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1 Introduction

Whilst its application requires merely the knowledge of analytic structure of the scattering

amplitude of interest, the on-shell recursion relation (BCFW) [1, 2] has achieved tremen-

dous success in calculations of scattering amplitudes, a task would very often seem prac-

tically impossible using conventional methods even when there are only a few of external
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particles involving gluons or gravitons.1 In contrast to perturbative off-shell formulation,

the on-shell recursion relation uses fewer-point physical amplitude as building blocks,

A(123 . . . n) =
∑

poles

AL(1̂2 . . . , P̂
h)

1

P 2
AR(−P̂−h, . . . n), (1.1)

thereby avoiding large amount of unnecessary cancelation in intermediate step of compu-

tations. An important point of eq. (1.1) is the sum over all possible physical poles and

allowed helicity configurations. Generalization of on-shell relation to string amplitudes was

pioneered in [4, 5] and [6] and further elaborated in [7–9]. Recent applications at 4-point

and to eikonal Regge limit can be found in [10] and [11] respectively. The validity of on-shell

recursion relation in string theory context was argued both from the better convergent UV

behavior generically observed in string amplitudes and from analyzing explicit expressions

of string amplitudes.

However, when applying on-shell recursion relation to string amplitudes, we are facing

the problem of summing over infinite number of physical states in (1.1). Although it could

be done in principle, there is no efficient algorithm doing so. For scattering amplitudes

of tachyons, based on known analytic expressions, it has been conjectured in [7] that

amplitudes can be effectively reduced to factorization of two lower-point tachyon-like sub-

amplitudes.

In this paper, we provide an algorithm to do the sum over infinity number of phys-

ical states in (1.1). Applying our algorithm to tachyon amplitudes, we see that the sum

over physical states at each mass level predicted by open string theory does produce the

conjectured scalar-behaved residue observed in [6]. In contrast with the experiences with

amplitude calculations in field theory, the key of our algorithm is to enlarge the sum over

intermediate physical states to over intermediate complete Fock space states. The zero con-

tributions of extra states are guaranteed by no-ghost theorem (i.e., the Ward-like identity

in string theory).2

The structure of this paper is organized as the following: in section 2, we present a

very brief review of BCFW on-shell recursion relation of generic field theory amplitudes.

In section 3 we start with the familiar 4-point Veneziano amplitude as an example and

demonstrate how the tachyonic recursion relation can be understood from carrying out

sum directly. Section 4 consists of analysis on 5-point string amplitudes, in which case the

pole structure becomes much more complicated. A discussion on pole structure of generic

n-point amplitude is presented in section 5. In section 6 we consider higher-spin scatterings

and demonstrate that generically the mathematical connection between BCFW and tachy-

onic recursion descriptions can be found in the generating function for Stirling number of

the first kind outlined in appendix A, while the relation between on-shell condition and

decoupling of unphysical states is discussed in appendix B.

1A review of the principles of BCFW on-shell recursion relation as well as its some applications can be

found in [3].
2We have summarized the no-ghost theorem in appendix B for reference.
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2 A brief review of BCFW on-shell recursion relation

In this section we provide a short review of on-shell recursion relation [1, 2]. Derivation of

BCFW on-shell recursion relation starts from taking analytic continuation of amplitudes.

An amplitude can be regarded as function of complex momenta defined by standard Feyn-

man rules. When the momenta of a pair of particle lines manually chosen are shifted in a

complex q-direction,

k̂1(z) = k1 + zq, k̂n(z) = kn − zq, (2.1)

with q2 = q · ka = q · kn = 0, the shifted amplitude A(z) defines a complex function. While

the explicit analytic structure of amplitude is determined by individual theory and does

not concern us here, A(z) thus defined will contain simple poles produced by propagators,

which is the consequence of local interaction and the null condition of q. From Cauchy’s

Theorem, integrating over a contour large enough to enclose all finite poles yields

∮
dz

A(z)

z
= A(0) +

∑

polesα

Resz=zα , (2.2)

where an unshifted amplitude A(0) contributes as residue at z = 0 and residues from

other finite poles assume the form as cut-amplitudes, Reszα = −A(zα) 1
P 2AR(zα). In var-

ious theories shifted amplitudes posses convergent large-z asymptotic behavior and the

integral (2.2) vanish, we are then entitled to write down the BCFW recursion relation3

An =
∑

poles

∑

physical states

AL(. . . , P (zα))
2

P 2 +M2
AR(−P (zα), . . .), (2.3)

where the first sum is over all finite simple poles zα of z, and the second sum is over all

physical states at the given simple pole za.

3 Example I: BCFW of 4-tachyon amplitude in bosonic open string

theory

As was demonstrated in the previous section, a key feature making BCFW on-shell re-

cursion relation possible is that in perturbative field theory, at tree-level amplitude can

often be determined entirely from its poles and related residues. The locations of poles are

determined by propagators while the residues, by factorization properties. Same analytic

structure holds for string theory, with one complication: there is an infinite number of poles

and related residues. As an consequence, there are several expressions for amplitudes, for

example, the Veneziano formula assumes the form of a worldsheet integral, making the pole

structure obscured. In [6] through binomial expansions of these integral formulas, the pole

structure can be made manifest. In this section, we will use four-point tachyon amplitude

as an example to demonstrate our idea and method.

3We have assumed the boundary contribution to be zero. If it is no zero, we need to modify recursion

relation, see [12].
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3.1 Pole structure extraction

Consider the four tachyon scattering amplitude in bosonic open string theory, given by

Koba-Nielson formula as

A(1234) =

∫ 1

0
dz2 (1− z2)

k3·k2 zk2·k12 , (3.1)

where we have used the conformal symmetry to fix z1 = 0, z3 = 1 and z4 = +∞. For

arbitrary complex power w we have following binomial expansion

(x− y)w =
∞∑

a=0

(
w

a

)
xw−aya (3.2)

where coefficient

(
w

a

)
is defined as

(
w

a

)
=
w(w − 1)(w − 2) . . . (w − a+ 1)

a!
(3.3)

Applying (3.2) to (1− z2)
k3·k2 and collecting relative terms we have

A(1234) =
∞∑

a=0

(
k3 · k2
a

)
(−)a

∫
dz2 z

1
2
(k1+k2)2+a−2

2 (3.4)

where we have used the mass-shell condition for tachyon that k21 = k22 = −M2 = +2.4 The

worldsheet integration can be explicitly carried out, producing an s-channel propagator.5

Inserting it back, we obtain

A(1234) =
∞∑

a=0

(
k3 · k2
a

)
(−)a

2

(k1 + k2)2 + 2(a− 1)
(3.5)

3.2 Interpreting pole expansion formula from BCFW perspective

Having derived an explicit analytic expression (3.5) for tree-level four tachyon scattering

amplitude, it is then interesting to see if the result can be understood in the language of

BCFW on-shell recursion relation. We choose the shifted pair to be (1, 4) to be consistent

with the manifest s-channel expansion. Assuming there is no boundary contribution for

on-shell recursion relation, equation (3.5) should be given by on-shell recursion relation

(2.3):

An =
∑

poles

∑

physical

AL(. . . , P (zα))
2

P 2 +M2
AR(−P (zα), . . .) (3.6)

4We have used the convention α′ = 1/2, so the mass of bosonic open string state is M2 = −2 +

2
∑

∞

n=1 α−n · αn
5In this expansion, only s-channel is manifest. However, by string duality, t-channel is also contained.
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In denominator we see infinitely many single poles occurs at

za =
(k1 + k2)

2 + 2(a− 1)

−2q · (k1 + k2)
, a = 0, 1, . . . (3.7)

where P = k1 + k2 and the mass square M2
a = 2(a− 1) for every integer a is precisely the

mass spectrum prescribed by bosonic open string theory. In addition, matching residues of

(3.5) with (3.6) indicates that, at each level a, there should be a number of physical states,

collectively yielding

∑

states h

AL(1, 2, P
h
a (za))AR(−P h̃

a (za), 3, 4) = (−1)a

(
k3 · k2
a

)
. (3.8)

Thus to understand (3.5) from BCFW recursion relation (2.3), we need to be able to

interpret the scalar-behaved residue (3.8) as sum over physical states at each fixed level a.

3.3 Summing over physical states

Before undertaking a state-by-state calculation of residues over bosonic string spectrum,

let us make a slight detour and consider how the analytic structure featuring intermediate

states fits into the picture of BCFW on-shell recursion relation in quantum field theory.

Although in Feynman rules scalar, fermion and gauge boson each are assigned with a

propagator in distinct representations, we note that the propagator appearing in BCFW

recursion relation (3.6) is always scalar-like. The reason is following. For example, if the

intermediate particles are massless fermions, BCFW recursion relation reads

A ∼
∑

h=±
AL(σL, P

h)AR(−P−h, σR). (3.9)

We can rewrite the on-shell sub-amplitude AL(σL, P
h) =

∑
a=1,2 ÃL(σL, P

h)auh(P )a, i.e.,

we have decomposed the on-shell amplitude into two parts: wave function for external

on-shell particle P and the rest. Similar decomposition can be done for AR(−P−h, σR).

Thus the sum over physical states becomes

A ∼ ÃL(σL, P
h)

(
∑

h

us(P )us(p)

)
ÃR(−P−h, σR) ∼ ÃL(σL, P

h) (γ · P ) ÃR(−P−h, σR)

(3.10)

where in the middle, γ · P is exactly the factor needed to translate scalar propagator into

the familiar fermion propagator.

A similar mechanism supports the translation from scalar propagator into gauge boson

propagator when summed over physical states, but with some subtleties. The sum over

two transverse physical states for gauge boson is (ǫ+µ ǫ
−
ν +ǫ−µ ǫ

+
ν ) while the familiar Feynman

gauge uses gµν . In fact, in 4-dimensions we need four polarization vectors, and

gµν = ǫ+µ ǫ
−
ν + ǫ−µ ǫ

+
ν + ǫLµǫ

T
ν + ǫTµ ǫ

L
ν (3.11)

where ǫLµ and ǫTµ are longitude and time-like polarization vector [13]. The reason that these

two sums (Namely a summation over two physical states and another over all four states)

– 5 –
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give same answer depends crucially on Ward Identity of gauge theory, i.e., if all (n − 1)

particles are physical polarized while the n-th particle is longitude (i.e., proportional to

kµ), the amplitude is zero. Thus we have

∑

all states

AL(σL, P
h)AR(−P h̃, σR) ∼ Ãµ

L(σL, P )gµνÃ
ν
R(−P, σR)

∼ Ãµ
L(σL, P )

(
ǫ+µ ǫ

−
ν + ǫ−µ ǫ

+
ν + ǫLµǫ

T
ν + ǫTµ ǫ

L
ν

)
Ãν

R(−P, σR)
∼ Ãµ

L(σL, P )
(
ǫ+µ ǫ

−
ν + ǫ−µ ǫ

+
ν

)
Ãν

R(−P, σR)
=

∑

physical states

AL(σL, P
h)AR(−P−h, σR) (3.12)

Having understood the effect of summing over physical states from quantum field

theory, let us return to the problem of interpreting scalar-behaved residue (3.5) as sum

over physical states. In old covariant quantization framework, the Fock space in bosonic

open string theory is constructed by linear combinations of states obtained from acting

creation modes successively on ground state

αµ1
−n1

αµ2
−n2

. . . αµn

−nn
|0; k〉 . (3.13)

Generically, a Fock state can carry Nµ,1-multiple of αµ
−1 mode operators6 and Nµ,2-multiple

of αµ
−2 mode and so on. In the following discussions we use the set of numbers {Nµ,n} as

label of normalized Fock state

|{Nµ,n}, k〉 =
[∏D−1

µ=0

∏∞
n=1

(αµ
−n)

Nµ,n√
nNµ,nNµ,n!

]
|0, k〉 . (3.14)

Physical states however, in addition must satisfy Virasoro constraints (L0 − 1) |φ〉 = 0,

Lm>0 |φ〉 = 0 and constitute only a subset in Fock space. An immediate consequence is

that physical states are automatically on the mass-shell, −k2 =M2 = 2(N − 1), where N

is the level

N =
D−1∑

µ=0

∞∑

n=1

nNµ,n . (3.15)

Note however, for a generic Fock state its center-of-mass momentum kµ and modes {Nµ,n}
are considered as independent degrees of freedom and does not a priori satisfy mass-shell

condition, and yet in a BCFW on-shell recursion relation, Fock states that happen to be

the on mass-shell are picked out because as we have seen from (3.7) that only these states

contribute to residues.

Now we come to our central point. The prescription given by BCFW on-shell recursion

relation is to sum over physical states satisfying on-shell condition plus remaining Virasoro

constraints Lm>0 |φ〉 = 0. However, a rather technical difficulty carrying out above pre-

scription in string theory is that it requires the knowledge of physical polarization tensor

at arbitrarily high mass level N , which is very hard to write down explicitly. To bypass the

6It should be emphasized that αµ
−1 and αν

−1 should be considered as different operators when µ 6= ν.

– 6 –
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problem, inspired by the observation given in [13] for gauge theory (3.11), we can enlarge

the sum over physical states to all states in Fock space satisfying on-shell condition. The

fact that these two sums are same is guaranteed by the famous “No-Ghost Theorem”.7

With this understanding, we can write

An =
∑

poles

∑

physical

AL(. . . , P (zα))
2

P 2 +M2
AR(−P (zα), . . .)

=
∑

poles

∑

Fock

AL(. . . , P (zα))
2

P 2 +M2
AR(−P (zα), . . .)

=
∑

poles

∑

Fock

(ÃL(. . . , P (zα)) · ξP
2

P 2 +M2
ÃR(−P (zα), . . .) · ξ∗(P ) (3.16)

where at the last step we have stripped away the polarization tensor of intermediate state

P from on-shell amplitude. Since the sum is taken over whole Fock space, we are free to

choose any convenient basis, for example, the one given in (3.14), to perform the sum.

Thus if we take pair (1, n) to conduct BCFW-deformation and sum over the polarization

tensor of intermediate state, BCFW on-shell relation of a string amplitude reads

An =
n−2∑

i=2

+∞∑

N=0

∑

{Nµ,n}

〈
φ1(k̂1)|V2(k2) . . . Vi(ki)|{Nµ,n}, P̂

〉 2T{Nµ,n}

(
∑i

t=1 ki)
2 + 2(N − 1)

〈
{Nµ,n}, P̂ |Vi+1(ki+1) . . . Vn−1(kn−1)|φn(k̂n)

〉
(3.17)

In this formula, the first sum is over the splitting of particles into left and right handed

sides while the second sum is over poles fixed by the mass level N . The third sum is over

all allowed choice of the set {Nµ,n} as long as they satisfy (3.15). The tensor structure

T{Nµ,n} is determined by the set {Nµ,n}. To demonstrate the rule for the tensor structure,

we list the tensor structure for first three levels:

• Level N = 0: For the first level, all Nµ,n = 0 so we have T = 1.

• Level N = 1: The choice is Nµ,1 = 1 for µ = 0, 1, . . . , D − 1, thus we have T = gµν ,

i.e., we have

〈
φ1| . . . Vi αµ

−1|0;P
〉 2gµν
P 2 + 2(N − 1)

〈
0;P |αν

+1 Vi+1 . . . |φn
〉

(3.18)

where when we conjugate
∣∣αµ

−1|0;P
〉
we get

〈
0;P |αν

+1

∣∣

7We have collected some facts of “No-Ghost Theorem” in appendix B.
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• Level N = 2: There are several choices and the structure is given by

D−1∑

µ,ν=0

〈
φ1| . . . Vi

αµ
−2√
2
|0;P

〉
2gµν

P 2 + 2(N − 1)

〈
0;P |α

ν
+2√
2
Vi+1 . . . |φn

〉

+
∑

0≤µ1<µ2≤D−1

∑

0≤ν1<ν2≤D−1

〈
φ1| . . . Vi αµ1

−1α
µ2
−1|0;P

〉 2gµ1ν1gµ2ν2

P 2 + 2(N − 1)
〈
0;P |αν2

+1α
ν1
+1 Vi+1 . . . |φn

〉

+

D−1∑

µ,ν=0

〈
φ1| . . . Vi

(αµ
−1)

2

√
2

|0;P
〉

2(gµν)
2

P 2 + 2(N − 1)

〈
0;P |(α

ν
+1)

2

√
2

Vi+1 . . . |φn
〉

(3.19)

where at the second line, to avoid repetition, we must have the ordering 0 ≤ µ1 <

µ2 ≤ D − 1.

• Level N = 3: There are several choices which are given respectively by

T1 =
D−1∑

µ,ν=0

〈
φ1| . . . Vi

αµ
−3√
3
|0;P

〉
2gµν

P 2 + 2(N − 1)

〈
0;P |α

ν
+3√
3
Vi+1 . . . |φn

〉

T2 =
D−1∑

µ1,µ2,ν1,ν2=0

〈
φ1| . . . Vi

αµ1
−2√
2
αµ2
−1|0;P

〉
2gµ1ν1gµ2ν2

P 2 + 2(N − 1)
〈
0;P |αν2

+1

αν1
+2√
2
Vi+1 . . . |φn

〉

T3 =
∑

0≤µ1<µ2<µ3≤D−1

∑

0≤ν1<ν2<ν3≤D−1

〈
φ1| . . . Vi αµ1

−1α
µ2
−1α

µ3
−1|0;P

〉

2gµ1ν1gµ2ν2gµ3ν3

P 2 + 2(N − 1)

〈
0;P |αν3

+1α
ν2
+1α

ν1
+1 Vi+1 . . . |φn

〉

T4 =
D−1∑

µ1,µ2,ν1,ν2=0

〈
φ1| . . . Vi

(αµ1
−1)

2

√
2

(a−1)
µ2 |0;P

〉
2(gµ1ν1)

2gµ2ν2

P 2 + 2(N − 1)
〈
0;P |(α+1)

ν2
(αν1

+1)
2

√
2

Vi+1 . . . |φn
〉

T5 =
D−1∑

µ,ν=0

〈
φ1| . . . Vi

(αµ
−1)

3

√
3!

|0;P
〉

2(gµν)
3

P 2 + 2(N − 1)

〈
0;P |(α

ν
+1)

3

√
3!

Vi+1 . . . |φn
〉

So we have

N = 3 : T1 + T2 + T3 + T4 + T5 (3.20)

These examples demonstrate the general pattern of tensor structures. However, be-

cause when we have several oscillators with same n, there are freedoms with the choice of

µ, we need to distinguish if these µ are same or different from each other. This makes the

tensor structure a little bit of complicated. This complication can be simplified further.

– 8 –
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For example, at the level N = 2, we have

∑

0≤µ1≤µ2≤D−1

∑

0≤ν1≤ν2≤D−1

αµ1
−1α

µ2
−1gµ1ν1gµ2ν2α

ν2
+1α

ν1
+1

=
1

2

D−1∑

µ1 6=µ2=0

D−1∑

ν1 6=ν2=0

αµ1
−1α

µ2
−1gµ1ν1gµ2ν2α

ν2
+1α

ν1
+1

=
D−1∑

µ1 6=µ2=0

D−1∑

ν1 6=ν2=0

αµ1
−1α

µ2
−1√
2

gµ1ν1gµ2ν2

αν2
+1α

ν1
+1√
2

(3.21)

With this rewriting, the second and third line of (3.19) can be combined to

D−1∑

µ1,µ2,ν1,ν2=0

〈
φ1| . . . Vi

αµ1
−1α

µ2
−1√
2

|0;P
〉

2gµ1ν1gµ2ν2

P 2 + 2(N − 1)

〈
0;P |

αν1
+1α

ν2
+1√
2

Vi+1 . . . |φn
〉

(3.22)

Similar argument can show that the sum T3, T4, T5 of (3.20) gives

T3 + T4 + T5 =
D−1∑

µi,νi=0

〈
φ1| . . . Vi

αµ1
−1α

µ2
−1α

µ3
−1√

3!
|0;P

〉
2gµ1ν1gµ2ν2gµ3ν3

P 2 + 2(N − 1)
〈
0;P |

αν3
+1α

ν2
+1α

ν1
+1√

3!
Vi+1 . . . |φn

〉

It is easy to see that when multiple operators of the same mode n are present in the Fock

state, each may or may not be carrying the same Lorentz index 0 , or 1 , or . . . , or

D − 1, the general pattern is given by the expansion (a0 + a1 + . . .+ aD−1)
Nn/Nn! where

ai = αi
−ngiiα

i
+n. The coefficient of term (α0

−n)
n0(α1

−n)
n1 . . . (αD−1

−n )nD−1 in the Fock state

is given by the coefficient of term an0
0 a

n1
1 . . . a

nD−1

D−1 with Nn =
∑D−1

i=0 ni in the expansion,

which reads

1

N !
CN
n0
CN−n0
n1

CN−n0−n1
n2

. . . C
nD−1
nD−1 =

1

N !

N !
∏D−1

i=0 (ni)!
(3.23)

thus we can drop the µ1 < µ2 < . . . arrangement and rewrite the sum in (3.17) as

∑

{Nµ,n}

∣∣∣{Nµ,n}; P̂
〉
T{Nµ,n}

〈
{Nµ,n}; P̂

∣∣∣

=
∑

∑
n nNn=N

{ ∞∏

n=1

(α
µNn,1

−n α
µNn,2

−n . . . α
µNn,Nn
−n )√

Nn!nNn

}∣∣∣0; P̂
〉

∞∏

n=1

(gµNn,1νNn,1gµNn,2νNn,2 . . . gµNn,NnνNn,Nn
)

〈
0; P̂

∣∣∣
{ ∞∏

n=1

(α
νNn,1

+n α
νNn,2

+n . . . α
νNn,Nn
+n )√

Nn!nNn

}
(3.24)

Having the simplified version (3.24), we can give following explicit calculations.
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3.3.1 Explicit calculation

Recalling the vertex of tachyon

V0(k, z) =: eik·X(z) := Z0W0 , (3.25)

where

Z0 = eik·x+k·p ln z = eikxzk·p+1 = zk·p−1eik·x (3.26)

and

W0 = e
∑

∞

n=1
zn

n
k·α−ne−

∑
∞

n=1
z−n

n
k·αn , (3.27)

it is easy to calculate the left three-point amplitude

〈0;−k1|V0(k2, z)|{Nµ,n};P 〉 = δ(k1 + k2 + P )

D−1∏

µ=0

∞∏

m=1

(−kµ2 )Nµ,m

√
mNµ,mNµ,m!

(3.28)

where N is the level defined in (3.15) and the right three-point amplitude

〈{Nµ,n};P |V0(k3, z)|0; k4〉 = δ(P − k3 − k4)

D−1∏

µ=0

∞∏

m=1

(kµ3 )
Nµ,m

√
Nµ,m!mNµ,m

(3.29)

Using (3.28) and (3.29) it is easy to calculate first few mass levels. In fact, the same

calculation has been done in our simplification leading to the simplified tensor structure

(3.24). Thus we have when N = 0, it is 1, while when N = 1 it is (−k2 · k3). Finally when

N = 2 it is (k2·k3)(k2·k3−1)
2 . They do satisfy (3.8) for N = 0, 1, 2.

For general level N , from (3.24), (3.28) and (3.29) we find

IN =
∑

∑
nNn=N

∏ (−k2 · k3)Nn

Nn!nNn
(3.30)

Let us define

N =
∞∑

n=1

nNn, J =
∞∑

n=1

Nn (3.31)

with obviously that J ≤ a, then using the definition (A.2) of Stirling number of the first

kind, IN can be rewritten as

IN = (−)N
N∑

J=1

S(N, J)

N !
(k2 · k3)J = (−)N

(
k2 · k3
N

)
(3.32)

where we have used the formula (A.1).8 This is exactly the result (3.8) we try to prove.

8Since S(N, 0) = 0 when N > 0, we can extend the sum over J from region [1, N ] to region [0, N ].
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4 Example II: BCFW of 5-tachyon amplitude in bosonic open string

theory

Having shown that a 4-point Veneziano amplitude can be indeed described by BCFW on-

shell recursion relation, let us consider the 5-tachyon scattering amplitude, which contains

slightly richer analytic structure because unlike 4-point amplitude with only pole s12, there

are two types of poles from s12, s123 for deformation (1,5). Multiple pole structure is seen

for general amplitudes, we need to study this simplest nontrivial example.

4.1 Pole expansion

The Koba-Nielson formula for 5-point tachyon amplitude is given by

A(12345) =

∫ 1

0
dz3

∫ z3

0
dz2 (1− z3)

k4·k3(1− z2)
k4·k2(z3 − z2)

k3·k2zk2·k12 zk3·k13 . (4.1)

where we have fixed z1 = 0, z4 = 1, z5 = ∞. Unlike in quantum field theory, where ana-

lytic behavior of an amplitude is transparent from Feynman rules, kinematic dependence

in Koba-Nielson’s formulation were implicitly introduced through exponents of worldsheet

integration variables, making it less easier to locate poles. However as we have seen in

the previous section, worldsheet integrals can be explicitly carried out after binomial ex-

pansions. Expanding (z3 − z2)
k3·k2 with respect to z2, which is the variable that assumes

smaller value (than z3), and expand similarly (1− z2)
k4·k2 and (1− z3)

k4·k3 we have

(1− z2)
k4·k2 =

∞∑

a=0

(
k4 · k2
a

)
(−)aza2 ,

(z3 − z2)
k3·k2 =

∞∑

b=0

(
k3 · k2
b

)
(−)bzks·k2−b

3 zb2,

(1− z3)
k4·k3 =

∞∑

c=0

(
k4 · k3
c

)
(−)czc3, (4.2)

Grouping z2 and z3 dependence in equation (4.1) together we arrive

A(12345) =
∞∑

a,b,c=0

(
k4 · k2
a

)(
k3 · k2
b

)(
k4 · k3
c

)
(−)a+b+c

×
∫ 1

0
dz3

∫ z3

0
dz2z

k3·(k1+k2)−b+c
3 zk1·k2+a+b

2 (4.3)

Carrying out the integration in order, i.e.,
∫
dz2 first and then

∫
dz3 we obtain

A(12345) =
∞∑

a,b,c=0

(
k4 · k2
a

)(
k3 · k2
b

)(
k4 · k3
c

)
(−)a+b+c

× 2

s12 + 2(a+ b− 1)

2

s123 + 2(a+ c− 1)
, (4.4)
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where we have used s12 = (k1 + k2)
2, s123 = (k1 + k2 + k3)

2, and the mass-shell conditions

for tachyons, k21 = k22 = k23 = 2.

Now we consider the pole structure under the deformation (2.1) with pair (1, 5). For

s12, the poles are located at

zN =
(k1 + k2)

2 + 2(N − 1)

−q · (k1 + k2)
, N = a+ b = 0, 1, . . . (4.5)

while for s123 the poles are located at

wM =
(k1 + k2 + k3)

2 + 2(M − 1)

−q · (k1 + k2 + k3)
, M = a+ c = 0, 1, 2, . . . (4.6)

Using the BCFW recursion relation, we have

A(1, 2, 3, 4, 5) =
∑

zN

2

s12 + 2(N − 1)
RN +

∑

wM

2

s123 + 2(M − 1)
SM (4.7)

where RN and SM are corresponding residues of poles.

Residue RN : from (4.4) we can read out the residue RN as

RN =
∞∑

a, b = 0

a+ b = N

∞∑

c=0

(
k4 · k2
a

)(
k3 · k2
b

)(
k4 · k3
c

)
(−)a+b+c

[
2

ŝ123(zN ) + 2(a+ c− 1)

]

(4.8)

Noticing that

ŝ12(zN ) + k23 + 2k3 · k̂12(zN ) + 2(a+ c− 1) = 2k3 · k̂12(zN ) + 2(c− b+ 1)

we can rewrite
(
k4 · k3
c

)
(−)c

[
2

ŝ123(zN ) + 2(a+ c− 1)

]
=

(
k4 · k3
c

)
(−)c

[
1

k3 · k̂12(zN ) + (c− b+ 1)

]

=
∞∑

c=0

∫ 1

0
dz3 z

k3·(k̂1+k2)−b+c
3

(
k4 · k3
c

)
(−)c

=

∫ 1

0
dz3 z

k3·(k̂1+k2)−b (1− z3)
k4·k3 , (4.9)

The reason we write the sum over c as the integration is clear: the subamplitude at the

right handed side should be A(P̂ , 3, 4, 5̂). With this rewriting we have

RN =

∞∑

a, b = 0

a+ b = N

(
k4 · k2
a

)(
k3 · k2
b

)
(−)N

∫ 1

0
dz3 z

k3·(k̂1+k2)−b (1− z3)
k4·k3 (4.10)
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Residue SM : from (4.4) we can read out the residue SM as

SM =
∞∑

a, c = 0

a+ c =M

∞∑

b=0

(
k4 · k2
a

)(
k3 · k2
b

)(
k4 · k3
c

)
(−)a+b+c

[
2

ŝ12(wN ) + 2(a+ b− 1)

]

(4.11)

Using

∞∑

b=0

(
k3 · k2
b

)
(−)b

k̂1 · k2 + (a+ b) + 1

∣∣∣∣∣∣∣∣∣∣
z=wM

=
∞∑

b=0

∫ 1

0
dz2 z

k̂1·k2+a+b
2

(
k3 · k2
b

)
(−)b

=

∫ 1

0
dz2 z

k̂1·k2+a
2 (1− z2)

k3·k2 , (4.12)

which remind us the subamplitude A(1̂, 2, 3, P̂ ), we get another form

SM =
∞∑

a, c = 0

a+ c =M

(
k4 · k2
a

)(
k4 · k3
c

)
(−)M

∫ 1

0
dz2 z

k̂1·k2+a
2 (1− z2)

k3·k2 (4.13)

4.2 Four point scattering amplitude

Now we try to reproduce the same residue from the BCFW recursion relation. To do this,

we need to calculate the three point and four point amplitudes with one general Fock state.

The three point case has been given in section 3. Now we give the four point result.

First let us consider a simple example

〈
0, k4|V0(k3, z3)V0(k2, z2)αµ

−m|0, k1
〉

(4.14)

where V0(k, z) stands for tachyon vertex operator (B.1) inserted at z, and the initial state

αµ
−m|0, k1

〉
is raised from the ground state by a −m mode operator. Following the standard

treatment moving this mode operator to the left until it finally annihilate the final state

we obtain

(−kµ2 zm2 − kµ3 z
m
3 ) 〈0, k4|V0(k3)V0(k2)|0, k1〉 . (4.15)

In addition to all-tachyon amplitude we receive factors (−kµ2 zm2 − kµ3 z
m
3 ) picked up from

the commutator

[: eik·X(z) : , αµ
−m] = −kµzm

(
: eik·X(z) :

)
. (4.16)

For a generic normalized Fock state (3.14) we repeat the same manipulation, moving

mode operators αµ
−m one by one to the left, picking up a factor (−kµzm) when passing a
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tachyon vertex V (k, z). Putting all together we finally have

〈0, p|V0(k3)V0(k2)| {Nµ,m} , k1〉 =
〈
0, p|V0(k3)V0(k2)

D−1∏

µ=0

∞∏

m=1

(αµ
−m)Nµ,m

√
Nµ,m!mNµ,m

|0, k1
〉

=
D−1∏

µ=0

∞∏

m=1

(−kµ2 zm2 − kµ3 z
m
3 )Nµ,m

√
Nµ,m!mNµ,m

〈0, p|V0(k3)V0(k2)|0, k1〉 (4.17)

where 〈0, p|V0(k3)V0(k2)|0, k1〉 is known.
Similarly, if the Fock state defines the final state instead of the initial state of an

amplitude we move mode operator αµ
m to the right hand side, yielding

〈{Nµ,m} , k5|V0(k4)V0(k3)|0, p〉 =
〈
0, k5|

D−1∏

µ=0

∞∏

m=1

(αµ
m)Nµ,m

√
Nµ,m!mNµ,m

V0(k4)V0(k3)|0, p
〉
.

=
D−1∏

µ=0

∞∏

m=1

(kµ4 z
m
4 + kµ3 z

m
3 )Nµ,m

√
Nµ,m!mNµ,m

〈0, k5|V0(k4)V0(k3)|0, p〉 . (4.18)

It is worth to notice that the factors picked up by modes have different signs from (4.17) due

to the fact that opposite signs were assigned to positive and negative modes in a tachyon

vertex operator,

W0 = e
∑

∞

n=1
zn

n
k·α−ne−

∑
∞

n=1
zn

n
k·αn (4.19)

so that

[αµ
m, : e

ik·X(z) :] = kµzm
(
: eik·X(z) :

)
(4.20)

4.3 Calculation of residue SM

Having above preparation, we can calculate residue by summing over immediate Fock states

at given mass level M . In other words, at level M , we should have

SM =

∫
dz2

∑

{Nµ,m}

〈
0, k̂5|V0(k4)|{Nµ,m}, p̂

〉〈
{Nµ,m}, p̂|V0(k3)V0(k2)|0, k̂1

〉∣∣∣
z4=z3=1

,

(4.21)

where the summation is over modes{Nµ,m} at fixed mass level N =
∑

µ,m (m× Nµ,m), so

p̂, k̂5, k̂1 are all fixed by M . Before giving the general discussion, let us see a few examples:

• Level N = 0: at N = 0, Nµ,m must be all zero, so that equation (4.21) simply yields

S0 =

∫
dz2

〈
0, k̂5|V0(k4)|0, p̂

〉〈
0, p̂|V0(k3)V0(k2)|0, k̂1

〉∣∣∣
z4=z3=1

= 1×
∫ 1

0
dz2 z

k2·k̂1(1− z2)
k3·k2 , (4.22)

and we have an agreement with (4.13) at a = c = 0.
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• Level N = 1: the N = 1 state can only arise from states having a single Nµ,m = 1

for µ = 0, . . . , D − 1, while powers of other modes remain zero

S1 =
∑

µ,ν

∫
dz2

〈
0, k̂5|V0(k4)|Nµ,1, p̂

〉
gµν

〈
Nν,1, p̂|V0(k3)V0(k2)|0, k̂1

〉∣∣∣
z4=z3=1

=

∫ 1

0
dz2(−k4) · (k3z3 + k2z2) z

k2·k̂1(1− z2)
k3·k2

∣∣∣
z3=1

(4.23)

In addition to the usual tachyonic Koba-Nielson formula we obtain a factor

− (k4 · k3) z3 − (k4 · k2) z2|z3=1. These two terms correspond to (a, c) = (0, 1) and

(1, 0) respectively.

• Level N = 2: the first non-trivial case happens at N = 2. As in the previous

mass level we receive an additional term to the tachyonic formula. For Nµ,2 states

this factor is −1
2 k4 ·

(
k3z

2
3 + k2z

2
2

)
, while for states with Nµ1,1 = Nµ2,1 = 1 and

0 ≤ µ1 < µ2 ≤ D − 1 the factor is 1
2 [k4 · (k3z3 + k2z2)]

2 − 1
2

∑
µ [k

µ
4 (k3z3 + k2z2)

µ]
2
,

and for states with Nµ,1 = 2 we obtain
∑

µ [k
µ
4 (k3z3 + k2z2)]

2
. Adding all these

contribution gives

−1

2
k4 ·

(
k3z

2
3 + k2z

2
2

)
+

1

2
[k4 · (k3z3 + k2z2)]

2 (4.24)

=
(k4 · k3)(k4 · k3 − 1)

2
z23 +

(k4 · k2)(k4 · k2 − 1)

2
z22 + (k4 · k3)(k4 · k2)z3z2

Explicit expansion into series shows again agreement with(
k4 · k2
a

)(
k4 · k3
c

)
(−)a+cza2 , with the first, second, third terms corresponding

to (a, c) = (0, 2), (2, 0) and (1, 1) respectively.

For general level N =
∑∞

n=1 nNn in addition to the all-tachyon formula we have9

∑

partitions of N

into {Nn}

∞∏

n=1

[−k4 · (k3zn3 + k2z
n
2 )]

Nn

Nn!nNn

=
∑

partitions of N

into {Nn}

∏

n

∞∑

N
(2)
n =0

(
Nn

N
(2)
n

)

Nn!nNn
(k4 · k3)Nn−N

(2)
n z

n (Nn−N
(2)
n )

3 (k4 · k3)N
(2)
n znN

(2)
n

2 .

(4.25)

where in the second line above we expanded the numerator with respect to power of z2,

which we denote as N
(2)
n . Introducing the notation N

(3)
n = Nn − N

(2)
n , the combinatorial

9Note that at every step these factors are produced in the same pattern observed in the 4-point case, as

was discussed in appendix B, except with k3 now replaced by k3z
n
3 + k2z

n
2 .
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factor can be written as(
Nn

N
(2)
n

)
1

Nn!nNn
=

1

N
(2)
n ! (Nn −N

(2)
n )!nNn

=
1

N
(2)
n !N (3)!nN

(2)
n nN

(3)
n

Now we notice that in equation (4.25), summing over partitions of fixed Nn into N
(2)
n and

N
(3)
n first and then summing over partitions of N into {Nn} secondly can be replaced by

summing over partitions of N directly into {N (2)
n } and {N (3)

n }, so (4.25) can be written as

∑

partitions into N
(2)
n ,N

(3)
n

∏

n

1

N
(2)
n !N (3)!nN

(2)
n nN

(3)
n

(k4 · k2)N
(3)
n (k4 · k3)N

(2)
n znN

(2)
n

2 znN
(3)
n

3 .

(4.26)

Defining

K =
∑

n

N (2)
n , J ≡

∑

n

N (3)
n , a =

∑

n

nN (2)
n , c =

∑

n

nN (3)
n , (4.27)

sum in equation (4.26) can be divided into summations over partitions of {N (2)
n } and {N (3)

n }
with fixed J , K, a, c at first, and then summing over J , K, and a,10 i.e., equation (4.26)

is equal to
∑

a

∑

J,K

S(c, J)

c!

S(a,K)

a!
(k4 · k2)J (k4 · k3)K za2z

c
3, (4.28)

where Striling numbers of the first kind are given by

S(a,K) =
∑

partitions N
(2)
n

a!

N
(2)
n !nN

(2)
n

, S(c, J) =
∑

partitions N
(3)
n

c!

N
(3)
n !nN

(3)
n

, (4.29)

Now we are almost done. Summing equation (4.28) over J and K yields
(
k4 · k2
a

)(
k4 · k3
c

)
(−)a+c za2 z

c
3. (4.30)

Inserting the result back into (4.21) we see that

SM

∫
dz2

〈
0, k̂5|V0(k4)|{Nµ,m}, p̂

〉〈
{Nµ,m}, p̂|V0(k3)V0(k2)|0, k̂1

〉∣∣∣
z4=z3=1

=
∑

a

∫
dz2

〈
0, k̂5|V0(k4)|0, p̂

〉〈
0, p̂|V0(k3)V0(k2)|0, k̂1

〉

×
(
k4 · k2
a

)(
k4 · k3
c

)
(−)a+c za2 z

c
3

∣∣∣∣∣
z4=z3=1

=

M∑

a=0,a+c=M

(
k4 · k2
a

)(
k4 · k3
c

)
(−)a+c

∫ 1

0
dz2 z

k̂1·k2+a
2 (1− z2)

k3·k2 , (4.31)

which is the form (4.13) we want to prove.

The other residue RN can be derived from BCFW prescription following similar pro-

cedures.

10However note that c should not be summed over here because the mass level (a + c) =
∑

n
n(N

(2)
n +

N
(3)
n ) = N is understood as a fixed number at every pole.
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5 The general proof

Having done above two examples, we would like to have a general understanding. The

method we will use in this section will be a little different although it is easy to translate

languages between these two approaches.

5.1 String theory calculation

In open string theory, the ordered tree-level amplitude is given by

AM = gM−2

∫
δ(yA − y0A)δ(yB − y0B)δ(yc − y0c )(yA − yB)(yA − yC)(yB − yC)

M∏

i=2

θ(yi−1 − yi)
M∏

j=1

dyj

〈
0; 0

∣∣∣∣
V (k1, y1)

y1
. . .

V (kM , yM )

yM

∣∣∣∣ 0; 0
〉

(5.1)

Using three delta-function, we can take yM = 0, y2 = 1, y1 = ∞, so the amplitude can be

written as

AM = gM−2

∫ 1

0
dy3

∫ y3

0
dy4 . . .

∫ yM−2

0
dyM−1

〈
φ1(k1)

∣∣∣∣V (k2, 1)
V (k3, y3)

y3
. . .

V (kM−1, yM−1)

yM−1

∣∣∣∣φM (kM )

〉
(5.2)

where we have used the definition of initial state and final state

|Λ; k〉 = lim
y→0

VΛ(k, y)

y
|0; 0〉 , 〈Λ; k| = lim

y→∞
yVΛ(k, y) |0; 0〉 (5.3)

Next we define yi = z3z4 . . . zi with i = 3, . . . ,M − 1, from which we can solve

z3 = y3, zi =
yi
yi−1

, i = 4, . . . ,M − 1 (5.4)

Now let us fix all yi except transform yM−1 = zM−1yM−2, then using

VΛ(k, z) = zL0VΛ(k, z = 1)z−L0 (5.5)

we get

. . .

∫ 1

0
dzM−1yM−2y

L0−2
M−1V (kM−1, 1)y

−L0+1
M−1 |φM (kM )〉

= . . .

[∫ 1

0
dzM−1y

L0−1
M−2 z

L0−2
M−1

]
V (kM−1, 1) |φM (kM )〉

where we have used the physical condition (L0 − 1) |φM 〉 = 0. Now we change yM−2 =

zM−2yM−3, then we have

. . .

∫ 1

0
dzM−2yM−3y

L0
M−2

V (kM−2, 1)

yM−2
y−L0
M−2

∫ 1

0
dzM−1y

L0−1
M−2 z

L0−2
M−1V (kM−1, 1) |φM (kM )〉

= . . .

∫ 1

0
dzM−2yM−3y

L0−2
M−2V (kM−2, 1)

∫ 1

0
dzM−1z

L0−2
M−1V (kM−1, 1) |φM (kM )〉

= . . .

[∫ 1

0
dzM−2y

L0−1
M−3 z

L0−2
M−2

]
V (kM−2, 1)

1

L0 − 1
V (kM−1, 1) |φM (kM )〉

where we have used
∫ 1
0 dzz

L0−2 = 1
L0−1 is the string propagator.
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Comparing expressions from last two steps, we see that we can iterate this procedure to

AM = gM−2

〈
φ1

∣∣∣∣V2(k2)
1

L0 − 1
V3(k3) . . .

1

L0 − 1
VM−1(kM−1)

∣∣∣∣φM
〉

(5.6)

Form (5.6) is the convenient one to compare with BCFW recursion relation, because lo-

cations of poles are clearly indicated by propagator 1
L0−1 . For example, for 1

L0−1 between

vertex operators Vi and Vi+1, pole locations are given by

1

2
(k1 + . . .+ ki)

2 +N − 1 = 0, N = 0, 1, 2, . . . (5.7)

Now let us consider the (1,M)-deformation given in (2.1) and use ziN to indicate the

solution obtained from equation (5.7) with k1 → k1 + zq. Because it has been proved that

boundary contribution is zero under the deformation at least for some kinematic region,

we have immediately

AM = gM−2
M−2∑

i=2

∞∑

N=0

2Ri,N

(k1 + k2 + . . .+ ki)2 + 2(N − 1)
(5.8)

where

Ri,N = 〈Φi,N |Ψi,N 〉

〈Φi,N | =
〈
φ1(k1 + zi,Nq)|

∣∣∣∣V2(k2)
1

L0 − 1
V3(k3) . . .

1

L0 − 1
Vi(ki)

∣∣∣∣

|Ψi,N 〉 =

∣∣∣∣Vi+1(ki+1)
1

L0 − 1
. . . VM−1(kM−1)

∣∣∣∣φM (kM − zi,Nq)

〉
(5.9)

What we want to prove is that residue Ri,N can be obtained from summing over interme-

diate physical states prescribed by BCFW on-shell recursion relation.

5.2 The proof

Now we give our proof. First, we notice that both states 〈Φi,N | , |Ψi,N 〉 are physical states,11
thus in the frame work of DDF-state construction, both physical states can be written as

|sphy〉+ |f〉, where |f〉 is the DDF-state while |sphy〉 is physical spurious states. Using the

property of spurious state, we have

〈Φi,N |Ψi,N 〉 =
〈
sLi,N + fLi,N |sRi,N + fRi,N

〉
=
〈
fLi,N |fRi,N

〉
(5.10)

Having established (5.10) we insert identity operator in the Fock space with given

momentum Pi,N = k1 + zi,Nq + k2 + . . .+ ki and annihilated by (L0 − 1), so

〈
fLi,N |fRi,N

〉
=
∑

i

〈
fLi,N |ψ†

i (Pi,N )
〉 〈
ψi(Pi,N )|fRi,N

〉
(5.11)

where set {|ψi(Pi,N )〉} can be any normalized orthogonal basis. In DDF-frame work, a

general state can be written as the linear combination of |k〉 , |s〉 , |f〉, i.e., a choice of the

11The proof can be found in a standard text, for example in Superstring Theory by Green, Schwarz and

Witten [16] (chapter 7, vol. 1.).
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basis is |k〉 , |s〉 , |f〉. Using the definition of states, we see immediately that 〈s|f〉 = 0 and

〈k|f〉 = 0, thus

〈
fLi,N |fRi,N

〉
=
∑

i

〈
fLi,N |f †i (Pi,N )

〉 〈
fi(Pi,N )|fRi,N

〉

=
∑

i

〈
sLi,N + fLi,N |f †i (Pi,N )

〉 〈
fi(Pi,N )|sRi,N + fRi,N

〉

=
∑

i

〈
Φi,N |f †i (Pi,N )

〉
〈fi(Pi,N )|Ψi,N 〉 (5.12)

Using (5.10) and (5.12) we see immediately

Ri,N =
∑

i

〈
Φi,N |f †i (Pi,N )

〉
〈fi(Pi,N )|Ψi,N 〉 (5.13)

which is the prescription given by BCFW recursion relation. Thus we have given our proof.

5.3 Practical method for summing over physical states

Having shown that BCFW recursion relation gives the right string amplitude, we need to

explain how to sum over physical states. The difficulty of the sum is that the physical state

is hard to describe in general, i.e., we do not know how to write down polarization vector

for a given physical state. However, from the equivalent between (5.11) and (5.12) we see

that we can replace the sum over all physical states to the sum over whole Fock space with

given momentum and annihilated by (L0− 1). For the Fock space, there is a freedom with

the choice of basis and the one convenient for real calculation is oscillation basis defined in

(3.14). Thus the residue can be calculated by

Ri,N =
∑

{Nµ,n}

〈
Φi,N |{Nµ,n}; P̂

〉
T{Nµ,n}

〈
{Nµ,n}; P̂ |Ψi,N

〉

=
∑

∑
n nNn=N

〈
Φi,N

∣∣∣∣∣

{ ∞∏

n=1

(α
µNn,1

−n α
µNn,2

−n . . . α
µNn,Nn
−n )√

Nn!nNn

}∣∣∣∣∣ 0; P̂
〉

∞∏

n=1

(gµNn,1νNn,1gµNn,2νNn,2 . . . gµNn,NnνNn,Nn
)

〈
0; P̂

∣∣∣∣∣

{ ∞∏

n=1

(α
νNn,1

+n α
νNn,2

+n . . . α
νNn,Nn
+n )√

Nn!nNn

}∣∣∣∣∣Ψi.N

〉
(5.14)

6 Scattering with higher spin particles

Having established the general method given in (5.14), let us consider scatterings when

higher spin particles are present. However, before doing this, let us recall some results

coming from scattering amplitudes of pure tachyons. By checking with (3.32) and (4.28),

we see that residues are given as series of Lorentz invariants ki · kj with coefficients given

by Stirling number of the first kind s(N, J) =
∑

{Nn}
∏∞

n=1
1

Nn!nNn
. Summing over powers
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of ki · kj reproduces the residue in combinatorial form observed in [6]. This relation is

established by writing generating function of Stirling number into two different forms

eX ln(1−z) = e−X (z+ z2

2
+ z3

3
+... ) = e−X ze−X z2

2 e−X z3

3 . . .

=

(
1 + (−)Xz +

(−)2

2!
X2z2 + . . .

) (
1 + (−)X

z2

2
+ (−)2X

(
z2

2

)2

+ . . .

)
. . .

(6.1)

and

(1− z)X =
∞∑

a=1

(−)a
s(a, J)

a!
XJza =

∑

a

(−)a

(
X

a

)
za (6.2)

by matching power of z and setting X = k2 · k3. In fact, it is straightforward to see that

residues in an arbitrary n-point pure tachyon scattering amplitude can be read off from

products of generating functions

eX23 ln(1−z23)eX24 ln(1−z24) . . . eXn−2,n−1 ln(1−zn−2,n−1) (6.3)

with Xij = ki · kj , zij = zj/zi, and residues in tachyonic recursion relation can be found

through binomial expansion of

(1− z23)
X23 (1− z24)

X24 . . . (1− zn−2,n−1)
Xn−2,n−1 . (6.4)

Having recalled the experience from tachyon amplitude, now we discuss the scattering

amplitude of 3-tachyon and 1-vector, which is given by

A(1234) =

∫ 1

0

dz2
z2

〈
0, k1

∣∣∣
(
ǫ2 · Ẋ : eik2·X(z2) :

) (
: eik3·X(z3) :

) ∣∣∣ 0, k4
〉∣∣∣∣

z3=1

(6.5)

=

∫ 1

0
dz2

(
−ǫ2 · k1(1− z2)

k3·k2 zk1·k2−1
2 + ǫ2 · k3 (1− z2)

k2·k3−1 zk1·k22

)
(6.6)

where 2 means that the second particle is a vector. As in the case of pure tachyon scattering

we binomially expanding (1− z2)
k3·k2 in (6.5) and integrating over z2, yielding

A(1234) = −
∞∑

a=0

(−)aǫ2 · k1
(
k3 · k2
a

)
2

(k2 + k1)2 + 2(a− 1)

+
∞∑

a=1

(−)a−1ǫ2 · k3
(
k3 · k2 − 1

a− 1

)
2

(k2 + k1)2 + 2(a− 1)
. (6.7)

We are interested in relating residue in (6.7) with residue given by BCFW prescription

〈
0, k1

∣∣∣ ǫ2 · Ẋ : eik2·X(z2) : |{Nµ,m}, p〉 T{Nµ,m} 〈{Nµ,m}, p| : eik3·X(z3) :
∣∣∣ 0, k4

〉∣∣∣
z2=z3=1

.

(6.8)

It is straightforward to see at the first few levels, residues in (6.7) agree with those pre-

scribed by (6.8) table 1.
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intermediate state |{Nµ,m}〉 T{Nµ,m} 〈{Nµ,m}| contribution ∼ ǫ2 · k3
N = 0 |0〉 〈0| absent

N = 1
α
µ
−1√
1
|0〉 ηµν 〈0| αν

1√
1

(−) (ǫ2 · k3)

N = 2

α
µ
−2√
2
|0〉 ηµν 〈0| αν

2√
2∑

µ1<µ2

α
µ1
−1√
1

α
µ2
−1√
1
|0〉 ηµ1ν1ηµ2ν2 〈0|

αν
1√
1

α
ν2
1√
1

1√
2!

α
µ
−1√
1

α
µ
−1√
1
|0〉 (ηµν)2 〈0| 1√

2!

αν
1√
1

αν
1√
1

(−) (ǫ2 · k3)
(ǫ2 · k3) (k3 · k2)

Table 1. Residues of 3-tachyon, 1-vector scattering for first three levels

Note that algebraically, the first term proportional to ǫ2 · k1 in (6.7) was obtained

from moving an operator ǫ2 · α0 in ǫ2 · Ẋ(z2) = ǫ2 · (α−1z
1
2 + · · ·+ α0z

0
2 + α1z

−1
2 + . . . ) to

the left, acting upon final state |0, k1〉 in the standard process of normal ordering, which

simply reproduces the pure tachyon residue since rest of its kinematic dependence was

contributed from
〈
0, k1

∣∣: eik2·X(z2) : : eik3·X(z3) :
∣∣ 0, k4

〉
. It is therefore straightforward to

show that, following the same expansion as in the case of pure tachyon scattering, at

each mass level residue contributed from this term is connected to BCFW prescription by

generating function for Stirling number of the first kind. New structure however, is found

in the second term proportional to ǫ2 · k3 in (6.7), which was produced by moving positive

mode operators α1z
−1
2 +α2z

−2
2 + . . . in ǫ2 · Ẋ(z2) = ǫ2 · (α−1z

1
2 + · · ·+α0z

0
2 +α1z

−1
2 + . . . )

to the right and contracting with intermediate states. For example when we have a Fock

state
α
µ1
−qα

µ2
−r√

q
√
r

1√
2!
|0, p〉 as intermediate state, equation (6.8) reads

〈
0, k1

∣∣∣∣∣(ǫ2 ·
∞∑

n=1

αn z
−n
2 )e−

1
n
k2·αnz

−n
2
αµ1
−qα

µ2
−r√

q
√
r

1√
2!

∣∣∣∣∣ 0, p
〉
ηµ1µ2ην1ν2

〈
0, p

∣∣∣∣
αν1
q α

ν2
r√

q
√
r

1√
2!
e−

1
n
k3·αnz

n
3

∣∣∣∣ 0, k4
〉∣∣∣∣

z2=z3=1

. (6.9)

Contribution proportional to ǫ2 · k3 is produced by contracting an αq or αr in ǫ2 · Ẋ(z2)

with Fock state, yielding

(ǫ2 · k3)× q

q

(
z3
z2

)q (k3 · k2)
r

(
z3
z2

)r

+
(k3 · k2)

q

(
z3
z2

)q (ǫ2 · k3)× r

r

(
z3
z2

)r∣∣∣∣
z2=z3=1

.

(6.10)

Therefore generically residue (6.8) proportional to ǫ2 ·k3 at level N = a is given by za term

expansion coefficient of the derivative of generating function

(ǫ2 · k3)
(k2 · k3)

z
d

dz
e(k2·k3) ln(1−z) (6.11)

=
(ǫ2 · k3)
(k2 · k3)

z
d

dz

(
e−X ze−X z2

2 e−X z3

3 . . .

)
.

Note that we may as well express the generating function (6.11) above as

(ǫ2 · k3) z
d

dz
[ln(1− z)] e(k2·k3) ln(1−z) , (6.12)
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from which it is obvious that BCFW prescription yields the same residue as tachyonic

recursion relation of 1-vector 3-tachyon amplitude, since the tachyonic recursion relation

was derived from binomial expansion of standard worldsheet integral formula that takes

the same form as (6.12).

Explicit recursion relation. Here we present an explicit calculation of the term pro-

portional to ǫ2 · k3 in eq. (6.7). By using eq. (6.8), the term proportional to ǫ2 · k3 with

mass level N can be calculated by gluing two 3-point functions

IN =
∑

{∑mNm=N}

〈
k1; 0

∣∣∣
( ∞∑

n=1

ǫ2 · αn

)
V0(k2)

∣∣∣ {Nm} ;P
〉
T{Nm}

〈
{Nm} ;P

∣∣∣V0(k3)
∣∣∣ k4; 0

〉 ∣∣∣∣∣
z2=1

.

For convenience, let us denote the two 3-point functions as

AL = AL(k1, k2, P ) =
〈
k1; 0

∣∣∣
( ∞∑

n=1

ǫ2 · αn

)
V0(k2)

∣∣∣ {Nm} ;P
〉 ∣∣∣

z2=1
, (6.13)

AR = AR(P, k3, k4) =
〈
{Nm} ;P

∣∣∣V0(k3)
∣∣∣ k4; 0

〉 ∣∣∣
z2=1

. (6.14)

The term AR was obtained in eq. (3.29) previously, while AL can be calculated to be (we

ignore the momentum dependent part)

AL =
∞∑

n=1

〈
0
∣∣∣
(
ǫ2 · αn

) ∞∏

m=1

e−
k2·αm

m

(
αµ
−m

)Nm

√
mNm Nm!

∣∣∣0
〉

(6.15)

=
∞∑

n=1

〈
0
∣∣∣
(
ǫ2 · αn

)[
e−

k2·αn
n

(
αµ
−n

)Nn

√
nNn Nm!

] ∞∏

m=1,m 6=n

e−
k2·αm

m

(
αµ
−m

)Nm

√
mNm Nm!

∣∣∣0
〉
. (6.16)

In the presence of ǫ2 · αn term, one notes that only term of order (Nn − 1) in the Tay-

lor expansion of exp
[
− k2 · αn/n

]
inside the square bracket will contribute. By using

[αµ
m , αν

n ] = mδm+nηµν , we get

AL =
∞∑

n=1





[
(−)Nn−1 nNn ǫ

µ
2 (k

µ
2 )

Nn−1

√
nNn Nn!

] ∞∏

m=1,m 6=n

(
− kµ2

)Nm

√
mNm Nm!



 . (6.17)

Combining AR and AL and summing over all states with
∑

mmNm = N yields

IN =
∑

{N=
∑

m mNm}
(−)N

ǫ2 · k3
k2 · k3

∞∏

m=1

(
− k2 · k3

)Nm

mNm Nm!
. (6.18)

We can now use the definition of Stirling number of the first kind to get

IN = ǫ2 · k3
N∑

J=1

s(N, J)

N !
(−)N−1N (k2 · k3)J−1. (6.19)
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Finally the expression can be further reduced to

IN = ǫ2 · k3 (−)N−1

(
k2 · k3 − 1

N − 1

)
. (6.20)

In the following, instead of the operator method adopted previously, we will use path-

integral approach [17] to calculate the generating function for the rank-two tensor, three

tachyons amplitude. As a warm up exercise, we first use this method to rederive eq. (6.12)

for the vector, three tachyons amplitude. We first note that the amplitude can be written as

A =

∫ 1∏

i=1

dzi < eik1X(z1)ǫ2 · ∂X(z2)e
ik2X(z3)eik3X(z3)eik4X(z4) > (6.21)

=

∫ 4∏

i=1

dzi < eik1X(z1)eik2X(z2)+iǫ2·∂X(z2)eik3X(z3)eik4X(z4) >|linear in ǫ2 (6.22)

=

∫ 4∏

i=1

dzi exp

[
−
∑

l<j

klµkjν < Xµ(zl)X
ν(zj) > −

∑

j 6=2

ǫ2µkjν < ∂Xµ(zl)X
ν(zj) >

]
|linear in ǫ2

(6.23)

=

∫ 1

0

dz(1− z)k2·k3zk1·k2

[
ǫ2 · k1
z

− ǫ2 · k3
1− z

]
. (6.24)

In the last equality, we have used the worldsheet SL(2, R) to set the positions of the four

vertex at 0, z, 1 and ∞, and the propagator < Xµ(zl)X
ν(zj) >= −ηµν ln(zl − zj). Note

that the term proportional to ǫ2 · k1 has been considered previously for the calculation of

four tachyons amplitude. One can now see from eq. (6.23) that the generating function for

amplitude proportional to the term ǫ2 · k3 is

G1 = exp{−k3·k2[− ln(1−z)]} exp{−ǫ2·k3z d
dz

[− ln(1−z)]} |linear in ǫ2 (6.25)

= (ǫ2 · k3)z
d

dz
[ln(1− z)] exp{k3·k2[ln(1−z)]} (6.26)

which is the same with eq. (6.12). Therefore the derivative of generating function in

eq. (6.11) can be traced back to the derivative part ∂Xµ of the vector vertex. We now

generalize the calculation to the higher spin cases. For example, for the spin two case

A =

∫ 4∏

i=1

dzi < eik1X(z1)ǫ2µν · ∂Xµ(z2)∂X
ν(z2)e

ik2X(z2)eik3X(z3)eik4X(z4) > (6.27)

=

∫ 4∏

i=1

dzi < eik1X(z1)eik2X(z2)+iǫ
(1)
2 ·∂X(z2)+iǫ

(2)
2 ·∂X(z2)eik3X(z3)eik4X(z4) >|

multilinear in ǫ
(1)
2 ,ǫ

(2)
2

(6.28)

=

∫ 1

0

dz(1− z)k2·k3zk1·k2

[
ǫ
(1)
2 · k1
z

− ǫ
(1)
2 · k3
1− z

][
ǫ
(2)
2 · k1
z

− ǫ
(3)
2 · k3
1− z

]
(6.29)

where ǫ
(l)
3µǫ

(j)
3ν is to be identified with ǫ3µν . Note that the terms proportional to kµ1k

ν
1 and

kµ1k
ν
3 have been considered previously for the calculation of four tachyons and one vector,

three tachyons amplitudes respectively. The only new term is the one proportional to kµ3k
ν
3 ,
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which can be expressed as

A4 =
∞∑

a=2

(
k2 · k3 − 2

a− 2

)
(−1)a−2 2

(k1 + k2)2 + 2(a− 1)
ǫ2µνk

µ
3 k

ν
3 . (6.30)

The generating function for this term can be seen from eq. (6.28) as

G2 = exp{−k3·k2[− ln(1−z)]} exp

{

−ǫ
(1)
2 ·k3z

d

dz
[− ln(1−z)]

}

exp

{

−ǫ
(2)
2 ·k3z

d

dz
[− ln(1−z)]

}

|
multilinear in ǫ

(1)
2 ,ǫ

(2)
2

(6.31)

=
(
ǫ
(1)
2 · k3

)
z
d

dz
[ln(1− z)] exp{

k3·k2
2 [ln(1−z)]}

(
ǫ
(1)
2 · k3

)
z
d

dz
[ln(1− z)] exp{

k3·k2
2 [ln(1−z)]}

(6.32)

=

∞∑

a=2

(
k2 · k3 − 2

a− 2

)
(−1)a−2ǫ2µνk

µ
3 k

ν
3z

a. (6.33)

Eq. (6.32) contains product of two derivative terms which again can be traced back to

∂Xµ∂Xν part of the spin two vertex. After setting z = 1 in eq. (6.33) above, one can

match with the correct result in eq. (6.30).

The calculation above can be generalized to arbitrary higher spin vertex. We thus

conclude that generically generating function for Stirling number of the first kind connects

BCFW precription with scalar-like recursion relation to arbitrary high spin level scatter-

ing, provided that the corresponding derivatives in its worldsheet integral expression are

included.

7 Conclusions

Starting from the familiar 4-point Veneziano formula we have demonstrated that the scalar-

like recursion relation observed by Cheung, O’Connell and Wecht in [6] and by Fotopoulos

in [7] can indeed be understood from BCFW on-shell recursion relation of string ampli-

tudes. We showed that explanation to the absence of higher-spin modes was very much

like a similar mechanism observed in BCFW on-shell recursion relation of gauge theory

amplitudes: while in gauge theory Ward identity guarantees that two unphysical degrees

of freedom necessary to make up for the completeness relation [13]

gµν = ǫ+µ ǫ
−
ν + ǫ−µ ǫ

+
ν + ǫLµǫ

T
ν + ǫTµ ǫ

L
ν (7.1)

decouple, in bosonic string amplitude the No-Ghost Theorem does the same thing to de-

couple necessary unphysical degrees of freedom that make up for the whole Fock space

completeness relation, which makes the translation between covariant and scalar-behaved

on-shell relations of string amplitudes. The freedom to translate on-shell recursion relation

between Fock state and physical state is especially of practical interests since writing down

polarization tensors for generic physical high-spin modes can be quite complicated in string

theory context.

Although our method can be used to calculate string scattering amplitudes using the

on-shell recursion relation, it may be not the best way to do so. However, it could provide
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another point of view to discuss some analytic properties of string theory along, for example,

the work of Benincasa and Cachazo [18], and the work of Fotopoulous and Tsulaia [9], based

on consistency using different BCFW-deformations to calculate amplitudes. It can also be

used to discuss possible loop amplitudes using unitarity cut method [14, 15].
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A Mathematical identity

Stirling Number of the first kind: the Stirling numbers of the first kind is defined

from the generation function

(x)n ≡ x(x− 1) . . . (x− n+ 1) =
n∑

k=0

s(n, k)xk (A.1)

where (x)n is the Pochhammer symbol for the falling factorial and when n = 0, (x)0 ≡ 1.

Using this, we can see that s(0, 0) = 1 but s(n, 0) = 0 if n 6= 0.

The signed Stirling numbers of the first kind are defined such that the number of

permutations of n elements which contain exactly m permutation cycles is the nonnegative

number

|s(n,m)| = (−)n−ms(n,m) = n!
∑

{Nt}

∞∏

t=1

1

Nt!tNt
,

∑
tNt = n, m =

∑
Nt (A.2)

There are other ways to see above identities. Considering following Taylor expansion

I1 = (1− z)X =
∞∑

a=0

(
X

a

)
(−)aza (A.3)

which can be expanded by following alternative way

exp
[
X ln(1− z)

]
= exp

[
(−X)

(
z +

1

2
z2 +

1

3
z3 + · · ·+ 1

n
zn + · · ·

)]

=
∞∑

N=0

N∑

J=0

∣∣s(N, J)
∣∣

N !
(−X)J zN

=
∞∑

N=0

N∑

J=0

s(N, J)

N !
(−)N XJ zN (A.4)

Comparing these two expansions we can refer (A.1) and (A.2).
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B Decoupling of Ghosts in string amplitude

The content in this section can be found in [16]. In bosonic string theory, physical states

are required to satisfy Virasoro constraints (L0 − 1) |φ〉 = 0 and Lm>0 |φ〉 = 0. As we have

seen in section 3.2, the first of these two types of constraints was implemented as on-shell

condition (3.7) so that it is satisfied by intermediate states that appear in BCFW recursion

relation. In this appendix we prove that ghosts decouples from BCFW recursion relation.

As a consequence we are allowed to introduce freely the physical states, for which the

remaining Virasoro constraint Lm>0 |φ〉 = 0 applies, or generic Fock states as intermediate

states in the recursion relation. For the purpose of argument needed in this proof we first

divide Fock space into three subspaces according to DDF construction.

B.1 DDF states

A standard DDF state is defined by acting a string of transverse Ai
−n operators on tachyonic

vacuum

|f〉 = Ai1
−n1

Ai2
−n2

. . . Aim
−nm

|0; p0〉 , (B.1)

where DDF operator Ai
n is prescribed as the Fourier zero mode of vector vertex operator

Vj(nk0, τ) = Ẋj(τ)einX
+(τ),

Ai
n =

1

2π

∫ 2π

0
Ẋi(τ)einX

+(τ)dτ, i = 1, . . . , D − 2 , (B.2)

and p0 = (p+0 , p
−
0 , p

i
0) = (1,−1, 0). It is easy to show that Lm>0 |f〉 = 0 since Lm com-

mutates with all Ai
−n while Lm>0 |0; p0〉 = 0. For L0, using that L0

∣∣0; p20
〉
= α′p20 = 1

we get (L0 − 1) |0; p0〉 = 0. The DDF states thus defined are positive definite, as can be

easily checked using the commutation relation [Ai
m, A

j
n] = mδijδm+n. We shall denote in

the following a generic DDF state as |f〉. Note however, that in the standard construction

these DDF states are automatically on the N -mass-shell,

p̂ |f〉 =
(
p0 + k0

∑
ni

)
|f〉 (B.3)

so that (p0 + Nk0)
2 = p20 + 2N = 2 + 2N , where we introduced k0 = (k+0 , k

−
0 , k

i
0) =

(0,−1, 0), and here N =
∑
ni. In order to describe Fock states in DDF language, where

center-of-mass momentum kµ and mode number N are considered independent, let us

define generalized off-shell DDF-like state, starting again from tachyonic vacuum but with

momentum q +N k0,

|f〉off−shell = Ai1
−n1

Ai2
−n2

. . . Aim
−nm

|0; q +N k0〉 . (B.4)

Note that we shift ground state momentum by equal and opposite of the amount that is

going to be shifted by DDF operators so that subsequent operations produces an off-shell

state with arbitrary momentum q and mode eigenvalue N =
∑

i ni. In addition to DDF

operators we introduce operators Km, defined as

Km = k0 · αm = −α+
m (B.5)
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and consider states constructed by operating a string of Virasoro generator L−n and K−m

on DDF-like state |f〉off−shell carrying off-shell momentum q in the following order

|{λ, µ}, f〉 = Lλ1
−1L

λ2
−2 . . . L

λn
−nK

µ1
−1 . . .K

µm

−m |f〉off−shell . (B.6)

The set of states |{λ, µ} , f〉 with∑ rλr +
∑
sµs+

∑
ni = N are linearly independent and

constitutes a basis that spans level-N subspace at fixed momentum q. In the following

discussions for convenience we drop the lower script that distinguishes DDF state |f〉 and
DDF-like state |f〉off−shell, while it is understood that the center-of-mass momentum is

considered as a independent degree of freedom, on-shell or not, whenever a DDF basis is

referred to.

B.2 Decoupling of ghosts in string amplitude

States (B.6) can be divided into two types. The first type is with L−n in front, so it is

spurious state |s〉. The second one is without L−n and we denote it as |k〉. Thus any state

in the Fock space can be uniquely decomposed as

|φ〉 = |s〉+ |k〉 (B.7)

where |s〉 is the spurious state and |k〉 is the form in (B.6) without any L−n in front of

the expression. Since |s〉 , |k〉 are linear independently, if |φ〉 is the eigenstate of L0, so are

|s〉 , |k〉. This means that if

(L0 − 1) |φ〉 = 0, =⇒ (L0 − 1) |s〉 = (L0 − 1) |k〉 = 0 (B.8)

Next we show that if the state |φ〉 is physical state, the decomposed states |s〉 and |k〉 are
also physical states.

Because |s〉 is spurious and physical when |φ〉 is physical, we have 〈s|s〉 = 〈s|k〉 = 0,

so 〈φ|φ〉 = 〈k|k〉. We can decompose |k〉 = |f〉+
∣∣∣k̃
〉
where |f〉 is DDF state and |k〉 is the

form of (B.6) without string of L but at least one of K−m. By the property of K−m, it is

easy to shown that
〈
k̃|k̃
〉
=
〈
k̃|f
〉
= 0, so finally we have 〈φ|φ〉 = 〈k|k〉 = 〈f |f〉. This is

the familiar result known as the “No-ghost Theorem” for string amplitude, which can also

be characterized as the absence of negative norm among general physical state |φ〉.
In fact, there is a stronger statement. Using [Lm,Kn] − nKm+n and Lm>0 |f〉 = 0, it

can show that if |k〉 is physical, then
∣∣∣k̃
〉
= 0 in the expansion of |k〉 = |f〉+

∣∣∣k̃
〉
. Thus we

see that the general physical state |φ〉 can be written

|φ〉 = |f〉+ |s〉 (B.9)

where |f〉 is a DDF state and |s〉 is a spurious physical state. The appearance of spurious

physical state |s〉, i.e., the transformation |f〉 → |f〉 + |s〉 is the string-theoretic analog of

a gauge transformation.
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B.3 Decoupling of ghosts in BCFW on-shell recursion relation

In section 5 we saw that pole structure in a bosonic string amplitude is manifest when

expressed in algebraic form

AM = 〈φ1|V2∆V3 . . . Vi∆Vi+1 . . . VM−1∆ |φM 〉 . (B.10)

Residue at the (i− 1)-th pole at mass level N is therefore given by the sum of products

∑

level-N

states

〈φ1(k1+zi,N q)|V2∆V3 . . . Vi |{Nµ,m}, p̂〉〈{Nµ,m}, p̂|Vi+1 . . .∆VM−1 |φM (kM−zi,N q)〉 ,

(B.11)

where the above sum is taken only over intermediate Fock states that happen to be on the

level-N mass-shell. Note that in BCFW recursion relation the mode eigenvalues {Nµ,m}
and center-of-mass momentum p̂ of intermediate states were originally considered as inde-

pendent. It is because {Nµ,m} and p̂ assume the values
∑
Nµ,m = N and 1

2 p̂
2(z)+N−1 = 0

that a pole was created at z = zi,N in the first place, so that at pole the mass-shell condition

is automatically satisfied.

Consider the state

|φR〉 = Vi+1∆Vi+2 . . .∆VM−1 |φM 〉 (B.12)

that appears on the right side of equation (B.11). Since we are only interested in its

product with on-shell states, let us operate on it a projection operator P1. For the purpose

of proving decoupling of ghosts, first we would like to show that

Lm>0P1 |φR〉 = 0, (B.13)

where we defined Pk as a projection operator which projects states to subspace with L0 = k.

Using [L0, Lm] = −mLm, we find L0LmP1 |α〉 = (1−m)LmP1 |α〉, so LmP1 = P1−mLmP1 =

P1−mLm, thus we need to prove

P1−mLm |φR〉 = 0, m > 0 (B.14)

Using P1−m(−L0 −m+ 1) = 0, we get

P1−m(Lm − L0 −m+ 1) |φR〉 = 0, m > 0 (B.15)

Finally we arrive at the identity

(Lm − L0 −m+ 1)VN∆VN+1 . . .∆VM−1 |φM 〉 = 0, m > 0 (B.16)

Note that a vertex V has conformal dimension one, therefore satisfies

[Lm, V (k, z)] =

(
zm+1 d

dz
+mzm

)
V (k, z). (B.17)
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Now using the (B.17) and set z = 1 (since we have τ = 0 which is crucial) we have

[Lm − L0, V ] = mV, or (Lm − L0 −m+ 1)V = V (Lm − L0 + 1) (B.18)

where d
dz

has been canceled. Using Virasoro algebra it is straightforward to show that

(Lm − L0 + 1)
1

L0 − 1
=

1

L0 +m− 1
(Lm − L0 −m+ 1) (B.19)

Thus (B.18) and (B.19) give

(Lm − L0 −m+ 1)V
1

L0 − 1
= V

1

L0 +m− 1
(Lm − L0 −m+ 1) (B.20)

so (Lm − L0 −m + 1) can be pushed step by step all the way to the right until it meets

|φM 〉, and we obtain (Lm−L0+1) |φM 〉 = 0 because |φM 〉 is physical. From the argument

above we see that when on-shell, |φM 〉 satisfies Virasoro constraints and is therefore a

physical state. It is straightforward to see that the same argument applies to state |φL〉 =
Vi∆Vi−1 . . .∆V2 |φ1〉.

Proof: having done all the preparations we are now finally ready to derive our proof. We

note that in the algebraic expression (B.11) for residue at mass level N , the summation of

outer products of Fock states |{Nµ,m}, p̂〉 T{Nµ,m} 〈{Nµ,m}, p̂| over level-N subspace works

as a projection operator that maps |φR〉 and |φL〉 into the level-N subspace, so that if we

decompose in this sector |φR〉 and |φL〉 according to DDF basis into |s〉 +
∣∣∣k̃
〉
+ |f〉, the

residue (B.11) reads

∑

level-N

states

〈φL|{Nµ,m}, p̂〉 T{Nµ,m} 〈{Nµ,m}, p̂|φR〉 =
〈
sL + k̃L + fL|sR + k̃R + fR

〉

= 〈fL|fR〉 . (B.21)

As argued in the decoupling of ghosts in amplitudes, spurious state |s〉 drop out from (B.21)

because both |φR〉 and |φL〉 are physical, and we remove subsequently
∣∣∣k̃
〉

states since
〈
k̃|k̃
〉
=
〈
k̃|f
〉
= 0.

Inserting complete states again, but this time in DDF basis, into the product 〈fL|fR〉,

〈fL|fR〉 =
∑

i

〈fL|si + ki + fi〉 〈si + ki + fi|fR〉

=
∑

i

〈fL|fi〉 〈fi|fR〉 =
∑

i

〈fL + sL|fi〉 〈fi|fR + sR〉

=
∑

i

〈φL|fi〉 〈fi|φR〉 (B.22)

and we see that spurious and
∣∣∣k̃
〉
intermediate states drop out for the same reason, thus

summing over the whole intermediate Fock space is equivalent to summing over the physical

subspace.
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