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Adaptive Blind Equalization Using 
Second- and Higher Order Statistics 

Fang B. Ueng and Yu T. Su 

Abstruct- This paper presents two classes of adaptive blind 
algorithms based on second- and higher order statistics. The 
first class contains fast recursive algorithms whose cost functions 
involve second and third- or fourth-order cumulants. These 
algorithms are stochastic gradient-based but have structures 
similar to the fast transversal filters (FTF) algorithms. The second 
class is composed of two stages: the first stage uses a gradient 
adaptive lattice (GAL) while the second stage employs a higher 
order-cumulant (HOC) based least mean squares (LMS) filter. 
The computational loads for these algorithms are all linearly 
proportional to the number of taps used. Furthermore, the second 
class, as various numerical examples indicate, yields very fast 
convergence rates and low steady state mean square errors (MSE) 
and intersymbol interference (ISI). MSE convergence analyses for 
the proposed algorithms are also provided and compared with 
simulation results. 

I. INTRODUCTION 

HE PURPOSE of blind equalization is to recover the T intersymbol interference and noise corrupted signal from 
the received signal without the help of a training signal. 
Earlier investigators like Sat0 [l],  Godard 131, and Benvensite 
and Goursat [ 2 ]  used different LMS-type algorithms to deal 
with this problem. Since the second order cumulant (i.e., 
autocorrelation function) is completely blind to the phase 
property of the channel to be identified, if the channel is 
not minimum phase, these algorithms may not be capable 
of generating correct results. Statistics of higher order must 
therefore be considered in the realization of blind equalization 
of nonminimum phase (NMP) channels. 

Giannakis [5] has showed that the impulse response of 
an FIR filter can be determined from the cumulants (third- 
or fourth-order) of the filter output alone, In other words, 
cumulants can be used to estimate the parameters of a MA 
model without any a priori knowledge of the transmitted 
data, if the input distribution is not Gaussian. His result 
was further extended to identify linear, time-invariant NMP 
systems with non-Gaussian correlated input sequences [4]. 
Swami and Mendel [ 6 ]  derived a recursive algorithm for 
estimating the coefficients of an MA model of known or- 
der using autocorrelations and third-order cumulants. Zheng 
and McLaughlin [9] proposed an algorithm that uses closed- 
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form formula to obtain an initial estimation and proceed to 
adaptively minimize the squared estimation error of the third 
order cumulants. Tugnait [7] used the total squared matching 
errors of various second and fourth-order statistics as the cost 
function to identify an ARMA model. Hatzinakos and Nikias 
[8] presented an adaptive blind equalization method using the 
complex cepstrum of the fourth-order cumulants (tricepstrum). 
Alshebeili, Venetsanopoulos, and Enis Cetin [ 101 suggested the 
use of second-order and all samples of third-order cumulants 
or the diagonal slice of bispectrum to identify FIR systems. 
Porat and Friedlander [ 111 described a nonlinear algorithm 
using the second- and fourth-order moments of the symbol 
sequence for equalizing QAM signals. All these algorithms are 
based on some closed-form relations between the parameters to 
be identified and the observed signal’s cumulants of various 
orders or their Fourier transforms called polyceptra. For the 
application to channel equalization, extra steps are needed to 
use the estimated system parameters to recover the transmitted 
signal. 

Shalvi and Weinstein (SW) [I21 avoided these extra steps by 
devising new cost functions based on a necessary and sufficient 
condition for achieving zero IS1 in nonminimum phase linear 
time-invariant channels. Recently, they developed [ 131 another 
two blind deconvolution algorithms that render learning speeds 
much faster than those of their earlier proposals in [ 121. Since 
SW algorithms were aimed at removing ISI, the resulting MSE 
are often not as small as desired. Moreover, the convergence 
rate improvement of the second class of SW algorithms [13] 
was obtained at the expense of higher complexity and less 
flexibility for real-time implementation. Thic paper presents 
two classes of blind equalizers (see Fig. 11 that possess the 
properties of 1) fast learning speed, 2 )  small steady-state IS1 
and MSE, and 3) low computing complexity. A system model 
is introduced and candidate cost functions for achieving zero 
IS1 are discussed in the next section. In Section 111, we propose 
cost (error) functions for minimizing both IS1 and MSE and 
present a fast transversal filter structure to perform multidi- 
mensional minimization of these cost functions. Another class 
of algorithms (Section IV) divide the equalization process into 
two stages. The received samples are whitened by a GAL 
filter in the first stage. The output sequence is then fed into a 
regular LMS filter (the second stage). In Section V, we provide 
computer simulation results on the IS1 and MSE performance 
of various proposed algorithms and make comparison with 
the theoretical MSE behavior, which is analyzed in Appendix 
A. A brief summary and some conclusions are given in 
Section VI. 
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where 8 stands for convolution, must be of the form 

s = ,.io((). . . I . .  .0). ( 5 )  

When such a condition is satisfied, the distribution (or all 
cumulants) of the equalizer output is equal to that of the 
channel input data. In other words, the responsibility of a 
zero-forcing equalizer is to adjust its tap weights such that the 
instantaneous distribution of its output converges to the desired 
distribution [ 141. Shalvi and Weinstein [ 121 simplified this 
requirement to one that involves only second- and fourth-order 
cumulants. They consider the combined channeUequalizer 
system {s( , i )}  and showed 

E [ 2  ( k : ) ]  = E[a2 ( k ) ]  Cl s( 1 )  l 2  (6) 
1 

Fig. 1. Classification of the proposed blind equalizers; .JISI (qsi) = cost 
(error) functions for minimizing 1st; . J L ~ S E ( P ~ , ~ + :  ) = cost (error) functions 
for minimizing MSE, .Jr,,iX = f ~ ( . J r - ; i .  Jw.E). p,,,, = f r ( ( . i s i ,  wsr.). 

and 

(7) 
1 

11. PROBLEM FORMULATION AND HOC-BASED CRITERIA 

Let an i.i.d. sequence of symbols { ~ ( k ) }  be transmitted 
through a linear time-invariant channel, then the equivalent 
baseband output sequence {y(k)} can be written as 

y(k) = C b ( y ) a ( k :  - / )  + u ( k )  (1)  

where the additive noise { n( k ) }  is a white Gaussian sequence 
and {b(i)} is the channel impulse response. Suppose the 
channel output sequence y(k) is fed through an FIR-type 
equalizer with impulse response h(i) ,  i = 0, 1,. . . . M then 
the filtered sequence becomes 

!If 

r ( k )  = C h ( i ) g ( k  - 6 ) .  ( 2 )  
1 = 0  

The purpose of a zero-forcing (i.e., intersymbol-interference 
elimination) equalizer is to find h = [h(O), h( l ) ,  . . . , h(M - 
l)] such that the combining of the channel and the equalizer 
has the effect of a distortionless filter. In other words, the 
2-transform of the perfect zero-forcing equalizer is equal to 
l / B ( z ) ,  B ( z )  being the 2-transform of the channel impulse 
response { b ( i ) } .  Denoting the 2-transform of h by H ( z ) .  we 
can describe this condition as 

(3) 

where LB(z )  is the phase of B(z) .  The magnitude of H ( z )  
can be estimated by using second-order statistics alone but not 
its phase. Hence, a suitable criterion should be a function of 
both second-order statistics and HOC’S. 

On the other hand, zero IS1 requires that the taps { h ( z ) }  
be such that the output z ( k )  is identical to the input a ( k )  up 
to a constant delay. That is, the combined channel-equalizer 
impulse response 

s ( i )  = hoi) 8 b( i )  = Ch(i - I ) b ( l )  (4) 
1 

where E[-]  denotes the expectation operator and the fourth- 
order cumulant C ~ [ Z ]  is defined by 

(8) C4[2] = E[27 - 3E[z”]. 

Since 
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Note that the inequality (9) also implies that the object function 

is minimized by (5).  These facts immediately suggest that 
blind zero-forcing equalization can be accomplished by ap- 
plying a stochastic gradient-based method to perform either 
the constrained maximization ( 1  2), (1 3 )  or the unconstrained 
minimization of (15). Another approach suggeted by Shalvi 
and Weinstein [ 131 was motivated by the observation that the 
transformation 

~ ’ ( 7 1 )  = S ” ( T L ) [ S * ( ~ L ) ] ~  

where s ( n )  is the vector representing the combined chan- 
nel/equalizer impulse response at the nth iteration and p + q 2 
2, followed by the normalization 

s ( n  + 1) = S ’ ( 7 L ) / ~ ~ S ’ ( , / L ) ~ ~  

causes the combined impulse response { s ( k ) }  to converge 
quickly to the desired response (5). Two algorithms based on 
this fact, one in batch mode the other in sequential mode, 
were proposed in [ 131. 

All these algorithms, as mentioned before, were designed to 
eliminate ISI. Their MSE performance is often not satisfactory 
and in some cases is unacceptable (see Fig. 2). Moreover, a 
stochastic gradient algorithm using (IO),  (13), (14), or (15) 
as its cost function is sensitive to the characteristic of the 
transmitting channel (see Fig. 5). The fast algorithms of [13] 
are more robust but require a complexity of O ( M 2 )  where 
11.1 is the equalizer length; they are not particularly suitable 
for real-time operation either. Moreover, the batch-processed 
super exponential algorithm of [ 131 may exhibit undesired 
jittering after it converges [see Fig. 7(a)]. Algorithms proposed 
below will not have these shortcomings. 

111. HOC-BASED ALGORITHMS WITH AN FTF STRUCTURE 

Although the functions defined by (14) and ( 1  5) are suitable 
criteria for minimizing ISI, minimum MSE cannot be achieved 
by using either of them alone. In fact, it can be shown that in 
an additive white Gaussian noise channel the minimum MSE 
solution leads to 

where B ( w )  is the discrete Fourier transform of { h ( i ) }  and 
No is the one-sided power spectral density of the additive 
channel. In the presence of noise the zero IS1 upper bound 
max {C4[x(k)]}  = C4[a(k)]  cannot be attained either. As the 
noise level No increases, the constraint of searching on the 
surface of the unit ball { s :  cl 1 . ~ ( 1 ) 1 ~  = I} (i.e., E[x2(k ) ]  = 
E [ a 2 ( k ) ] )  will drive the tap-weight vector h(k) further and 
further away from the minimum MSE solution which must be 
obtained from the surface { s  : cl 1 . ~ ( 1 ) 1 ~  = u2}. An apprpriate 
solution is to add to the HOC-based cost (or error) function 
a term which reflects the magnitude of the MSE under blind 
circumstances. MSE involves only second-order statistics and 
cost (error) functions for minimizing the MSE of a blind 
equalizer have been presented before [ 11-[3]. The following 
error function is a good candidate for minimizing both IS1 
and MSE: 

where k;’s are appropriate weighting factors, & ( k )  = 
hard-decision output based on ~ ( k ) ,  e d d ( k )  = G ( k )  - x ( k )  
is the decision-directed error signal, e R a ( k )  = z ( k )  - 
CY sgn [ x ( k ) ] !  and CY = E[u2(k)] /E[I[~ , (k ) I] .  Note that the 
inclusion of e d d ( k )  and ledd(k)l in ea. hoc serves two related 
purposes: 1) to measure the quality of the current equalizer 
output or the “distance” from the current estimation of { s ( i ) }  
to the desired response and 2) to offer an automatic switch 
between the start-up period and the standard transmission 
mode [2]. 

Another possible error signal can be obtained by considering 
the error signal used in the super exponential method [13] 
which updates the equalizer’s tap-weight vector by 

h(k) = h(k - 1) + - Q ( k ) [ x 2 ( k )  B - ~ , v L : ] : c ( ~ )  6 
- S z ( k ) y ( k )  (18) 

where rn; = E [ a 2 ( k ) ] ,  io is a constant, y ( k )  = [y(k), y(k - 
l), . . . , y ( k  - M + 1)IT, S = C ~ [ c ~ ( k ) ] / E [ l a ( k ) 1 ~ ]  and Q ( k )  
is an estimator of the matrix RL1/m;, RL = E [ y ( k ) y ’ ( k ) ] .  
In [13], Q ( k )  is updated by another recursive formula which 
must be initialized by batch processing a large data segment 
first. We now present an algorithm that a) does not need initial 
batch processing, b) has a very small MSE, c) is insensitive to 
the eigenspread of the received data, and d) requires an O ( M )  
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TABLE I 
THE SW2-FTF BLIND EQUALIZER 

e j  (n1n - 1) = F' ( n  - l )y(n)  = apriori forward prediction error (a) 
(b) 
(C) 
(4 

0 ( e )  

?f (nIn)  = y f ( n ) e f ( 7 f l n  - 1) = apostenon forward prediction error 
E f ( n )  = E f ( n  - 1) + r f ( u l n ) ~ f ( 7 t l 7 7  - 1) = accumulated forward prediction error 

r(n) = Sf(R)Ef(" - l)/EJ(?Z) 

k,q,f(nln - 1) = 

F ( n )  = F ( n  - 1 )  - rf("I71 - 1) " 1 = forward prediction filter 

complexity only. b) and c) can be accomplished by replacing 
(18) with 

a) and d) are achieved by first defining the time domain 
autocorrelation matrix 

k 

(20) 
.J+! 

and replacing in (16) by R- l (k ) .  Noting that the un- 
weighted correlation matrix k R ( k )  and its inverse can be 
computed recursively in a way similar to that in a recursive 
least-squares method [ 181, we define the forward predictor's 
Kalman gain vector as 

It follows [IS] 

R - l ( k ) y ( k )  = - y ( k ) k M ( k l k  - 1) (22) 

where y( k )  is the so-called conversion factor. Substituting 
the above equation into (19), using the analogy between 
the resulting equation and the recursive relation governing 
the update of the tap-weight vector for the FTF algorithm, 
and after some algebraic manipulations we obtain the blind 
equalizer described by Table I. This algorithm will be called 
the SW2-FTF algorithm henceforth. The same approach can 
be applied to other cost (error) functions [(lo), (13)-(15), or 
(17)] with proper modifications made on steps (m)  and (71) of 
Table I. The resulting algorithms all have the same order of 
complexity and enjoy the same advantages [i.e., (a)-(d)]. 

When the constrained minimization of 53 is implemented 
the transmitted data sequence has to be transformed first unless 
it has a nonzero skewness (i.e., E[a3(k) ]  # 0. If the i.i.d. 
sequence { a ( k ) }  is generated from a (normalized) PAM signal 
set {Si} defined by 

with p(Si) = 1/2M. then the nonzero cumulant requirement 
cannot be met. To solve this problem, [9] used the nonlinear 
transform: 

Si = In [ K ( 2 M  + Si ) ]  - po (24) 

where K E [1 /2M,  3/4M] is a compression factor and 
po = E{ [In [K(2M + S; ) ] } .  At the receiving end, to restore 
the original transmitted signal, it is necessary to make the 
inverse transformation 

at the decision output (see Fig. I) .  Instead of (24), (25) we 
suggest that the following simpler transform pair be used to 
accomplish the same purpose 

where 

2123-1 

p , -  ( S i + 2 M ) 2  
a = - ( 2 A - 1 )  

2M 
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TABLE I1 
THE L-HOC BLIND EQUALIZER 

B The transversal filter 

h , ( k  + I )  = h , ( k ) - ~ " ~ , h ~ ~ ( k ) e ~ ( l i - - )  
h , ( k )  IS the zth tap weight at the kth iteration 
The transversal filter input I S  the last stage output of the lattice filter 

IV. HOC-BASED ALGORITHMS USING A GAL PREDICTOR 

Although the above HOC-based blind algorithms have low 
computational load, their convergence time can still be re- 
duced. It has been shown [ 151 that the start-up period can be 
shortened if the channel correlation matrix is orthogonalized. 
This can be attained by employing a whitening filter in front 
of the equalizer. We already know that [ 14, ch. 141 if the input 
of a lattice filter is wide-sense Markov of order M ,  then the 
forward prediction error produced at the Nth stage lattice filter, 
N 2 M ,  is white. Taking the Nth prediction error as the input 
to an HOC-based adaptive algorithm (like those mentioned in 
the previous section), we then obtain an equalizer that puts the 
responsibilities of estimating l/JB(z)l and LB(z)  separately 
on two cascaded processes. Such a division of labor should be 
able to increase the learning speed. We now describe a new 
class of algorithms. All of them use a lattice predictor as a 
preliminary equalizer. 

Let us consider the processing of the predictor output 
and ignore at first the GAL filtering part. Recall that the 
muItidimensiona1 Newton search results in the recursion [ 15, 
ch. 41 

(28) 
a 7  

h(,n + 1) = h(71) - p R i l -  
ah 

where 7 is the designed cost function and RL is the au- 
tocorrelation matrix. The major difficulty in implementing 
this algorithm is the computing of the autocorrelation matrix 
RL. The computing complexity can be greatly reduced if the 
sequence {y(n)} is white which, as just mentioned, can be 
obtained by letting {y(n)} pass through a lattice filter and 
taking the pth ( p  2 q, q being the length of the channel's 
impulse response) stage forward prediction error {e: ( n ) }  
as the output. Redefining the input vector of the Newton 
algorithm as y(n) = [e,'(n)eg(n - 1). . . e z ( n  - A4 + l)]' 
we can express the autocorrelation matrix as 

RL = diag (E[e:2(n)], E[e;2(n - l ) ] .  . . . , 
E [ C ; ~ ( ~  - M + l ) ] ) .  (29) 

The ensemble averages, ~!3[e, '~(l)],  1 = 71. n-1,. . . , n-kf+l. 
can be estimated by time averages 

For n sufficiently large all these estimators will approach a 
constant A and therefore RL = A I ,  I is the identity matrix. 
Now the recursion (28) can be written as 

where p' = PA. Replacing -,d(dl/ahi) in the above 
equation by the product of y ( n )  and the error function e2, hoc 

defined by (17), we then obtain the algorithm presented in 
Table 11. This algorithm will be referred to as the lattice- 
& h o c  or the L-HOC algorithm. Again, the same approach 
can be employed to generate algorithms with different cost 
(error) functions for the second stage filter. We will omit the 
extensions to these cases and use L-HOC as a representative 
of its class. 

As a remark, it is well-known that if {b(i)} is mini- 
mum phase then the prediction error (innovation) y(k) - 
E[y(k)ly(k - l), y (k  - a ) , . - . ]  is equal to c a ( k )  where c is 
a constant. So if the transmitting channel is minimum phase, 
an equalizer with a GAL predictor (or any other whitening 
prefilter) should converge faster than one without (see Fig. 6). 

v. SIMULATION AND NUMERICAL RESULTS 

To demonstrate the usefulness of the proposed algorithms, 
computer simulations for equalizing the following channels 
are performed. 

Channel I (eigenspread = 10.5, zeros at 7.1, -0.24 f 

Channel 2 (eigenspread = 41.5, zeros at -2.1. -0.48): 

Channel 3 (eigenspread = 95.9, zeros at -1.8, -0.55): 

Channel 4 (eigenspread = 150, zeros at -1.67, -0.6): 

Channel 5 (all-pass channel): 

0.19i): B1 = [-0.15 1 0.5 0.11. 

Bz = [0.3887 1 0.38871. 

B3 = [0.42 1 0.421. 

B4 = [0.44 1 0.441. 

i < 0 r. 0.84* 0.1"', t > 0 
h, = -0.4, t = 0 .  

We use both the MSE and IS1 measures in assessing the 
proposed algorithms' performance. IS1 is defined as 
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Fig. 3. 
algorithm, (2)  B-G algorithm, (3) Sato algorithm, (4) J4-FTF algorithm. 

MSE learning curves for (a) Channel I (b) Channel 2; (1) L-Jd 

where lslrnax is the maximum absolute value of the impulse 
response of the combined channeUequalizer system { s (  I ) } .  
All numerical results were obtained with a hundred runs. For 
HOC-based lattice or transversal filter we choose / I  = 0.00001 
and p. = 0.0002 is used for conventional blind algorithms. All 
filters hav a length of 15 taps. Besides the SW2-FTF and 
the L-HOC algorithms, we also compare the Sat0 algorithm 
[ 11, the Beniste-Goursat (B-G) algorithm [2], the J4-LMS 
algorithm (one that uses the cost function 54 with LMS 
filtering), and the L-.J, algorithm (GAL predictor followed 
by J4-LMS). The performance of the SW algorithms of [I21 
is not included since they and the .J4-LMS algorithm have 
similar learning behavior. 

Fig. 2 exhibits IS1 behaviors for the Jd-LMS, the J4-FTF 
algorithms and two conventional blind equalizers at SNR = 30 
dB. Obviously, the algorithms using J4 as the cost function 
have a learning speed faster than conventional blind equalizers. 
Convergence speed improvement brought about by the FTF- 
based algorithm in identifying NMP channels can be found 
in Fig. 2 as well. In Fig. 3 the MSE performances of 1) the 
L-J4 algorithm, 2 )  the B-G algorithm, 3)  the Sat0 algorithm, 
and 4) the JA-FTF algorithm are compared. It can be seen 
that the two HOC-based algorithms far outperform the other 
two. At SNR = 3 0  dB, convergence (MSE 5 -5  dB) can 
be expected within 1500 iterations. Unfortunately, the steady- 
state MSE's of both HOC-based algorithms are relatively high. 
This drawback is removed by the addition to the original error 
signal of a term which measures the MSE, as can be seen 
from Fig, 4 where improvements of 80 (Channel 1)  and 25 dB 
(Channel 2) are obtained. On the other hand, it indicates that 
the improvement is a decreasing function of the eigenspread 

The influence of the channel eigenspread is also shown in 
Fig. 5:  when the eigenspread is large, the learning speed of 
the JA-LMS algorithm (or those proposed in [ 121) becomes so 
slow that the algorithm is of no practical use any more. Fig. 
6 compares the learning curves obtained from both simulation 
and analysis. These curves confirm the correctness of our 

of RI,. 

2 
. . .~ 

(b) 

Fig. 4. 
(2) L-.J4 algorithms; (a) Channel I .  (b) Channel 2. 

Thermal noise free MSE performance comparison of ( I )  L-HOC and 

MSE analysis; they also indicate that the recursive formulae 
derived in the Appendix are useful in predicting the MSE 
learning behavior. The effect of GAL filtering can be found 
from Fig. 6(b): curve 3 represents MSE performance of the 
L-,J4 algorithm when equalizing a channel that resulted from 
cascading a minimum phase channel with Channel 5-an all- 
pass channel, and curve 4 is corresponding MSE performance 
of the Jd-LMS algorithm. Finally, in Fig. 7, we show IS1 and 
MSE learning curves for SNR = 10, 20, 30 dB, respectively. 
We find out that both the steady-state IS1 and MSE are 
sensitive to thermal noise. The effectiveness of ~ ( k )  is 
clear: a 30 dB and 25 dB degradation on IS1 and MSE 
performance results when the SW2-FTF algorithm is replaced 
by either the superexponential algorithm [Fig. 7(a)] or the 
J4-FTF algorithm [see Fig. 3(b) and Fig. 7(b)]. Also shown 
in Fig. 7 is the IS1 behavior (circled points) of the batch- 
processed super exponential algorithm [ 131. We notice that 
its IS1 does not remain stable after the algorithm converges. 
This is because this approach uses estimations of equalizer 
output HOCs to evaluate desired tap-weights { h( I )  } and the 
IS1 measure is sensitive to estmation errors when the equalizer 
is at equilibrium. Such a jittering phenomenon can be avoided 
if we increase the batch size; but then the fast convergence 
advantage of this algorithm will no longer exist. 

VI. CONCLUSIONS 
This paper presents two classes of adaptive blind algorithms 

based on second- and higher order statistics. The first class 
consists of FTF based algorithms whose cost functions involve 
second and third- or fourth-order cumulants. The second 
class uses a gradient adaptive lattice predictor cascaded with 
an HOC-based stochastic gradient algorithm. The FTF-type 
algorithm used by the first class necessitates a numerical 
stabilization scheme [20] when implemented in finite-precision 
environment. The second class, on the other hand, is numer- 
ically stable, for both its first stage (GAL) and second-stage 
filters are. The computational loads for these algorithms are 
all linearly proportional to the filter length: the first class 
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number of iteratrons 

(b) 

Fig. 5.  
mance; (a) Channel 3; (b) Channel 4. 

The effect of channel characteristics on the equalizer's MSE perfor- 

- 1 0 " " " ' ~ '  I 
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number of iterations 

(b) 

Fig. 6. . J -LMS algorithm's MSE learning curves estimated by simulation 
( I )  and analysis (2); (a) Channel 2, (b) Channel 5. (3) and (4) are the 
MSE learning curves for the L J 4  and .J4-LMS algorithms, when equal- 
izing the channel which is the combination of the minimum phase channel 
Bs = [0.80.30.1] and Channel 5. 

requires a complexity of O(9M) when its stabilized version 
is used; the second class needs O(GM) only. As various 
numerical examples have shown, these new algorithms give 
very fast convergence rates, robustness against eigenspread 
variations, low steady-state MSE and ISI, and are suitable for 
real-time implementation. Simulation results also show that 
their learning behaviors are consistent with what the analysis 
had predicted. 

APPENDIX A 
CONVERGENCE ANALYSIS 

A. General Results 

This Appendix provides MSE analysis of the proposed 
algorithms, assuming known signal constellation and channel 
impulse response. We follow the approach suggested in [ 191 

----.----. -30L-- -.-_- -- ' A  
0 5011 I O 0 0  I S M  2IWM ? 5 M  X K Y I  3Xx) 

-40 

number of aera1,ons 

(b) 

Fig. 7. The influence of the noiw power level on the (a) IS1 and (b) 
MSE performance of the J2,h0,-€TF algorithm in equalizing Channel 2; 
(1) S N R  = 30 dB, (2) SNR = 20 dB, ( 3 )  SNR = 10 dB. The learning curve 
of the batch-processed super exponential method at SNR = 30 dB 1s also 
shown (circled points). 

where a recursive method is used to evaluate the time- 
evolution of the MSE. The basic assumptions used are': 

1) The data symbols, a ( k )  are zero-mean independent and 
identically distributed symbols derived from a PAM data 
constellation. 

2) The tap-weight vector h(k) is independent of the equal- 
izer input vector y (  k ) .  

3) The equalizer output ~ ( k ) ,  conditioned on a ( k )  and 
h ( k ) ,  is zero-mean with variance c?(n). 

In general, the recursive formula governing an equalizer's 

(A. 1) 

where C ( k )  is an A4 x M matrix and e ( k )  is the error signal 
at the kth iteration. Since the autocorrelation matrix RL is 
positive definite, it can be decomposed into 

tap-weight vector update is of the form 

h ( k )  = h(k - 1) - / C ( k ) r ( k ) y ( k )  

RL = PDPT ('4.2) 

where P is an unitary matrix, D is a diagonal matrix. Premul- 
tiplying (A.1) by P,  we obtain 

W(lc)= W ( k ) -  p C ( k ) e ( k ) Z ( k )  (A.3) 

where W ( k )  = Ph(k) and Z ( k )  = Py(k) and the equalizer 
output becomes 

x ( k )  = h T ( k ) y ( k )  = W T ( k ) Z ( k ) .  (A.4) 

Invoking the assumption 

where W(k) = [ ~ " ( k ) ,  7.1(k),...,w,,i-1(k)]' andusing the 
definition 

2 ( k )  = E { [ z ( k )  - a(k)I2} 
= E{z2(lc)} + E{~~(k)}{-2E{~(k)~(k)}} (A.6) 

IIn [I91 the extra assumption that . r ( k )  is stationary Gaussian is needed. 
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we arrive at 

.’(IC) = DTI’(2) (k)  + m: - 2m2MT(k)G (A.7) 

where D is the eigenvalue vector of RL and I ’ ( 2 ) ( k )  is the 
vector formed by the mean square values of the equalizer taps 
in the transformed domain, M(k) = E [ W ( k ) ]  and G = PB 
where B is the column vector representing the channel impulse 
response. Thus, time evolution of the MSE c 2 ( k )  can be 
derived if we can recursively compute M(k) and r(2)(k) when 
G ( k )  and e ( k )  are known. In the next two sections we derive 
these related recursive equations for the J4-LMS algorithm and 
the L-.J, algorithm. Convergence analysis for other algorithms 
can be derived in a similar manner. 

B. Jd-LMS Algorithm 

Substituting 

C ( k ) e ( k )  = 4 z ( k ) { E [ x 2 ( k ) ]  - rnf} 
+ 8 x 3 ( k ) { E [ x 3 ( k ) ]  - E [ a 4 ( k ) ] }  (A.8) 

into (A.3) and taking expectation on both sides, we obtain 

M(k) = M(k) - , ~ { 4 E [ z ( k ) Z ( k ) ] ( E [ : r ; ~ ( k ) ]  - m:) 

+ 8( E[x4( k ) ]  - E[a4(  k ) ] ) E [ z ” (  k ) Z (  k ) ] } .  (A.9) 

Assumption 2 )  implies 

C. L- 54 Algorithm 

The MSE performance of the L- J4 algorithm can be closely 
approximated by that of the J4-LMS algorithm when the 
latter is presented with an uncorrelated and stationary input 
sequence; see Fig. 6. For this case, P becomes an identity 
matrix and D a diagonal matrix with a single eigenvalue 
equal to the equalizer input signal power. M(k) and I’(’)(n) 
are still updated by (A.9) and (A.14) but (A.10)-(A.13) and 
(A.lS)-(A.16) are to be replaced by 

~ [ . ~ ( k ) z ( k ) ]  = +?)(k) (A.22) 

Similarly, we can show 

Define 

W L ( k )  = W 2 ( k  - 1) + AW2(k). (A.17) 

It is reasonable to assume that the ith tap weights at successive 
iterations are independent and therefore in the transformed 
domain, A w 2 ( k )  is independent of w t ( k  - 1). We further 
assume A7nt(k) << 1 and define m L ( k )  = E[w,(k)] .  Taking 
various powers of (A.17), employing the binomial expansion, 
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