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Caustic effects produced by the transport 
of light from specular surfaces to diffuse 
surfaces are a common type of optical 
effect that cannot be modeled by ray trac- 
ing. We propose a two-pass algorithm to 
model caustic effects efficiently and reli- 
ably. In the proposed method, informa- 
tion on transmitted light beams is 
collected in a tree structure, which is used 
to compute the intensity efficiently. The 
method does not require the polygoni- 
zation of diffuse surfaces and can easily be 
combined with any rendering algorithm. 
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1 Introduction 

Ray tracing is an effective technique for producing 
realistic images of 3D scenes (Appel 1968; Arvo 
and Kirk 1987; Kajiya 1982; Kajiya 1983; Glass- 
ner 1984; Hanrahan 1983; Mitchell and Hanrahan 
1992; Wallace et al. 1987). In addition to provi- 
ding shading effects, the ray tracing technique 
allows users to generate many other optical ef- 
fects, such as reflection, refraction, and shadow. 
When a light ray fired from a light source hits 
a diffuse surface after intersecting specular surfa- 
ces, it emits equally in all directions. The tradi- 
tional ray tracing cannot simulate light transport 
of this kind, hence the ray-tracing method fails to 
simulate the resulting optical effects. Tracing from 
light sources is one way of solving this problem. In 
backward ray tracing, the problem becomes 
trivial, because light rays can transmit through 
specular surfaces and propagate to the diffuse 
surface. 
Methods using backward ray tracing and back- 
ward beam tracing have been proposed to simu- 
late light transport from specular surfaces to 
diffuse surfaces (Arvo 1986; Chen et al. 1991; 
Heckbert and Hanrahan 1984; Shinya 1987; Sil- 
lion and Puech 1989; Wallace et al. 1987; Watt 
1990), but the algorithms used in these methods 
are costly in terms of both computation time and 
memory space. For example, the major disadvan- 
tage of Watt's algorithm (Watt 1990) is that it 
traces a large number of beams in backward trac- 
ing, especially in areas of high curvature. Other 
disadvantages are that the beam tracing is re- 
stricted to polygonal environments and that the 
resolution of the polygonal mesh is very critical. 
Moreover, the computation of the beam-object 
intersection is complicated and is difficult to speed 
up.  

We propose a two-pass algorithm to compute 
light transport from specular surfaces to diffuse 
surfaces. This algorithm attempts to find all paths 
from point light sources passing through specular 
surfaces to a point on a diffuse surface so that the 
intensity on the diffuse surface can be determined 
accurately. The proposed method comprises two 
steps: a preprocessing step and a rendering step. 
The preprocessing step establishes a tree structure 
for each point light source. This tree structure 
record information on the reflection and refrac- 
tion of light from the point light source through 
polygons on specular surfaces. When computing 
the intensity of a point on a diffuse surface, we 
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must find all specular surfaces that contribute to 
the intensity of the point. Since the intensity com- 
putation is necessary only for visible points, the 
proposed algorithm minimizes the amount of 
computation in the preprocessing step and leaves 
most of the computational load to the second 
step. The tree structure is used to develop 
methods for discarding, without actually testing 
their visibility, specular polygons that have no 
effect on the visible point. As a result, much un- 
necessary computation can be avoided. The algo- 
rithm's structure allows it to be easily combined 
with any rendering algorithm. 
Section 2 briefly describes the global illumination 
and caustic effects. In Sect. 3, the proposed two- 
pass algorithm for computing caustic effects is 
discussed. Section 4 presents some concluding re- 
marks. 

2 Global illumination and caustic 
effects 

2. 1 Global illumination 

To produce a realistic image, the lighting interac- 
tions between objects with different reflectivity 
must be taken into account. This shading com- 
ponent is termed 91obal illumination. Surfaces are 
traditionally classified as specular surfaces and 
diffuse surfaces, depending on their reflectivity 
(Wallace et al. 1987). Four types of light transport 
between two surfaces are possible: 

1. Diffuse to diffuse 
2. Diffuse to specular 
3. Specular to diffuse 
4. Specular to specular 

Techniques such as ray tracing and radiosity are 
successful in dealing with global illumination in 
only a few types of light transport. Traditional ray 
tracing can model only types 2 and 4, because rays 
travel in a direction opposite to that in which light 
is propagated. Only light transfer via the reverse 
path is taken into account. Since the paths from 
a diffuse surface to other surfaces are not revers- 
ible, no secondary ray can be generated once 
a view ray hits a diffuse surface. The radiosity 
method can model light transport type 1 very 
well, but it performs poorly when handling direc- 
tional reflection or refraction. Many algorithms 

combine ray tracing and the radiosity method to 
compute global illumination for all types of light 
transport (Campbell and Fussell 1990; Chen et al. 
1991), with increased cost in terms of both time 
and space. 

2.2 Caustic effects 

We are especially interested in light transport 
from specular surfaces to diffuse surfaces. In 
Fig. 1, the major difference between picture A and 
picture B is that the bright area D appearing on 
picture A is the result of the light reflected from 
a nearby mirror M. Such caustic effects cannot be 
handled by ray tracing. The term caustic comes 
from the field of optics. Caustics are lighting ef- 
fects on a diffuse surface due to light reflecting 
from a curved specular surface or refracting 
through a specular object. An example of a caustic 
effect is sunlight refracted through a magnifying 
glass so that a hot spot forms behind the lens. To 
model such effects, several methods have been 
proposed, e.g., (Arvo 1986; Watt 1990). Backward 
ray tracing (Arvo 1986) is a two-pass algorithm. 
In the first phase it fires a large number of rays 
from the light source to the scene and constructs 
an illumination map for each object that intersects 
the light rays. An illumination map is a grid of 
data points that is pasted onto each object in the 
scene in much the same way as in texture map- 
ping. When a light ray intersects an object, the 
energy carried by the light ray will be distributed 
to the nearby data points on the illumination 
map, and the illumination map will be updated 
when other objects are intersected by the reflected 
or refracted rays. Because an object may intersect 
the light rays more than once, the energy from the 
light rays accumulates on its illumination map. 
The second phase of backward ray tracing uses 
general rendering methods, such as a Z-buffer, 
scanline, or ray-tracing algorithm. The intensity 
of a visible point can be linearly interpolated by 
nearby data points on the illumination map. This 
approach is highly prone to aliasing problems 
because of the point sampling and the discreti- 
zation of the illumination map. The illumination 
map must have a greater number of data points 
for a scene with a high frequency of change in the 
intensity. Computationalty, this approach is gen- 
erally extremely expensive. 
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Fig. 1 a, b. Picture a with caustic effect; 
b without caustic effect 

Fig. 2. Backward beam tracing and the caustic polygon 

Another two-pass method that employs back- 
ward beam tracing is proposed in Watt (1990). 
Beam tracing is not a point sampling technique, 
and hence it resolves most of the aliasing prob- 
lems. This method requires the specular and dif- 
fuse surfaces to be discretized into small polygons, 
referred to as specular polygons and diffuse poly- 
gons, respectively. Each specular polygon defines 
a light beam by firing rays from its vertices to the 
light source. For each specular polygon, the trans- 
mitted light beam is constructed by reflecting or 
refracting light rays with respect to the vertex 
normals. The transmitted light beam is swept 
through the entire scene to test for intersection of 
diffuse polygons. When a transmitted light beam 
intersects a diffuse polygon, it is projected onto 
the plane of the diffuse polygon. The projection 
forms a caustic polygon, as shown in Fig. 2. Be- 
cause a diffuse polygon may intersect more than 
one beam, it may associated with more than one 
caustic polygon. The second phase is a view-de- 
pendent rendering process. The diffuse compo- 
nent of the intensity of a diffuse polygon is the 

sum of the intensities of the caustic polygons asso- 
ciated with it. The intensity of a caustic polygon is 
computed in a way that resembles the form factor 
of the radiosity method. The time complexity of 
Watt's method is proportional to the product of 
n~, nd, and n~, where n~ and nd are the number of 
specular polygons and diffuse polygons, respec- 
tively, and n~ is the number of point light sources. 
As stated in Watt (1990) and Watt and Watt 
(1992), the specular polygons must be much small- 
er when modeling the caustic effect than when 
modeling the surface itself. Hence the method for 
computing caustic effects is generally computa- 
tionally expensive when the specular surfaces and 
diffuse surfaces are geometrically complex. More- 
over, when Watt's method is incorporated with 
ray tracing, problems arise in ray tracing the poly- 
gonal diffuse surfaces (Snyder and Barr 1987). 

3 The computation of caustic effects 

The method in Watt (1990) actually traces beams 
backward and computes all caustic polygons as- 
sociated with each diffuse polygon. As already 
stated, the resolution of the specular polygons 
must be very high for the accurate computation of 
the caustic effect. This implies that the computa- 
tional cost depends on the resolution of the poly- 
gonization and may be extremely high. The 
algorithm proposed here is similar in structure to 
Watt's method, but it does not actually trace the 
beam backward. In the first phase of the algo- 
rithm, all the information on the transmitted light 
beams is recorded in a tree structure for efficient 
searching in the second phase. The intensity com- 
putation in the second phase can be incorporated 
into any rendering algorithm. When a point on 
a diffuse surface is rendered, the diffuse compo- 
nent of the point's intensity is the accumulated 
contribution of all transmitted light beams that 
intersect the point. The tree structure constructed 
in the first phase facilitates the search for trans- 
mitted light beams that intersect a given visible 
point. The light beam transmitted from each point 
light source is enclosed by a cone and the cones 
are merged recursively into a tree structure, called 
a cone tree. When a point is rendered, the point is 
tested recursively against each cone tree in a top- 
down fashion. If the point is outside the cone of 
the current node then the point cannot be inside 
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its descendant cones. If the point is inside the 
cone, the test continues until the enclosing leaf 
nodes are reached. The algorithm then checks 
whether the point is inside the transmitted light 
beam corresponding to each of the leaf cones. All 
transmitted light beams, from all point light sour- 
ces, that intersect the point contribute their inten- 
sities to the point. With the cone tree structure, 
the time complexity for determining the caustic 
effect on a diffuse point is proportional to the sum 
of the height of the cone trees. Hence the proposed 
algorithm can efficiently compute caustic effects 
for scenes involving complex specular surfaces 
where polygonizations of very high resolution are 
generally necessary. In the following subsections, 
we describe how the cone tree for each point light 
source is constructed. 

3. 1 Cone tree construction 

3. 1.1 Constructing cones that enclose 
transmitted light beams 

Enclosing the transmitted light beam with a cone 
reduces the number of beam-point intersection 
tests, since points outside the enclosing cone can- 
not be inside the beam, and thus only points 

inside the cone need to be tested against the trans- 
mitted light beam. The cone that encloses a trans- 
mitted light beam is determined according to the 
transmitted rays. It is difficult to determine the 
enclosing cone, since transmitted rays generally 
do not intersect at one point. Two methods are 
presented here: one constructs the cone in the unit 
sphere and the other uses two overlaid cones. 

The single cone approach. Normalized ray vectors 
are mapped to a unit sphere and the cone that 
encloses the normalized ray vectors is found, as 
depicted in Fig. 3. With such a cone, the problem 
of locating the apex of the enclosing cone does not 
exist and the point-cone intersection can be tested 
easily. The axis of the cone is the unit vector Axis 
on the unit sphere such that the maximum angle 
between Axis and the normalized ray vectors is 
minimized. This is equivalent to 

max min (Axis'Rayi) (1) 
A x i s  i 

where Rayi is the ith normalized ray vector. The 
problem can be rephrased as that of determining 
the smallest circle on the sphere that encloses the 
normalized ray vectors on the sphere. Computing 
a solution to this problem is a difficult task. In- 
stead of computing it, we derive a box that has 

Point �9 .~...light...... "'.. source .. 

~]]:..... Transmitted rays 

- " . . ~  "~ ~,'~. . ............ 
. ' . ,  

Specular polygon ...'" 

Ray vectors in R 3 Normalized vectors in the unit sphere 

Fig. 3. Mapping normalized ray vectors to a unit sphere 

Fig. 4. Approximating the axis of  the enclosing cone 

/ ..," 
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Fig. 5. Enclosing cones for convergent and divergent transmitted light beams 

faces parallel to the coordinate axes and bounds 
the endpoints of the normalized ray vectors. We 
consider the center S of the bounding box as the 
center of the desired circle (Fig. 4). Then the axis 
of the enclosing cone is the vector from the sphere 
center to the point S, and the spread angle is 
computed accordingly. With the enclosing cone 
defined in the unit sphere, merging the cones and 
computing the cone-point interaction is easy. 
However, in Fig. 5, suppose the convergent light 
beam A and divergent light beam B have the same 
enclosing cone C in the unit sphere, and the en- 
closing cones of A and B represented by C in e 3 
are identical, provided the two specular polygons 
are the same. In this case, computing the cone- 
point intersection for beam A would be much less 
efficient than that for B. 

The double cone approach. With two overlaid 
cones, we can bound the transmitted light beam in 
R 3. The overlaid cones have the same axis and 
spread angle, but different apexes, as depicted in 
Fig. 6. The direction of the cone axis and the 

spread angle are computed using the single-cone 
approach. To locate the apex for each of the 
overlaid cones, we first derive the narrowest cross 
section of the beam, called the neck of the beam, 
and then locate the apex according to the spread 
angle (Fig. 6). The neck of the beam is located 
iteratively by sweeping a plane along the axis. The 
plane is parameterized by the variable t, w i th  
t = 0 for the plane passing one of the polygon 
vertices. Using the minimum spanning circle algo- 
rithm described in Toussaint (1985), we find the 
minimum spanning circle on each plane that en- 
closes all ray-plane intersection points. The neck 
of the beam occurs on the plane with the smallest 
minimum spanning circle. The iteration begins 
with three initial plane positions (tl, Dial), 
(t2, Dia2), and (G, Dia3), where tl < ~2 < t3 and 
Dial > Dia2 and Dia3 > Dia2, as shown in Fig. 7. 
With (tl, Dial) and (t3, Dia3), the parameter for 
the new plane is linearly interpolated by 

Dial * t3 + Dia3 * t 1 
t ~ w  = (2) 

Dial + Dia3 
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Fig. 6. Locating the apexes of the overlaid cones 

On the new plane the minimum spanning circle is 
found with radius Dia,ew. For  the next iteration, 
we select two neighboring planes of the new plane 
as follows. If t,~w > t 2 and Dia,~w < Dia2, we use 
the planes in the order of (t2, Dia2), (tnew, Dia,ew), 
(t3, Dia3). If t,ew < t2 and Dia,ew > Dia2, we use 
(tl, Dial), (t2, Dia2), (t,ew, Dia,ew). Having found 
the neck of the beam, as depicted in Fig. 8, we can 
compute the apexes of the overlaid cones by 

the descendant cones is straightforward if the 
specular surface is polygonized with a regular 
surface subdivision. For  example, the cone tree 
can be a quadtree if the polygonization of the 
specular surface is obtained by standard domain 
subdivision. The problem becomes nontrivial, 
however, when the specular surface is itself an 
arbitrary polygon set. 
A method similar to the one for constructing 
the cones is used to merge cones in the unit 
sphere. The normalized ray vectors are r ep l aced  
here by the normalized direction vectors of the 
cone axis. The spread angle of the parent cone is 
obtained by 

max [Angle(Axispare,t, Axisi) + SpreadAngi] (4) 
i 

where SpreadAngl is the spread angle of the de- 
scendant cone i. (Fig. 10). 
For  overlaid cones, the axis direction and the 
spread angle of the parent  cone are also deter- 
mined in a manner  similar to that used to con- 
struct the overlaid cones. To locate the apexes, 
iterations similar to those used to locate the neck 
of the beam are applied. Since the ray is replaced 
by the cone, the sweeping plane intersects a cone 
in an ellipse. The major  axis r~ and minor  axis rb of 
an ellipse can be found as follows: 

z0 sin 5 cos 5 
Fa = cos 2 5 - sin 2 e '  (5) 

r 
Apex = C 4- D * -  (3) 

tan(a) 

where C and r are the center and the radius of the 
minimum spanning circle, e is the spread angle, 
and D is the direction of the cone axis. 

3. 1.2 Constructing the cone tree 

Having constructed an enclosing cone or overlaid 
cones for each transmitted light beam, we organ- 
ize the cones into a tree structure to ensure an 
efficient search. An internal node corresponds to 
a cone that encloses all its descendant cones. For  
example, Fig. 9 depicts a cone tree representing 
four cones enclosed by a parent  cone. Collecting 

Zo sin 6 (6) 
rb = jCOS 2 3 -- sin 2 e 

where, as shown in Fig. 11, Zo is the distance from 
the cone apex of the child cones to the plane, e is 
the angle between the axes of the parent cone and 
the child cone, and 5 is the spread angle of the 
child cone. The direction of the major  axis of the 
ellipse is given by 

Major Axis  = Axischlzd/COS e -- Axispar~,, (7) 

and the direction of the minor axis of the ellipse 
can be obtained by 

MinorAxis  = MajorAxis  x Axispare,t (8) 
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Fig. 7. Locating the new plane using linear interpolation 

Fig. 8. Computing the apexes of the overlaid cones 

Fig. 9. Merging four cones into a larger one 

Fig. 10. The spread angle of the parent cone 

Fig. 11. Computing the ellipse of the plane-cone inter- 
section 
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Fig. 13. Cone point intersection test for cones in the unit sphere 

Both the MajorAxis and MinorAxis are nor- 
malized vectors�9 The center of the ellipse is repre- 
sented by 

Center = ApeXchU a -]- AXiSchild * Z o 

+ MajorAxis * dy (9) 

where 

Zo �9 sin 7 �9 c o s  c~ 

dy - cos 5 ~ - sin--- 5 4" 

It is, in general, difficult to find a circle that 
encloses all the ellipses�9 We approximate the com- 
putation by bounding each ellipse with a box with 
edges parallel to the major  and minor  axes of the 
ellipse�9 Then a box with edges parallel to the 

coordinate axes is found to enclose all the bound- 
ing boxes, as shown in Fig. 12. The enc los ing  
circle is centered at the center of the bounding box 
and has a radius equal to half the length of the 
diagonal of the box. 
We have described two ways of representing en- 
closing cones for the transmitted light beams and 
explained how the cones are merged�9 The single 
cone in the unit sphere can be constructed easily�9 
However, the cone contains the beam only loosely, 
as shown in Fig. 5. Although the overlaid cones 
can enclose a beam more  tightly, the rays of the 
beam are sometimes almost parallel. This case 
often occurs for leaf cones on the cone tree, and 
it makes the computat ion of apexes a difficult 
problem. In the implementation that follows, 
a cone tree that uses both types of enclosing 
cones is constructed�9 When the spread angle of the 
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enclosing cone is less than a prescribed value, say 
ten degrees, the single cone in the unit sphere is 
constructed. For cases in which the spread angle is 
larger than this value, the overlaid cones are com- 
puted. 

3.2 Intensity computation 

To render a point on a diffuse surface, we consider 
the diffuse component  of the point's intensity as 
the total contribution of all transmitted light 
beams intersecting the point. The point is tested 
recursively against each cone tree, constructed 
for each point light source, in a top-down fashion. 
If the point is outside the cone of the current node 
then the point cannot be inside the descendant 
cones. If the point is inside the cone of the current 
node, the testing continues until the enclosing leaf 
nodes are reached. Each enclosing leaf cone is 
then checked to see if the point is inside the 
transmitted light beam enclosed by that cone. 

3.2. 1 Testing cone-point and beam-point 
intersections 

For a single cone C represented on the unit 
sphere, to test whether a point p is contained in C, 
we construct a cone D on the unit sphere that 
encloses the normalized rays fired from the 
vertices of the specular polygon to p (Fig. 13). If C 
and D overlap, we conclude that p is inside C; 
otherwise, we conclude that p is not inside C. 
Note that cone D indicates the range of the 
viewing direction from every point on the specular 
polygon to p. 
For the overlaid cones, the cone-point intersec- 
tion is tested in R 3. Prior to the test, we identify 
whether the point is on the same side of the 
specular polygon as the light beam. If it is not, no 
cone-point intersection test is necessary. For the 
test, two rays are fired from the point to the two 
apexes of the overlaid cones. If any one of the 
angles between the rays and the axis is smaller 
than the spread angle, the point is inside the 
overlaid cones; otherwise, the point is outside the 
cones. 
Once the diffuse point is found to be inside the 
enclosing cone, the point is checked to see if it is 
inside the corresponding transmitted light beam. 

3.2.2 Computing intensity 

The intensity with which a light beam is 
propagated to a point can be computed using 
a technique similar to Watt's algorithm (Watt 
1990), except that the normal of a testing point is 
used to form a projection plane on which the 
corresponding caustic polygon is constructed ac- 
cordingly. The intensity at the caustic polygon, 
Ip,ojea, is computed as 

Iv~oj~ct = E/Areaproj~a 

= I * (N "L) * Areasp~c.l.ffAreap~ojea (11) 

where E = I * (N" L) �9 Areaspec,lar is the fraction of 
energy arriving on the specular polygon, I is the 
intensity of light incident on the specular polygon, 
N is the surface normal of the specular polygon, 
L is the direction of the light, Areaspeca~ar is the 
area of the specular polygon, and Areawojea is the 
area of the caustic polygon. With Eq. 11, the caus- 
tic component  for each pixel will be the same as 
that obtained by Watt's method. Since, in the 
proposed algorithm, the caustic effect is computed 
on a point-by-point basis, it is possible to improve 
the accuracy of the computat ion of the caus t ic  
effect by first locating points on the specular sur- 
faces at which the light rays are transmitted or 
reflected to the diffuse point under consideration, 
and then accurately determining the energy trans- 
fer according to the local geometry of the specular 
points. 

3.3 Implementation and examples 

The proposed method was implemented on an 
IRIS 4D/25G, and several examples were tested. 
For the examples shown, only one point light 
source is considered. The cone trees are quadtrees 
with the same hierarchy as the subdivision of the 
specular surfaces. Figures 14 and 15 show two 
pools, one with caustic effects and the other with- 
out. The pools are rendered by ray tracing with 
a resolution of 100 x 100 pixels in height and 
width, while the water is approximated by 7575 
specular polygons. The number of cone-point in- 
tersection tests for Fig. 14 was 1 293 973 and the 
number of beam-point intersection tests was 
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Fig. 14. A pool of water - with caustic effects 

Fig. 15. A pool of water - without caustic effects 

Fig. 16. A dolphin under the water - with caustic effects 

Fig. 17. A dolphin under the water - without caustic effects 

68648, and the beam-point intersection test 
succeeded 12960 times. Figures 16 and 17 show 
images of a dolphin under the water, one with 
caustic effects and the other without. 

4 Conclusion 

Caustic effects are, in general, difficult to compute, 
because in the rendering process the light trans- 
port from specular surfaces to diffuse surfaces 
must be simulated accurately and efficiently. We 
have proposed a two-pass algorithm that com- 
putes caustic effects by backward beam tracing. 
The algorithm has several advantages. Backward 
beam tracing for computing caustic effects re- 
quires a time complexity linear to the number of 
specular and diffuse polygons. In the proposed 
algorithm, the backward beams are not actually 
traced; instead, a tree structure is constructed 

from the enclosing cones of transmitted light be- 
ams. With the cone tree, the intensity computa- 
tion can be speeded up by significantly reducing 
the number of beam-point intersection tests. 
Moreover, the proposed algorithm does not re- 
quire the polygonal approximation of diffuse sur- 
faces. Consequently, problems that arise in the ray 
tracing of polygonal scenes can be avoided 
(Snyder and Barr 1987). 
Our future work will include deriving an efficient 
collection algorithm to collect sets of descendant 
cones for a specular surface that is itself an arbi- 
trary polygon set. In addition, we are investigat- 
ing ways of extending the present method to com- 
pute caustic effects that involve multiple specular 
reflections and transmissions. 
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