
 Jomputer

Computing caustic
effects by backward
beam tracing

Jung-Hong Chuang,
Shih-Ann Cheng

Department of Computer Science and Information
Engineering, National Chiao Tung University,
Hsinchu, Taiwan, Republic of China

Caustic effects produced by the transport
of light from specular surfaces to diffuse
surfaces are a common type of optical
effect that cannot be modeled by ray trac-
ing. We propose a two-pass algorithm to
model caustic effects efficiently and reli-
ably. In the proposed method, informa-
tion on transmitted light beams is
collected in a tree structure, which is used
to compute the intensity efficiently. The
method does not require the polygoni-
zation of diffuse surfaces and can easily be
combined with any rendering algorithm.

K e y w o r d s : Caustic effects - Backward
beam tracing - Ray tracing

Correspondence to: J-H Chuang

1 Introduction

Ray tracing is an effective technique for producing
realistic images of 3D scenes (Appel 1968; Arvo
and Kirk 1987; Kajiya 1982; Kajiya 1983; Glass-
ner 1984; Hanrahan 1983; Mitchell and Hanrahan
1992; Wallace et al. 1987). In addition to provi-
ding shading effects, the ray tracing technique
allows users to generate many other optical ef-
fects, such as reflection, refraction, and shadow.
When a light ray fired from a light source hits
a diffuse surface after intersecting specular surfa-
ces, it emits equally in all directions. The tradi-
tional ray tracing cannot simulate light transport
of this kind, hence the ray-tracing method fails to
simulate the resulting optical effects. Tracing from
light sources is one way of solving this problem. In
backward ray tracing, the problem becomes
trivial, because light rays can transmit through
specular surfaces and propagate to the diffuse
surface.
Methods using backward ray tracing and back-
ward beam tracing have been proposed to simu-
late light transport from specular surfaces to
diffuse surfaces (Arvo 1986; Chen et al. 1991;
Heckbert and Hanrahan 1984; Shinya 1987; Sil-
lion and Puech 1989; Wallace et al. 1987; Watt
1990), but the algorithms used in these methods
are costly in terms of both computation time and
memory space. For example, the major disadvan-
tage of Watt's algorithm (Watt 1990) is that it
traces a large number of beams in backward trac-
ing, especially in areas of high curvature. Other
disadvantages are that the beam tracing is re-
stricted to polygonal environments and that the
resolution of the polygonal mesh is very critical.
Moreover, the computation of the beam-object
intersection is complicated and is difficult to speed
up.

We propose a two-pass algorithm to compute
light transport from specular surfaces to diffuse
surfaces. This algorithm attempts to find all paths
from point light sources passing through specular
surfaces to a point on a diffuse surface so that the
intensity on the diffuse surface can be determined
accurately. The proposed method comprises two
steps: a preprocessing step and a rendering step.
The preprocessing step establishes a tree structure
for each point light source. This tree structure
record information on the reflection and refrac-
tion of light from the point light source through
polygons on specular surfaces. When computing
the intensity of a point on a diffuse surface, we

1 1 : ~ The Visual Computer (1995) 11:156-166
. . d I,,/ �9 Springer-Verlag 1995

The ~ 2%su
 omputer

must find all specular surfaces that contribute to
the intensity of the point. Since the intensity com-
putation is necessary only for visible points, the
proposed algorithm minimizes the amount of
computation in the preprocessing step and leaves
most of the computational load to the second
step. The tree structure is used to develop
methods for discarding, without actually testing
their visibility, specular polygons that have no
effect on the visible point. As a result, much un-
necessary computation can be avoided. The algo-
rithm's structure allows it to be easily combined
with any rendering algorithm.
Section 2 briefly describes the global illumination
and caustic effects. In Sect. 3, the proposed two-
pass algorithm for computing caustic effects is
discussed. Section 4 presents some concluding re-
marks.

2 Global illumination and caustic
effects

2. 1 Global illumination

To produce a realistic image, the lighting interac-
tions between objects with different reflectivity
must be taken into account. This shading com-
ponent is termed 91obal illumination. Surfaces are
traditionally classified as specular surfaces and
diffuse surfaces, depending on their reflectivity
(Wallace et al. 1987). Four types of light transport
between two surfaces are possible:

1. Diffuse to diffuse
2. Diffuse to specular
3. Specular to diffuse
4. Specular to specular

Techniques such as ray tracing and radiosity are
successful in dealing with global illumination in
only a few types of light transport. Traditional ray
tracing can model only types 2 and 4, because rays
travel in a direction opposite to that in which light
is propagated. Only light transfer via the reverse
path is taken into account. Since the paths from
a diffuse surface to other surfaces are not revers-
ible, no secondary ray can be generated once
a view ray hits a diffuse surface. The radiosity
method can model light transport type 1 very
well, but it performs poorly when handling direc-
tional reflection or refraction. Many algorithms

combine ray tracing and the radiosity method to
compute global illumination for all types of light
transport (Campbell and Fussell 1990; Chen et al.
1991), with increased cost in terms of both time
and space.

2.2 Caustic effects

We are especially interested in light transport
from specular surfaces to diffuse surfaces. In
Fig. 1, the major difference between picture A and
picture B is that the bright area D appearing on
picture A is the result of the light reflected from
a nearby mirror M. Such caustic effects cannot be
handled by ray tracing. The term caustic comes
from the field of optics. Caustics are lighting ef-
fects on a diffuse surface due to light reflecting
from a curved specular surface or refracting
through a specular object. An example of a caustic
effect is sunlight refracted through a magnifying
glass so that a hot spot forms behind the lens. To
model such effects, several methods have been
proposed, e.g., (Arvo 1986; Watt 1990). Backward
ray tracing (Arvo 1986) is a two-pass algorithm.
In the first phase it fires a large number of rays
from the light source to the scene and constructs
an illumination map for each object that intersects
the light rays. An illumination map is a grid of
data points that is pasted onto each object in the
scene in much the same way as in texture map-
ping. When a light ray intersects an object, the
energy carried by the light ray will be distributed
to the nearby data points on the illumination
map, and the illumination map will be updated
when other objects are intersected by the reflected
or refracted rays. Because an object may intersect
the light rays more than once, the energy from the
light rays accumulates on its illumination map.
The second phase of backward ray tracing uses
general rendering methods, such as a Z-buffer,
scanline, or ray-tracing algorithm. The intensity
of a visible point can be linearly interpolated by
nearby data points on the illumination map. This
approach is highly prone to aliasing problems
because of the point sampling and the discreti-
zation of the illumination map. The illumination
map must have a greater number of data points
for a scene with a high frequency of change in the
intensity. Computationalty, this approach is gen-
erally extremely expensive.

157

rh;I Te

 . omputer

la l b

Specular

2

~ Light souroe

~ Caustic polygon

polygon

Fig. 1 a, b. Picture a with caustic effect;
b without caustic effect

Fig. 2. Backward beam tracing and the caustic polygon

Another two-pass method that employs back-
ward beam tracing is proposed in Watt (1990).
Beam tracing is not a point sampling technique,
and hence it resolves most of the aliasing prob-
lems. This method requires the specular and dif-
fuse surfaces to be discretized into small polygons,
referred to as specular polygons and diffuse poly-
gons, respectively. Each specular polygon defines
a light beam by firing rays from its vertices to the
light source. For each specular polygon, the trans-
mitted light beam is constructed by reflecting or
refracting light rays with respect to the vertex
normals. The transmitted light beam is swept
through the entire scene to test for intersection of
diffuse polygons. When a transmitted light beam
intersects a diffuse polygon, it is projected onto
the plane of the diffuse polygon. The projection
forms a caustic polygon, as shown in Fig. 2. Be-
cause a diffuse polygon may intersect more than
one beam, it may associated with more than one
caustic polygon. The second phase is a view-de-
pendent rendering process. The diffuse compo-
nent of the intensity of a diffuse polygon is the

sum of the intensities of the caustic polygons asso-
ciated with it. The intensity of a caustic polygon is
computed in a way that resembles the form factor
of the radiosity method. The time complexity of
Watt's method is proportional to the product of
n~, nd, and n~, where n~ and nd are the number of
specular polygons and diffuse polygons, respec-
tively, and n~ is the number of point light sources.
As stated in Watt (1990) and Watt and Watt
(1992), the specular polygons must be much small-
er when modeling the caustic effect than when
modeling the surface itself. Hence the method for
computing caustic effects is generally computa-
tionally expensive when the specular surfaces and
diffuse surfaces are geometrically complex. More-
over, when Watt's method is incorporated with
ray tracing, problems arise in ray tracing the poly-
gonal diffuse surfaces (Snyder and Barr 1987).

3 The computation of caustic effects

The method in Watt (1990) actually traces beams
backward and computes all caustic polygons as-
sociated with each diffuse polygon. As already
stated, the resolution of the specular polygons
must be very high for the accurate computation of
the caustic effect. This implies that the computa-
tional cost depends on the resolution of the poly-
gonization and may be extremely high. The
algorithm proposed here is similar in structure to
Watt's method, but it does not actually trace the
beam backward. In the first phase of the algo-
rithm, all the information on the transmitted light
beams is recorded in a tree structure for efficient
searching in the second phase. The intensity com-
putation in the second phase can be incorporated
into any rendering algorithm. When a point on
a diffuse surface is rendered, the diffuse compo-
nent of the point's intensity is the accumulated
contribution of all transmitted light beams that
intersect the point. The tree structure constructed
in the first phase facilitates the search for trans-
mitted light beams that intersect a given visible
point. The light beam transmitted from each point
light source is enclosed by a cone and the cones
are merged recursively into a tree structure, called
a cone tree. When a point is rendered, the point is
tested recursively against each cone tree in a top-
down fashion. If the point is outside the cone of
the current node then the point cannot be inside

158

The 2 lsual
{ omputer

its descendant cones. If the point is inside the
cone, the test continues until the enclosing leaf
nodes are reached. The algorithm then checks
whether the point is inside the transmitted light
beam corresponding to each of the leaf cones. All
transmitted light beams, from all point light sour-
ces, that intersect the point contribute their inten-
sities to the point. With the cone tree structure,
the time complexity for determining the caustic
effect on a diffuse point is proportional to the sum
of the height of the cone trees. Hence the proposed
algorithm can efficiently compute caustic effects
for scenes involving complex specular surfaces
where polygonizations of very high resolution are
generally necessary. In the following subsections,
we describe how the cone tree for each point light
source is constructed.

3. 1 Cone tree construction

3. 1.1 Constructing cones that enclose
transmitted light beams

Enclosing the transmitted light beam with a cone
reduces the number of beam-point intersection
tests, since points outside the enclosing cone can-
not be inside the beam, and thus only points

inside the cone need to be tested against the trans-
mitted light beam. The cone that encloses a trans-
mitted light beam is determined according to the
transmitted rays. It is difficult to determine the
enclosing cone, since transmitted rays generally
do not intersect at one point. Two methods are
presented here: one constructs the cone in the unit
sphere and the other uses two overlaid cones.

The single cone approach. Normalized ray vectors
are mapped to a unit sphere and the cone that
encloses the normalized ray vectors is found, as
depicted in Fig. 3. With such a cone, the problem
of locating the apex of the enclosing cone does not
exist and the point-cone intersection can be tested
easily. The axis of the cone is the unit vector Axis
on the unit sphere such that the maximum angle
between Axis and the normalized ray vectors is
minimized. This is equivalent to

max min (Axis'Rayi) (1)
A x i s i

where Rayi is the ith normalized ray vector. The
problem can be rephrased as that of determining
the smallest circle on the sphere that encloses the
normalized ray vectors on the sphere. Computing
a solution to this problem is a difficult task. In-
stead of computing it, we derive a box that has

Point �9 .~...light...... "'.. source ..

~]]:..... Transmitted rays

- " . . ~ "~ ~,'~.
. ' . ,

Specular polygon ...'"

Ray vectors in R 3 Normalized vectors in the unit sphere

Fig. 3. Mapping normalized ray vectors to a unit sphere

Fig. 4. Approximating the axis of the enclosing cone

/ ..,"

159

Specular
polygon

Beo
/- \,

Diffuse surface

Specular
polygon

Beam B~

Diffuse surface

, i / /
Cone C

/Z._._.'~~i~i~iJ!~i!i~:~:~" \

Diffuse surface by

/the cone C in the real space

/ \
Diffuse surface

In R 3 In the unit sphere In R 3

Fig. 5. Enclosing cones for convergent and divergent transmitted light beams

faces parallel to the coordinate axes and bounds
the endpoints of the normalized ray vectors. We
consider the center S of the bounding box as the
center of the desired circle (Fig. 4). Then the axis
of the enclosing cone is the vector from the sphere
center to the point S, and the spread angle is
computed accordingly. With the enclosing cone
defined in the unit sphere, merging the cones and
computing the cone-point interaction is easy.
However, in Fig. 5, suppose the convergent light
beam A and divergent light beam B have the same
enclosing cone C in the unit sphere, and the en-
closing cones of A and B represented by C in e 3
are identical, provided the two specular polygons
are the same. In this case, computing the cone-
point intersection for beam A would be much less
efficient than that for B.

The double cone approach. With two overlaid
cones, we can bound the transmitted light beam in
R 3. The overlaid cones have the same axis and
spread angle, but different apexes, as depicted in
Fig. 6. The direction of the cone axis and the

spread angle are computed using the single-cone
approach. To locate the apex for each of the
overlaid cones, we first derive the narrowest cross
section of the beam, called the neck of the beam,
and then locate the apex according to the spread
angle (Fig. 6). The neck of the beam is located
iteratively by sweeping a plane along the axis. The
plane is parameterized by the variable t, w i th
t = 0 for the plane passing one of the polygon
vertices. Using the minimum spanning circle algo-
rithm described in Toussaint (1985), we find the
minimum spanning circle on each plane that en-
closes all ray-plane intersection points. The neck
of the beam occurs on the plane with the smallest
minimum spanning circle. The iteration begins
with three initial plane positions (tl, Dial),
(t2, Dia2), and (G, Dia3), where tl < ~2 < t3 and
Dial > Dia2 and Dia3 > Dia2, as shown in Fig. 7.
With (tl, Dial) and (t3, Dia3), the parameter for
the new plane is linearly interpolated by

Dial * t3 + Dia3 * t 1
t ~ w = (2)

Dial + Dia3

160

tJornputer

/x.x•

1 iii ill o

Fig. 6. Locating the apexes of the overlaid cones

On the new plane the minimum spanning circle is
found with radius Dia,ew. For the next iteration,
we select two neighboring planes of the new plane
as follows. If t,~w > t 2 and Dia,~w < Dia2, we use
the planes in the order of (t2, Dia2), (tnew, Dia,ew),
(t3, Dia3). If t,ew < t2 and Dia,ew > Dia2, we use
(tl, Dial), (t2, Dia2), (t,ew, Dia,ew). Having found
the neck of the beam, as depicted in Fig. 8, we can
compute the apexes of the overlaid cones by

the descendant cones is straightforward if the
specular surface is polygonized with a regular
surface subdivision. For example, the cone tree
can be a quadtree if the polygonization of the
specular surface is obtained by standard domain
subdivision. The problem becomes nontrivial,
however, when the specular surface is itself an
arbitrary polygon set.
A method similar to the one for constructing
the cones is used to merge cones in the unit
sphere. The normalized ray vectors are r ep l aced
here by the normalized direction vectors of the
cone axis. The spread angle of the parent cone is
obtained by

max [Angle(Axispare,t, Axisi) + SpreadAngi] (4)
i

where SpreadAngl is the spread angle of the de-
scendant cone i. (Fig. 10).
For overlaid cones, the axis direction and the
spread angle of the parent cone are also deter-
mined in a manner similar to that used to con-
struct the overlaid cones. To locate the apexes,
iterations similar to those used to locate the neck
of the beam are applied. Since the ray is replaced
by the cone, the sweeping plane intersects a cone
in an ellipse. The major axis r~ and minor axis rb of
an ellipse can be found as follows:

z0 sin 5 cos 5
Fa = cos 2 5 - sin 2 e ' (5)

r
Apex = C 4- D * - (3)

tan(a)

where C and r are the center and the radius of the
minimum spanning circle, e is the spread angle,
and D is the direction of the cone axis.

3. 1.2 Constructing the cone tree

Having constructed an enclosing cone or overlaid
cones for each transmitted light beam, we organ-
ize the cones into a tree structure to ensure an
efficient search. An internal node corresponds to
a cone that encloses all its descendant cones. For
example, Fig. 9 depicts a cone tree representing
four cones enclosed by a parent cone. Collecting

Zo sin 6 (6)
rb = jCOS 2 3 -- sin 2 e

where, as shown in Fig. 11, Zo is the distance from
the cone apex of the child cones to the plane, e is
the angle between the axes of the parent cone and
the child cone, and 5 is the spread angle of the
child cone. The direction of the major axis of the
ellipse is given by

Major Axis = Axischlzd/COS e -- Axispar~,, (7)

and the direction of the minor axis of the ellipse
can be obtained by

MinorAxis = MajorAxis x Axispare,t (8)

161

.//'t I

.

1 t ' . .'''': i - '" ' - .
t 2 tnext t" 3

D - ~ _ ~

8

Merging four cones
into a larger cone Cone tree

...~

�9
.....""~ / ::

"~ "~

"'-.."

The axis o f ~
a child cone

The axis of
the parent cone

10

AXiSchild
""....... ~iSp arent

Major

Apexehild

11

Fig. 7. Locating the new plane using linear interpolation

Fig. 8. Computing the apexes of the overlaid cones

Fig. 9. Merging four cones into a larger one

Fig. 10. The spread angle of the parent cone

Fig. 11. Computing the ellipse of the plane-cone inter-
section

162

Bounding box

of all ellipses

........... "" ~ . ~ ~ Bounding box

"-~. ~ ~

12

4 ~

~ pecular polygon

/
Cone D i "" /c V

p Diffuse surface

Cone C ""

Cone D from p to

the specular polygon

13

Fig. 12. The bounding box approach for ellipses

Fig. 13. Cone point intersection test for cones in the unit sphere

Both the MajorAxis and MinorAxis are nor-
malized vectors�9 The center of the ellipse is repre-
sented by

Center = ApeXchU a -]- AXiSchild * Z o

+ MajorAxis * dy (9)

where

Zo �9 sin 7 �9 c o s c~

dy - cos 5 ~ - sin--- 5 4"

It is, in general, difficult to find a circle that
encloses all the ellipses�9 We approximate the com-
putation by bounding each ellipse with a box with
edges parallel to the major and minor axes of the
ellipse�9 Then a box with edges parallel to the

coordinate axes is found to enclose all the bound-
ing boxes, as shown in Fig. 12. The enc los ing
circle is centered at the center of the bounding box
and has a radius equal to half the length of the
diagonal of the box.
We have described two ways of representing en-
closing cones for the transmitted light beams and
explained how the cones are merged�9 The single
cone in the unit sphere can be constructed easily�9
However, the cone contains the beam only loosely,
as shown in Fig. 5. Although the overlaid cones
can enclose a beam more tightly, the rays of the
beam are sometimes almost parallel. This case
often occurs for leaf cones on the cone tree, and
it makes the computat ion of apexes a difficult
problem. In the implementation that follows,
a cone tree that uses both types of enclosing
cones is constructed�9 When the spread angle of the

163

(] Vlsuat omputer
enclosing cone is less than a prescribed value, say
ten degrees, the single cone in the unit sphere is
constructed. For cases in which the spread angle is
larger than this value, the overlaid cones are com-
puted.

3.2 Intensity computation

To render a point on a diffuse surface, we consider
the diffuse component of the point's intensity as
the total contribution of all transmitted light
beams intersecting the point. The point is tested
recursively against each cone tree, constructed
for each point light source, in a top-down fashion.
If the point is outside the cone of the current node
then the point cannot be inside the descendant
cones. If the point is inside the cone of the current
node, the testing continues until the enclosing leaf
nodes are reached. Each enclosing leaf cone is
then checked to see if the point is inside the
transmitted light beam enclosed by that cone.

3.2. 1 Testing cone-point and beam-point
intersections

For a single cone C represented on the unit
sphere, to test whether a point p is contained in C,
we construct a cone D on the unit sphere that
encloses the normalized rays fired from the
vertices of the specular polygon to p (Fig. 13). If C
and D overlap, we conclude that p is inside C;
otherwise, we conclude that p is not inside C.
Note that cone D indicates the range of the
viewing direction from every point on the specular
polygon to p.
For the overlaid cones, the cone-point intersec-
tion is tested in R 3. Prior to the test, we identify
whether the point is on the same side of the
specular polygon as the light beam. If it is not, no
cone-point intersection test is necessary. For the
test, two rays are fired from the point to the two
apexes of the overlaid cones. If any one of the
angles between the rays and the axis is smaller
than the spread angle, the point is inside the
overlaid cones; otherwise, the point is outside the
cones.
Once the diffuse point is found to be inside the
enclosing cone, the point is checked to see if it is
inside the corresponding transmitted light beam.

3.2.2 Computing intensity

The intensity with which a light beam is
propagated to a point can be computed using
a technique similar to Watt's algorithm (Watt
1990), except that the normal of a testing point is
used to form a projection plane on which the
corresponding caustic polygon is constructed ac-
cordingly. The intensity at the caustic polygon,
Ip,ojea, is computed as

Iv~oj~ct = E/Areaproj~a

= I * (N "L) * Areasp~c.l.ffAreap~ojea (11)

where E = I * (N" L) �9 Areaspec,lar is the fraction of
energy arriving on the specular polygon, I is the
intensity of light incident on the specular polygon,
N is the surface normal of the specular polygon,
L is the direction of the light, Areaspeca~ar is the
area of the specular polygon, and Areawojea is the
area of the caustic polygon. With Eq. 11, the caus-
tic component for each pixel will be the same as
that obtained by Watt's method. Since, in the
proposed algorithm, the caustic effect is computed
on a point-by-point basis, it is possible to improve
the accuracy of the computat ion of the caus t ic
effect by first locating points on the specular sur-
faces at which the light rays are transmitted or
reflected to the diffuse point under consideration,
and then accurately determining the energy trans-
fer according to the local geometry of the specular
points.

3.3 Implementation and examples

The proposed method was implemented on an
IRIS 4D/25G, and several examples were tested.
For the examples shown, only one point light
source is considered. The cone trees are quadtrees
with the same hierarchy as the subdivision of the
specular surfaces. Figures 14 and 15 show two
pools, one with caustic effects and the other with-
out. The pools are rendered by ray tracing with
a resolution of 100 x 100 pixels in height and
width, while the water is approximated by 7575
specular polygons. The number of cone-point in-
tersection tests for Fig. 14 was 1 293 973 and the
number of beam-point intersection tests was

164

 omputer
i ! ! /+ ::i

14 15 16

17

Fig. 14. A pool of water - with caustic effects

Fig. 15. A pool of water - without caustic effects

Fig. 16. A dolphin under the water - with caustic effects

Fig. 17. A dolphin under the water - without caustic effects

68648, and the beam-point intersection test
succeeded 12960 times. Figures 16 and 17 show
images of a dolphin under the water, one with
caustic effects and the other without.

4 Conclusion

Caustic effects are, in general, difficult to compute,
because in the rendering process the light trans-
port from specular surfaces to diffuse surfaces
must be simulated accurately and efficiently. We
have proposed a two-pass algorithm that com-
putes caustic effects by backward beam tracing.
The algorithm has several advantages. Backward
beam tracing for computing caustic effects re-
quires a time complexity linear to the number of
specular and diffuse polygons. In the proposed
algorithm, the backward beams are not actually
traced; instead, a tree structure is constructed

from the enclosing cones of transmitted light be-
ams. With the cone tree, the intensity computa-
tion can be speeded up by significantly reducing
the number of beam-point intersection tests.
Moreover, the proposed algorithm does not re-
quire the polygonal approximation of diffuse sur-
faces. Consequently, problems that arise in the ray
tracing of polygonal scenes can be avoided
(Snyder and Barr 1987).
Our future work will include deriving an efficient
collection algorithm to collect sets of descendant
cones for a specular surface that is itself an arbi-
trary polygon set. In addition, we are investigat-
ing ways of extending the present method to com-
pute caustic effects that involve multiple specular
reflections and transmissions.

Acknowledgements. This work was supported by the National
Science Council of the Republic of China under grant NSC
82-0408-E-009-428.

165

{ ornputer

References

I. Appel A (1968) Some techniques for shading machine ren-
derings of solids. Proceedings of American Federation of
Information Processing Societies (AFIPS) JSCC, pp 37-45

2. Arvo J (1986) Backward ray tracing. SIGGRAPH Course
Notes, No. 12

3. Arvo J, Kirk D (1987) Fast ray tracing by ray classification.
Comput Graph 21:55-64

4. Campbell AT, Fussell DS (1990) Adaptive mesh generation
for global diffuse illumination. Comput Graph 24:155-164

5. Chert SE, Rushmeier HE, Miller G, Turner D (1991) A pro-
gressive multi-pass method for global illumination. Comput
Graph 25:165 174

6. Glassner AS (1984) Space subdivision for fast ray tracing.
IEEE Comput Graph Appl 4:15-22

7. Hanrahan P (1983) Ray tracing algebraic surfaces. Comput
Graph 17:83-90

8. Heckbert PS, Hanrahan P (1984) Beam tracing polygonal
objects. Comput Graph 18:119-127

9. Kajiya JT (1982) Ray tracing parametric patches. Comput
Graph 16:245-254

10. Kajiya JT (1983) New techniques for ray tracing pro-
cedurally defined objects. Comput Graph 17:91-102

11. Mitchell D, Hanrahan P (1992) Illumination from curved
reflectors. Computer Graph 26:283-291

12. Shinya M, Takahashi T, Naito S (1987) Principles and ap-
plications of pencil tracing. Comput Graph 21:45 54

13. Sillion F, Puech C (1989) A general two-pass method inter-
grating specular and diffuse reflection. Comput Graph
23:335-344

14. Snyder JM, Barr AH (1987) Ray tracing complex models
containing surface tessellations. Comput Graph 21 : 119-128

15. Toussaint G (1985) Computational Geometry. North-Hol-
land, Amsterdam

16. Wallace JR, Cohen MF, Greenberg DP (1987) A two-pass
solution to the rendering equation: a synthesis of ray tracing
and radiosity methods. Comput Graph 21:311 320

17. Watt M (1990) Light-water interaction using backward
beam tracing. Comput Graph 24:377-385

18. Watt A, Watt M (1992) Advanced Animation and Render-
ing Techniques, Theory and Practice. Addison-Wesley,
Wokingham UK

JUNG-HONG CHUANG is an
Associate Professor of Com-
puter Science and Information
Engineering at National Chiao
Tung University, Taiwan, ROC.
His research interests include
geometric and solid modeling,
computer graphics, and visuali-
zation. Dr. Chuang received h is
BS degree in applied mathema-
tics from National Chiao Tung
University, Taiwan, in 1978, and
MS and PhD degrees in Com-
puter science from Purdue Uni-
versity in 1987 and 1990, respec-
tively.

SHIH-ANN CHENG is cur-
rently an Associate Engineer at
the Institute for Information In-
dustry, Taiwan, ROC, His re-
search interests include com-
puter graphics, database, and
computer network. Mr. Chen re-
ceived his BS and MS degrees in
Computer Science and Informa-
tion Engineering from National
Chiao Tung University in 1990
and 1992, respectively.

166

