In the earliest version of the grid, both NCTU6 and Verifier

were the two jobs used, and a game record editor environment
was utilized to allow users to select and dispatch jobs to free
workers. NCTU6 was used to find the best move from the cur-

rent game position, while Verifier was used to expand all the
nodes (namely for all the defensive moves). This environment
helped human experts build and solve openings manually.
In this paper, the system is modified to support a job-level

system where JL–PNS can be used to create and perform jobs
automatically. Both NCTU6 and Verifier are supported as jobs.
NCTU6 jobs take tens of seconds on the average (statistics are
given in Section V), and Verifier jobs take a wide variety of
times, from one minute up to one day, depending on the number
of defensive moves. As above, in some extreme cases, Verifier
may generate a large number of moves in JL–PNS, which is re-
source consuming for both computation and memory resources.
Thus, Verifier is less feasible in practice.
In order to solve this problem, we modify NCTU6 to support

the following two additional functionalities.
1) Support . Given position and a list of pro-
hibited moves as input, NCTU6 generates the best
move among all the moves outside the list. As described
in Section II-C, this can be used to find the best move of a
position, the second best, etc.

2) For each job , report a sure loss in the job result,
if none of the nonprohibited moves can prevent a loss.

Supporting the first functionality, we can use the modified
NCTU6 to find the best move of a position, the second best, etc.,
as described in Section II-C. Supporting the second function-
ality, we can expand all the moves like Verifier. Thus, NCTU6
is able to replace Verifier with JL–PNS.

IV. JOB-LEVEL PROOF NUMBER SEARCH

This section presents JL–PNS and demonstrates it by using
NCTU6, a Connect6 program, to solve Connect6 positions au-
tomatically. JL–PNS uses PNS (described in Section III-A) to
maintain a search tree in the client, and runs in four phases fol-
lowing the generic job-level search, described in Section II-C.
In the selection phase, MPN is selected, and jobs are created

from MPN for execution on workers in the execution phase. In
Section IV-B, we propose a method, called postponed sibling
generation, to create jobs. In the update phase, the move in the
job result is used to generate the corresponding new node, and
the evaluated value of the move is used to initialize the proof/
disproof numbers of the node and to update others in the search
tree, described in Section IV-A. In the pre-update phase, several
policies are proposed and described in Section IV-C.

A. Proof/Disproof Number Initialization

This section briefly describes how to apply the domain
knowledge given by NCTU6 to initialization of the proof/dis-
proof numbers. Since it normally takes tens of seconds to
execute an NCTU6 job, it becomes critical to choose care-
fully a good MPN to expand, especially when there are many
candidates with 1/1 as the standard initialization. In [1], Allis
suggested several methods, such as the use of the number of
nodes to be expanded, the number of moves to the end of
games, or the depth of a node.
Our approach is simply to trust NCTU6 and use its evalua-

tions on nodes (positions) to initialize the proof/disproof num-
bers in JL–PNS, as shown in Table I. The status Bw indicates

48 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 5, NO. 1, MARCH 2013

TABLE I
GAME STATUS AND THE CORRESPONDING INITIALIZATIONS

that Black has a sure win, so the proof/disproof numbers of a
node with Bw are . For simplicity of discussion, this paper
looks to prove a game when Black wins, unless explicitly spec-
ified. Statuses B1–B4 indicate that the game favors Black with
different levels of win probability, where B1 indicates to favor
Black with the least probability and B4with themost (i.e., Black
has a very good chance of a win in B4) according to the evalua-
tion by NCTU6. Similarly, statusesW are forWhite. The status
“stable” indicates that the game is stable for both players, while
both “unstable1” and “unstable2” indicate unstable, where un-
stable2 is more unstable than unstable1. Proof/disproof num-
bers of these unstable statuses are smaller than those of “stable,”
since it is assumed to be more likely to prove or disprove “un-
stable” positions.
Of course, there are many different kinds of initializations

other than those in Table I. Our philosophy is simply to pass the
domain-specific knowledge from NCTU6 to JL–PNS. Different
programs or games naturally have different policies on initial-
izations from practical experiences.

B. Postponed Sibling Generation

In this section, we describe how to create jobs after an MPN
is selected. Straightforwardly from PNS, node is expanded

and all of its children are generated. Unfortunately, inConnect6,
the number of children is up to tens of thousands of nodes usu-
ally. If we use Verifier to help remove some losing moves, it
may still take a huge amount of computation time, as described
in Section III-B. Thus, it becomes more efficient and effective to
generate a node at a time. However, in PNS, the MPN is a leaf
in the search tree. If we always generate the best move from
the MPN, then there are no choices to generate the second best
move, the third best, etc. In order to solve this problem, we pro-
pose a method called postponed sibling generation as follows.
• Assume that for node , the th move is already gener-
ated, but is not yet. When node is chosen
as the MPN for expansion, generate the best move of
by and generate by

simultaneously. The example in Fig. 5 illustrates this.
Assume that node is chosen as the MPN. Then, gen-
erate the best move of by and generate by

simultaneously. On the other hand, if
branch or is chosen, do not generate as of yet.

• In an attacker-to-move node, assume that a generated
move is reported to be a sure loss to the attacker. Then,
generate no more moves from the node, since others are
also sure losses as per the second functionality described
in Section III-B. For example, in Fig. 5, assume that

reports a sure loss when generating
. From the second functionality, all the moves except

for , , and are sure losses. Thus, it is no longer

Fig. 5. Expanding and (to generate) simultaneously.

necessary to expand node . In this case, all children of
are generated, and behaves as a stopper. Note that it is
similar in the case that node is an AND node.

Since NCTU6 supports and is able to report a
sure loss, as described in Section III-B, NCTU6 can support
postponed sibling generation.
As shown in Fig. 5, postponed sibling generation fits paral-

lelism well, since generating and expanding can be both
performed simultaneously. Some further issues are described as
follows.
One may ask: what if we choose to generate before ex-

panding ? Assume that one player, say the attacker, is to move
in the OR node . As per the first additional functionality de-
scribed in Section III-B, move is assumed to be better for the
attacker than , according to the evaluation of NCTU6. In this
case, thecondition holds. Thus, node must be
chosen as the MPN to expand earlier than . It, therefore, be-
comes insignificant to generate before expanding . In ad-
dition, the above condition also implies that the proof numbers
of all the ancestors of node remain unchanged. As for the dis-
proof numbers of all the ancestors of , these values are the same
or higher. Unfortunately, higher disproof numbers discourage
the JL–PNS from choosing asMPNs to expand. Thus, the be-
havior becomes awkward, especially if node will be proved
eventually.
One may also ask: what if we expand , but generate

later? In such a case, it may make the proof number of fluc-
tuate. An extreme situation would be that the value becomes
infinity when all nodes, , , and , are disproved, but is
not disproved, since is not disproved yet.

C. Policies in the Pre-Update Phase

In this section, several policies are proposed for the updates
in the pre-update phase. As described in Section II-C, when
more workers in the job-level system are available, more MPNs
will be selected for execution on these workers. If we do not
change the proof/disproof numbers of the chosen MPNs being
expanded, named the activeMPNs in this paper, we would obvi-
ously choose the same node. Therefore, pre-updates are needed
to select other nodes as MPNs.
An important goal of choosing multiple MPNs is that these

chosen MPNs are also chosen eventually in the case there are
no multiple workers, that is, when only one MPN is chosen at a
time. Note that the policy without any pre-update is called the
native policy in the rest of this paper. Some new policies are
introduced and proposed in the subsequent subsections.
1) Virtual Win, Virtual Loss, and Greedy: In this section, we

introduce the simplest policies which were also described in the

WU et al.: JOB-LEVEL PROOF NUMBER SEARCH 49

Fig. 6. (a) VW policy. (b) VL policy.

preliminary version [31]. One policy, used to prevent choosing
the same node twice, named the virtual-win policy (VW policy),
assumes a virtual win [8] on the active MPNs. The idea of the
VW policy is to assume that the active MPNs are all proved.
Thus, their proof/disproof numbers are all set to , as illus-
trated in Fig. 6(a). When the proof number of the root is zero,
the choosing of more MPNs is stopped, the reason being that
the root is already proved if the active MPNs are all proved.
In contrast, another policy, named the virtual-loss policy (VL

policy), is to assume a virtual loss on the active MPNs. Thus,
the proof/disproof numbers of these nodes are set to , as
shown in Fig. 6(b). Similarly, when the disproof number of the
root is zero, we stop choosing more MPNs. Similarly, the root
is disproved, if all the active are disproved.
Another introduced policy, named a greedy policy (GD

policy), chooses VW policy when the chosen nodes favor a
win according to the evaluation of NCTU6, and chooses VL
policy otherwise as we may not always be able to decide a
winner in advance, as in cases such as the one in Fig. 12(f). The
pseudocode for these policies is shown below. The function
UpdateAncestors updates the proof/disproof numbers of all the
ancestors of the given node in PNS.

Policy VirtualWin
1: ; ;
2: UpdateAncestors ;

end policy

Policy VirtualLoss
1: ; ;
2: UpdateAncestors ;

end policy

Policy Greedy
1: if then
2: ; ;
3: else
4: ; ;
5: end if
6: UpdateAncestors ;

end policy

As described in Section I, these policies may cause possible
fluctuation. From our observation, fluctuation for these policies
may result in starvation, as illustrated by the example of VW
policy, shown in Fig. 7. In this example, workers are running
the jobs for some nodes under the subtree rooted at . Let

be 60/15 for the native policy, and 15/30 for the

Fig. 7. A starvation example for the VW policy.

VW policy. Also, let be 24/18 for both policies,
since no jobs inside the subtree are rooted at .
Now, when a new worker is available, an MPN is chosen for

execution. To locate the MPN, the branch to node is chosen
for the VW policy, since . However, for the VW
policy, the proof number becomes smaller and the dis-
proof number remains the same or becomes higher ac-
cording to the MPN property. Subsequently, available workers
will continue to choose , as long as jobs remain unfinished.
Even if some jobs do finish, the subtree rooted at will still be
chosen as long as remains less than . Hence, node
may starve.
The phenomenon of starvation may also happen in both VL

and GD policies. In the following sections, further policies are
proposed to avoid the above problem.
2) Flag: A simple policy [20] to avoid the above starvation

problem, named the flag policy (FG policy) in this paper, is to
use a flag mechanism. In this policy, all the MPNs being chosen
to generate the first child (like in Fig. 5) are flagged. Let
nodes be called partially flagged nodes, if some of their children
are flagged, but others are not, and called fully flagged nodes,
if all of their children are flagged. Fully flagged nodes are also
flagged recursively. The pseudocode for the FG policy is as fol-
lows.

Policy Flag
1: flag ;
2: if all siblings are flagged then
3: Flag parent ;
4: end if

end policy

For choosing MPNs, the policy follows the native policy
in principle, while avoiding choosing the nodes with flags.
Namely, when a chosen node is flagged, another nonflagged
node, with the smallest proof/disproof numbers, is chosen
instead. An example is illustrated in Fig. 8. In the policy, the
next MPN to choose is , since the branch to go from is
.
3) Modified Flag: Although the FG policy can solve the

problem of starvation, the example in Fig. 8 shows another po-
tential problem. Node and all of its ancestors think as
well as should be 8. However, the actual value of
is 12. In the case that is much larger, the problem is even

50 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 5, NO. 1, MARCH 2013

Fig. 8. An example FG policy.

more serious. Thus, the policy may lead to the choosing of the
wrong MPNs, in this case, .
To solve the above problem, we modify the above policy into

a new one, named modified-flag policy (MF policy). The MF
policy is as follows. For a partially flagged node, say it is an OR
node for simplicity of discussion, its proof number is the min-
imal proof numbers of nonflagged children. For a fully flagged
node, its proof number is the maximum proof number of all
flagged children. The pseudocode for MF policy is as follows.

Policy ModifiedFlag
1: Flag ;
2: while parent do
3: parent;
4: if is an OR node then
5: sum for all children ;
6: if has nonflagged children then
7: for all nonflagged

children ;
8: else
9: for all flagged

children ;
10: end if
11: else
12: //omitted
13: end if
14: end while

end policy

For a fully flagged node, we set its proof number to the max-
imum proof number among children, instead of the minimum
one. The reasoning behind this is illustrated by the example in
Fig. 8. Assume that for node , the two children and are
flagged and child is not flagged yet. The value is 18.
Now, we look to select one more MPN from . Node is then
selected. According to the FG policy, where the proof number
is set to the minimum, value then drops to 8. This im-
plies that the next MPN selection will be attracted toward node
. This is clearly awkward. In the case that we set the proof

number to the maximum proof number among children, value
remains 18. Thus, this policy does not wrongly direct the

MPN selection.

Fig. 9. Assign the maximal proof numbers of children for fully flagged nodes.

Fig. 9 shows the proof/disproof numbers of search trees in
Fig. 8 in the MF policy. As for disproof numbers (in OR nodes)
for the above case, we still follow the PNS to sum up the dis-
proof numbers of all the children, regardless of whether they are
flagged. For example, in both Figs. 8 and 9, is 7.
4) Virtual Equivalence: VE is an idea based on the assump-

tion that the generated node is expected to have almost the same
proof/disproof numbers as its parent, if the generated node is
the eldest child, or as the youngest elder sibling, otherwise. The
pseudocode for this policy is as follows.

Policy VirtualEquivalence
1: if has sibling then
2: set to the youngest elder sibling;
3: else
4: set to the parent;
5: end if
6: ;
7: ;
8: UpdateAncestors ;

end policy

The following two cases are discussed for this policy. First,
assume that node has no child yet. Then, when a program like
NCTU6 is used to generate from (regardless of the AND/OR
node) the first node , the best move from , it is expected that
the calculated value which is used to initialize the proof/disproof
values of is the same as or close to that for , based on the
assumption that the program is accurate enough.
Second, assume that node has some children, say three, ,
, and , generated based on the scheme of the postponed

sibling generations. As per the argument in the postponed sib-
ling generations, the three children stand for the best, the second
best, and the third best children of node , respectively. Now,
when the program is to generate the fourth child , that is, the
fourth best child, it is expected that the calculated value for
is the same as or close to that for .
In fact, the FG policy can be viewed as a kind of the first

case. For example, in Fig. 8, the generation of a new node is
assumed, whose proof/disproof numbers of are the same as
those of .

WU et al.: JOB-LEVEL PROOF NUMBER SEARCH 51

Fig. 10. The search tree in Fig. 9 with the FG–VE policy.

Fig. 11. The search tree in Fig. 9 with the MF–VE policy.

Now, let us investigate the second case. For this argument,
we look to generate a new child whose proof/disproof numbers
are the same as those of its youngest elder sibling, i.e., for the
example in Fig. 8, we set the proof/disproof numbers of to
those of node .
Based on the discussion above, both FG and MF policies

can be modified into flag-with-virtual-equivalence policy
(FG–VE policy) and modified-flag-with-virtual-equivalence
policy (MF–VE policy), respectively. Both Figs. 10 and 11
show proof/disproof numbers of the PNS tree in Fig. 9 for both
FG–VE and MF–VE policies, respectively.

V. EXPERIMENTS

In our experiments, our job-level system is maintained on a
desktop grid [30] with eight workers, Intel Core2 Duo 3.33-GHz
machine. Since each worker has two cores, the desktop has actu-
ally 16 cores in total. And, the client was located on another host.
Note that the time for maintaining the JL–PNS tree in the client
is negligible, since it is relatively low when compared with that
for NCTU6.
In our experiments of JL–PNS, the benchmark included 35

Connect6 positions (available in [38], and also the same as those
in the preliminary version [31]), among which the last 15 posi-
tions are won by the player-to-move, while the first 20 positions
are won by the other player. The first 20 and the last 15 positions
are ordered according to their computation times on one core.

Among the 35 positions, ten are three-move openings shown
in Fig. 12(a)–(j). For many of them, their winning strategies
had not been found before our work. In particular, the Mickey
Mouse opening [Fig. 12(i)] had been one of the most popular
openings before we solved it. Fig. 13 shows a path in the win-
ning tree. The tenth one [Fig. 12(j)], also called straight opening,
is another difficult one.
According to our statistics on running the 35 positions, each

NCTU6 job takes about 37.45 s on average. About 21.10% of
the jobs are run over 1 min. About 14.99% of jobs are returned
with wins/losses, and these jobs are usually run quickly. If these
jobs are not counted, each NCTU6 job takes about 41.38 s on
average. In addition, 11.19% extra jobs are aborted.
In this section, for performance analysis, let speedup be

, where is the computation time for solving a position
with cores. Also, let efficiency be . The efficiencies
are one for ideal linear speedups.
This section is organized as follows. Section V-A details the

experiments for our benchmark, comparing all the polices men-
tioned in Section IV-C. The results show that the four policies,
FG, MF, FG–VE, and MF–VE, are clearly better than the other
three. Section V-B discusses the accuracy of VE by showing
status correlations between nodes and their parents or sibling
nodes. Then, we further analyze the experimental results of the
four policies in Section V-C. In Section V-D, we analyze the per-
formances for the positions requiring more computation times.

A. Experiments for Benchmark

We performed experiments for our benchmark to investigate
all the policies mentioned in Section IV-C. For each of these
policies, we measured their computation times with 1, 2, 4, 8,
and 16 cores for each Connect6 position.
In order to have a quick comparison and performance anal-

ysis, we compared the efficiencies of the 35 Connect6 posi-
tions, for each policy and for each number of cores, as shown
in Fig. 14. Note that all the one-core performance results for the
different policies are the same since there are no differences in
choosing nodes on a single core for different policies.
From Fig. 14, the four policies with the flag mechanism (FG,

MF, FG–VE, andMF–VE) outperformed the other three without
flag mechanism (VW, VL, and GD). For example, the compu-
tation times for VW, VL, or GD with 16 cores were about 80%
longer than those of MF–VE. From our observation, we did
find some cases with starvation phenomenon, as mentioned in
Section IV-C1.
The performances for the policies with the flag mech-

anism are close and will be discussed in more detail in
Section V-C. Before discussing these, we give an analysis of
VE in Section V-B.

B. The Analysis for VE

In Section IV-C4, the concept of VE is as follows: the gen-
erated node is expected to have almost the same proof/disproof
numbers as its parent, and as the youngest elder sibling. In this
section, our experiments are designed to test how close they are.
For example, how close are the of the two generating
nodes, and , and/or and in Fig. 11? To assess this,

52 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 5, NO. 1, MARCH 2013

Fig. 12. The 12 solved openings.

Fig. 13. A path in the winning tree of the Mickey Mouse opening.

Fig. 14. The efficiencies for all 35 positions for each policy.

we measure the distances between and , and between
and .
For the measurement, we assign a value to each status, as

shown in Table II, and calculate the distances. For example, in
Fig. 11, the distance between and is 8 minus 6, sinceW3 is
8 and W1 is 6. Notably, for “unstable” positions, since they are
hard to locate, we simply ignore the distances with the unstable

TABLE II
VALUE ASSIGNED FOR EACH STATUS

status. The procedure of counting the distance is as follows.

Procedure Count Distance
1: if is eldest child then
2: parent of ;
3: par_dist status status ;
4: else
5: youngest elder sibling of ;
6: sib_dist status status ;
7: end if

end

For all nodes generated in solving the 35 positions, we show
the statistics for the distances between neighboring siblings and
between parents and the eldest children in Fig. 15. As seen in
the figure, most generated nodes have the same status (the dis-
tances are 0) as the eldest child and as the eldest younger sibling.
According to this result, it is expected that the proof/disproof
numbers will be less fluctuated. Thus, it becomes more likely
that the chosen MPNs will also be chosen in the single core ver-
sion.
From Fig. 15, we also observe that the distances between par-

ents and the eldest children are, in general, larger than those
between siblings. The reason for this is similar to the two-ply
update issue, mentioned in [36]. Since a parent has two fewer
stones than its children inConnect6, it is harder to evaluate them
consistently.

C. Flag Mechanism

This section analyzes the performances of the policies with
the flagmechanism inmore detail. Fig. 16 shows the ratios of the
performances of different versions with respect to those of the
FG. In this figure, we observe that the MF–VE policy performed

WU et al.: JOB-LEVEL PROOF NUMBER SEARCH 53

Fig. 15. Measurement of each distance.

Fig. 16. The speedups relative to the FG policy for solving 35 Connect6 posi-
tions with different policies.

best and outperformed FG by about 17.8% and 12.3% for 8
cores and 16 cores, respectively.
Fig. 16 also shows that the performances of both FG–VE and

MF–VE are better than those with MF and FG. Both FG–VE
andMF–VE use the sibling VE, while the other two do not. This
indicates that the policies with the sibling VE perform better.

D. Experiments for Difficult Positions

In this section, we analyze performance for the positions re-
quiring more computation. For this purpose, we chose 15 of
the most difficult positions among the 35, and analyzed the im-
provements from FG to MF–VE using 16 cores, as shown in
Fig. 17. Note that the positions in Fig. 17 are ordered according
to the computation time, with the rightmost one requiring the
most time. This is about 2.75 h for 16 cores. From this figure, we
observe that MF–VE generally performed slightly better than
FG.
Thereafter, we investigated some other positions re-

quiring even more computation times. After our preliminary
work in [31], we solved two more openings, as shown in
Fig. 12(k) and (l). These required significantly more compu-
tation time, about 7.03 and 35.11 h for 16 cores, respectively.
Since much more time was spent in solving the two openings,
we only compared three policies (VL, FG, and MF–VE) by
running them on 16 cores. The computation times are shown in
Fig. 18.
As seen in Fig. 18, MF–VE performed better than FG by fac-

tors of 2.18 and 1.43 for the positions in Fig. 12(k) and (l),

Fig. 17. The improvement of the speedup for the most difficult 15 positions
from FG to MF–VE.

Fig. 18. The solving times for the three versions of each position on 16 cores.

respectively. Moreover, MF–VE performed better than VL by
2.76 and 1.72 for Fig. 12(k) and (l), respectively. The results
demonstrate that MF–VE also outperforms FG in bigger cases.

VI. DISCUSSION

In this section, we first discuss some past job-level-like re-
search work, and then some issues about job-level computation
in the implementations.

A. Past Job-Level-Like Work

The research into solving Checkers [22] was separated into
two parts: the proof-tree manager and the proof solvers. The
proof-tree manager, like the client in our model, used the PNS
to identify a prioritized list of positions to be examined by the
proof solvers, like jobs in our model. Their manager generated
several hundred positions at a time to keep workers busy, and
they did not consider the pre-update.
Chaslot et al. [7] proposed a meta MCTS to build openings

in the book of Go. In their method, a tree policy was used to
select a node in the upper confidence tree (UCT) [15], while an
MCTS program was used to generate moves in the simulation.
The program maintaining the UCT tree acts as the client, while
the MCTS program used in the simulation acts as the job.
We believe that the job-level computation model can also

be easily applied to many other search techniques. In addition
to JL–PNS, our ongoing projects are seeking to apply the job-
level model to other game search applications [29], such as job-
level Monte Carlo tree search (JL–MCTS) for Go and job-level
alpha–beta search (JL–ABS) for Chinese Chess.

54 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 5, NO. 1, MARCH 2013

B. Miscellaneous Issues

The first issue to be discussed is that of the overhead of job
dispatching. In the job-level model, the client must wait pas-
sively for notification of idling workers. Thus, the overhead is
incurred for the round trip of notification. In practice, in the
job-level system [30], one or more jobs are dispatched to the
broker in advance, to keep all workers busy. Note that we do
not dispatch a large number of jobs in advance for the reason
mentioned in Section II-A.
The second issue is that of distributed versus shared memory.

One key for our job-level model is to leverage a game-playing
program which can be encapsulated as a job to be dispatched
to a worker remotely in a distributed computing environment.
Distribution, however, means that some data, such as transposi-
tion tables, cannot be shared by different jobs. However, if the
job supports several threads and the worker offers several cores,
then the job can still be run with several threads on the worker
in the job-level system.
The third discussion is that of the quality of game-playing

programs. In our experiences of using JL–PNS, we observed
that the quality of game-playing programs affects the total com-
putation time significantly. In our earlier versions of NCTU6,
we could not solve the straight opening after 100 000 jobs,
and solved the Mickey Mouse opening with many more than
that. After we improved NCTU6 in later versions, the straight
opening, as well as many other positions, was solved, and the
Mickey Mouse opening was solved with fewer jobs (almost
half). On the other hand, JL–PNS or job-level search can be
used to indicate the quality of game-playing programs.

VII. CONCLUSION

This paper introduces an approach, generic job-level search,
to leverage game-playing programs which are already written
and encapsulated as jobs. In this paper, we present and focus on
JL–PNS, a kind of generic job-level search, and apply JL–PNS
to automatically solving several Connect6 positions, including
some difficult openings. The contributions of this paper are sum-
marized as follows.
• This paper proposes the job-level computation model. As
described in Section I, the benefits of job level include the
following: develop clients and jobs independently, run jobs
in parallel, maintain the generic search in the client, and
monitor the search tree easily. The first also implies that it
is easy to develop job-level search without extra develop-
mental cost to the game-playing programs (like NCTU6).

• This paper proposes a new approach, JL–PNS, to help
solve the openings of Connect6.

• This paper successfully uses JL–PNS to solve several po-
sitions of Connect6 automatically, including several three-
move openings in Fig. 12. No Connect6 human experts
were able to solve them. From the results, we expect to
solve and develop more Connect6 openings.

• For JL–PNS, this paper proposes some techniques, such as
the method of postponed sibling generation and the poli-
cies of choosing MPNs.

• Our experiments demonstrated that theMF–VE policy per-
forms best. Thus, it is recommended to use this policy to
solve positions.

• Our experiments demonstrated an average speedup of 8.58
on 16 cores.

In addition to JL–PNS, our future work will be to apply the
job-level model to other applications [29], such as JL–MCTS
for Go and JL–ABS for Chinese Chess.

ACKNOWLEDGMENT

The authors would like to thank O. Teytaud and the anony-
mous referees for their valuable comments, the National Center
for High-performance Computing (NCHC) for computer time
and facilities, and Chunghwa Telecom for computer time and
facilities of HiCloud.

REFERENCES

[1] L. V. Allis, “Searching for solutions in games and artificial intelli-
gence,” Ph.D. dissertation, Dept. Comput. Sci., Univ. Limburg, Maas-
tricht, The Netherlands, 1994.

[2] L. V. Allis, H. J. van den Herik, and M. P. H. Huntjens, “Go-Moku
solved by new search techniques,” Comput. Intell., vol. 12, pp. 7–23,
1996.

[3] L. V. Allis, M. van derMeulen, and H. J. van den Herik, “Proof number
search,” Artif. Intell., vol. 66, no. 1, pp. 91–124, 1994.

[4] D. P. Anderson, “Boinc: A system for public-resource computing and
storage,” in Proc. 5th IEEE/ACM Int. Workshop Grid Comput., Pitts-
burgh, PA, USA, 2004, pp. 4–10.

[5] D. M. Breuker, J. Uiterwijk, and H. J. van den Herik, “The PN -search
algorithm,” in Advances in Computer Games, H. J. van den Herik and
B. Monien, Eds. Maastricht, The Netherlands: IKAT, Universiteit
Maastricht, 2001, vol. 9, pp. 115–132.

[6] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A survey
of Monte Carlo tree search method,” IEEE Trans. Comput. Intell. AI
Games, vol. 4, no. 1, pp. 1–43, Mar. 2012.

[7] G. M. Chaslot, J.-B. Hoock, J. Perez, A. Rimmel, O. Teytaud, and M.
H. M. Winands, “Meta Monte-Carlo tree search for automatic opening
book generation,” in Proc. Workshop General Intell. Game Playing
Agents, 2009, pp. 7–12.

[8] G. M. Chaslot, M. H. M. Winands, and H. J. van den Herik, “Parallel
Monte-Carlo tree search,” in Proc. 6th Int. Conf. Comput. Games, Bei-
jing, China, 2008, pp. 60–71.

[9] G. Fedak, C. Germain, V. Neri, and F. Cappello, “Xtremweb: A generic
global computing system,” in Proc. 1st IEEE/ACM Int. Symp. Cluster
Comput. Grid: Workshop Global Comput. Pers. Devices, Brisbane,
Australia, 2001, pp. 582–587.

[10] S. Gelly and D. Silver, “Monte-Carlo tree search and rapid action value
estimation in computer Go,” Artif. Intell., vol. 175, pp. 1856–1875, Jul.
2011.

[11] H. J. van den Herik and M. H. M. Winands, “Proof number search
and its variants,” in Oppositional Concepts in Computational Intel-
ligence, ser. Studies in Computational Intelligence. New York, NY,
USA: Springer-Verlag, 2008, vol. 155, pp. 91–118.

[12] H. J. van den Herik, J. W. H.M. Uiterwijk, and J. V. Rijswijck, “Games
solved: Now and in the future,” Artif. Intell., vol. 134, pp. 277–311,
2002.

[13] A. Kishimoto and Y. Kotani, “Parallel AND/OR tree search based on
proof and disproof numbers,” in Proc. 5th Games Programming Work-
shop, 1999, vol. 99, no. 14, pp. 24–30.

[14] A. Kishimoto and M. Müller, “DF-PN in Go: Application to the
One-Eye Problem,” in Advances in Computer Games Conference
(ACG’10), H. J. van den Herik, H. Iida, and E. A. Heinz, Eds. Nor-
well, MA, USA: Kluwer, 2003, pp. 125–141.

[15] L. Kocsis and C. Szepesvari, “Bandit-based Monte-Carlo planning,”
in European Conference on Machine Learning (ECML’06), ser. Lec-
ture Notes in Computer Science. Berlin, Germany: Springer-Verlag,
2006, vol. 4212, pp. 282–293.

WU et al.: JOB-LEVEL PROOF NUMBER SEARCH 55

[16] H.-H. Lin, D.-J. Sun, I.-C. Wu, and S.-J Yen, “The 2010 TAAI com-
puter-game tournaments,” Int. Comput. Games Assoc. J., vol. 34, no.
1, pp. 51–54, Mar. 2011.

[17] P.-H. Lin and I.-C. Wu, “NCTU6 wins in the man-machine Connect6
championship 2009,” Int. Comput. Games Assoc. J., vol. 32, no. 4, pp.
230–232, 2009.

[18] A. Nagai, “DF-PN algorithm for searching AND/OR trees and its appli-
cations,” Ph.D. dissertation, Dept. Inf. Sci., Univ. Tokyo, Tokyo, Japan,
2002.

[19] J. Pawlewicz and L. Lew, “Improving depth-first PN-search:
trick,” in 5th International Conference on Computers and Games, ser.
Lecture Notes in Computer Science, H. J. van den Herik, P. Ciancarini,
and H. H. L. M. Donkers, Eds. Berlin, Germany: Springer-Verlag,
2006, vol. 4630, pp. 160–170.

[20] A. Saffidine, N. Jouandeau, and T. Cazenave, “Solving breakthrough
with race patterns and job-level proof number search,” in Proc. 13th
Adv. Comput. Games Conf., Tilburg, The Netherlands, 2011, pp.
196–207.

[21] J. T. Saito, M. H. M. Winands, and H. J. van den Herik, “Randomized
parallel proof number search,” in Advances in Computer Games Con-
ference (ACG’12), ser. Lecture Notes in Computer Science. Berlin,
Germany: Springer-Verlag, 2009, vol. 6048, pp. 75–87.

[22] J. Schaeffer, N. Burch, Y. N. Björnsson, A. Kishimoto, M. Müller, R.
Lake, P. Lu, and S. Sutphen, “Checkers is solved,” Science, vol. 5844,
no. 317, pp. 1518–1552, 2007.

[23] M. Seo, H. Iida, and J. Uiterwijk, “The PN -search algorithm: Appli-
cation to Tsumeshogi,” Artif. Intell., vol. 129, no. 1–2, pp. 253–277,
2001.

[24] SETI@home Project [Online]. Available: http://setiathome.ssl.
berkeley.edu

[25] Taiwan Connect6 Association [Online]. Available: http://www.con-
nect6.org/

[26] TCGA Association, “TCGA Computer Game Tournaments,” [Online].
Available: http://tcga.ndhu.edu.tw/TCGA2011/

[27] T. Thomsen, “Lambda-search in game trees—With application to Go,”
Int. Comput. Games Assoc. J., vol. 23, no. 4, pp. 203–217, 2000.

[28] M. H. M. Winands, J. W. H. M. Uiterwijk, and H. J. van den Herik,
“PDS-PN: A new proof number search algorithm: Application to lines
of action,” in Computers and Games 2002, ser. Lecture Notes in Com-
puter Games, J. Schaeffer, M. Müller, and Y. Björnson, Eds. Berlin,
Germany: Springer-Verlag, 2003, vol. 2883, pp. 170–185.

[29] I.-C. Wu, S.-C. Hsu, S.-J. Yen, S.-S. Lin, K.-Y. Kao, J.-C. Chen, K.-C.
Huang, H.-Y. Chang, and Y.-C. Chung, “A volunteer computing
system for computer games and its applications,” National Science
Council, Taiwan, Integrated Project, 2010.

[30] I.-C. Wu, C.-P. Chen, P.-H. Lin, K.-C. Huang, L.-P. Chen, D.-J. Sun,
Y.-C. Chan, and H.-Y. Hsou, “A volunteer-computing-based grid en-
vironment for Connect6 applications,” in Proc. 12th IEEE Int. Conf.
Comput. Sci. Eng., Vancouver, BC, Canada, Aug. 29–31, 2009, pp.
110–117.

[31] I.-C. Wu, H.-H. Lin, P.-H. Lin, D.-J. Sun, Y.-C. Chan, and B.-T. Chen,
“Job-level proof number search for Connect6,” in Proc. Int. Conf.
Comput. Games, Kanazawa, Japan, 2010, pp. 11–22.

[32] I.-C. Wu, D.-Y. Huang, and H.-C. Chang, “Connect6,” Int. Comput.
Games Assoc. J., vol. 28, no. 4, pp. 234–242, 2006.

[33] I.-C. Wu and D.-Y. Huang, “A new family of k-in-a-row games,”
in Proc. 11th Adv. Comput. Games Conf., Taipei, Taiwan, 2005, pp.
180–194.

[34] I.-C. Wu and P.-H. Lin, “NCTU6-lite wins Connect6 tournament,” Int.
Comput. Games Assoc. J., vol. 31, no. 4, pp. 240–243, 2008.

[35] I.-C. Wu and P.-H. Lin, “Relevance-zone-oriented proof search for
Connect6,” IEEE Trans. Comput. Intell. AI Games, vol. 2, no. 3, pp.
191–207, Sep. 2010.

[36] I.-C. Wu, H.-T. Tsai, H.-H. Lin, Y.-S. Lin, C.-M. Chang, and P.-H.
Lin, “Temporal difference learning for Connect6,” in Advances
in Computer Games (ACG 13), ser. Lecture Notes in Computer
Science. Berlin, Germany: Springer-Verlag, 2012, vol. 7168, pp.
121–133.

[37] I.-C. Wu and S.-J. Yen, “NCTU6 wins Connect6 tournament,” Int.
Comput. Games Assoc. J., vol. 29, no. 3, pp. 157–158, Sep. 2006.

[38] I.-C. Wu, H.-H. Lin, D.-J. Sun, K.-Y. Kao, P.-H. Lin, Y.-C. Chan, and
P.-T. Chen, “Benchmark for Connect6,” [Online]. Available: http://
www.connect6.org/articles/JL-PNS_2012/

I.-ChenWu (M’10) received the B.S. degree in elec-
tronic engineering and the M.S. degree in computer
science from the National Taiwan University (NTU),
Taipei, Taiwan, in 1982 and 1984, respectively, and
the Ph.D. degree in computer science from Carnegie
Mellon University, Pittsburgh, PA, USA, in 1993.
He is with the Department of Computer Science,

National Chiao Tung University, Hsinchu, Taiwan.
His research interests include artificial intelligence,
Internet gaming, volunteer computing, and cloud
computing.

Dr. Wu introduced a new game Connect6, a kind of six-in-a-row game, and
presented this game at the 11th Advances in Computer Games Conference
(ACG) in 2005. Since then, Connect6 has become a tournament item in
Computer Olympiad. He led a team developing a Connect6 program, named
NCTU6. The program won the gold twice in Computer Olympiad in both 2006
and 2008.

Hung-Hsuan Lin received the B.S. degree from
the Department of Computer Science, National
Chiao Tung University, Hsinchu, Taiwan, where
he is currently working toward the Ph.D. degree in
computer science.
His research interests include artificial intelli-

gence, computer game, volunteer computing, and
cloud computing.

Der-Johng Sun is currently working toward the
Ph.D. degree in computer science in the Department
of Computer Science, National Chiao Tung Univer-
sity, Hsinchu, Taiwan.
His research interests include artificial intelligence

and grid and cloud computing.

Kuo-Yuan Kao received the Ph.D. degree in mathe-
matics from the University of North Carolina at Char-
lotte, Charlotte, NC, USA, in 1997.
His program won the U.S. Computer Go Cham-

pionship in 1994. Since 1995, he has engaged in re-
search of combinatorial game theory and published
several papers in this field. Kao is also a 6-dan ama-
teur Go player. He currently serves as the Director of
the Chinese Go Association, Taiwan.

Ping-Hung Lin received the Ph.D. degree in com-
puter science from the National Chiao Tung Univer-
sity, Hsinchu, Taiwan, in 2010.
He is an Engineer in the Industrial Technology Re-

search Institute, Hsinchu, Taiwan. He is one of the
major designers of the Connect6 program NCTU6
that won the gold two times in Computer Olympiad
in 2006 and 2008. His research interests include arti-
ficial intelligence and cloud computing.

56 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 5, NO. 1, MARCH 2013

Yi-Chih Chan received the M.S. degree in computer
science from the National Chiao Tung University,
Hsinchu, Taiwan, in 2009.
His research interests include artificial intelligence

and grid and cloud computing.

Po-Ting Chen received the M.S. degree in computer
science from the National Chiao Tung University,
Hsinchu, Taiwan, in 2010.
His research interests include artificial intelligence

and cloud computing.

