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We propose to increase the superconducting transition temperature Tc of strongly correlated materials by
designing heterostructures which exhibit a high pairing energy as a result of magnetic fluctuations. More precisely,
applying an effective theory of the doped Mott insulator, we envisage a bilayer Hubbard system where both layers
exhibit intrinsic intralayer (intraband) d-wave superconducting correlations. Introducing a finite asymmetry
between the hole densities of the two layers such that one layer becomes slightly more underdoped and the other
more overdoped, we show a visible enhancement of Tc compared to the optimally doped isolated layer. Using
the bonding and antibonding band basis, we show that the mechanism behind this enhancement of Tc is the
interband pairing correlation mediated by the hole asymmetry which strives to decrease the paramagnetic nodal
contribution to the superfluid stiffness. For two identical layers, Tc remains comparable to that of the isolated
layer until moderate values of the interlayer single-particle tunneling term. These heterostructures shed new light
on fundamental questions related to superconductivity.

DOI: 10.1103/PhysRevB.84.024526 PACS number(s): 74.78.Fk, 74.20.−z, 74.72.−h

I. INTRODUCTION

Since the discovery of high-temperature supercon-
ductivity,1 considerable efforts have been devoted to finding
out how and why it works.2–11 This puzzling phenomenon—
electrical conduction without resistance at temperatures of
up to ∼130 K—occurs in complex “copper-oxide” materials
(cuprates). After 1987, the term high-Tc superconductor was
used interchangeably with cuprate superconductors until iron-
based superconductors were discovered.12,13

The Hubbard model is a well-known model of interacting
particles in a lattice, with only two terms in the Hamiltonian:
a kinetic term allowing for tunneling (“hopping”) of particles
between sites of the lattice and a potential term consisting
of an on-site interaction. There are many reasons to believe
that the Hubbard model contains most (but maybe not all) of
the ingredients necessary for understanding high-temperature
superconductivity.14 At zero hole doping, the single-band
Hubbard model definitely captures the insulating behavior of
the parent cuprate compounds. The origin of this insulating
behavior was described many years ago by Mott as a corre-
lation effect,15 and there is a suppression of the quasiparticle
spectral weight.16 In the Mott phase, electron spins form
an antiferromagnetic arrangement as a result of the virtual
hopping of the antiparallel spins from one copper ion to the
next—the parallel configuration being disallowed by the Pauli
exclusion principle. It is relevant to observe that copper-oxide
materials are governed by a relatively large magnetic exchange
J ∼ 1300 K which is much larger than the Debye energy of
copper.

Upon doping with holes the antiferromagnetism becomes
rapidly destroyed and above a certain level superconductivity
occurs with dx2−y2 pairing symmetry. The dx2−y2 wave nature
of the order parameter has been conclusively shown using
phase-sensitive experiments,17–19 for example. The earliest
experimental observation for d-wave symmetry is based on the
linear decrease of the superfluid stiffness with temperature.20

An anisotropic gap with a d-wave order parameter has also

been observed through photoemission studies.21,22 One sce-
nario to explain the dx2−y2 wave nature of the superconducting
gap relies on spin fluctuations at the wave vector (π,π )
which makes the singlet channel attractive at large momentum
transfer. This essentially stems from band-structure nesting
effects in two dimensions close to half-filling.23 A similar
pairing occurs in ladder systems as a result of short-range
valence bond correlations.24,25 In 1986 it was also suggested
that backscattering from spin fluctuations might lead to the
pairing seen in the Bechgaard salts.26 The same year, three
papers argued that spin fluctuations are responsible for d-wave
pairing in heavy-fermion systems.27–29

How the electronic structure evolves with doping from a
Mott insulator into a d-wave superconductor is a key issue
in understanding the cuprate phase diagram. Over the years
it has become clear that states in different parts of momen-
tum space exhibit quite different doping dependencies. The
Fermi arcs30,31 or pockets32,33 (near nodal states) retain their
coherence as doping is reduced, while the antinodal (near the
edge of the first Brillouin zone) states diminish in coherence,
becoming completely incoherent at strong underdoping. The
antinodes open a gap, “the pseudogap,” which appears well
above the superconducting state. It is important to note that
the relationship between the pseudogap and superconductivity
is still an open subject34,35 even though some efforts have been
accomplished from the theoretical and numerical fronts.11,36–45

There are theoretical indications that the high Tc in the
cuprates may result from the large magnetic exchange J .7,46–48

Designing a material that can increase Tc certainly requires
a better understanding of the mechanisms that reduce the
superfluid stiffness with temperature and with the proximity to
the Mott insulating state. A number of recent theoretical49–51

and experimental52,53 proposals have explored the possible
benefit of combining quite metallic layers with layers of
underdoped cuprate materials in heterostructured geometries.

In this paper, we propose to increase Tc using two
strongly correlated Hubbard layers, one layer being slightly
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FIG. 1. (Color online) Evolution of Tc for the bilayer when both
layers are characterized by prominent intrinsic d-wave correlations;
δ1 and δ2 � 0.3 represent the hole densities of the two layers and
(δ1 + δ2)/2 is fixed to 0.2 close to optimal doping. The red dashed
line is obtained from perturbation theory in the band basis. Parameters
in the Hamiltonian (1) are J/t = 0.2, t ′ = 0, and t⊥/t = 0.4. In this
figure, Tc,opt means Tc for the bilayer system at optimal doping (see
Fig. 5 for t⊥/t = 0.4).

underdoped and the other rather overdoped; here, both layers
are characterized by prominent d-wave correlations. Using an
effective theory of the doped Mott insulator7,47 for both layers,
we report an enhancement of the superconducting transition
temperature compared to the optimally doped single layer.
Another possibility to increase Tc relies on the presence of a
very overdoped “free electron” like layer49 (see Fig. 6).

More precisely, using the bonding and antibonding band
representation in the vicinity of optimal doping, we show that
the low-energy BCS Hamiltonian exhibits dominant intraband
d-wave pairing. Then, we justify how Tc can be enhanced as a
result of (interband) additional superconducting fluctuations
mediated by the hole asymmetry between the layers. Our
results presented in Fig. 1 indeed reveal an enhancement of
Tc by ∼20% for a slightly underdoped layer with hole density
∼0.15 and an overdoped layer with hole density ∼0.25—these
include the possible charge redistribution when coupling the
layers; optimal doping here refers to hole densities ∼0.17. Our
findings may have applications to multilayer materials as well
as heterostructures. The analysis performed in this paper uses
a purely homogeneous model which does not include stripe
or density wave structures.53 Other Hubbard bilayer systems
have been studied in different parametric regimes.54,55 It is
also worth mentioning that correlated bilayers exhibiting
either heavy fermions,56–58 composite fermions,59 or exciton
condensates60 are also attractive subjects. The realization
of high-Tc superconductivity confined to nanometer-sized
interfaces has been a long-standing goal because of potential
applications.61

The outline of the paper is organized as follows. In
Sec. II, we introduce the low-energy theory of the bilayer
system including the effect of Mott physics (large interactions)
and we discuss the general methodology. In Sec. III, we
address the situation of symmetric layers and show that
there is no enhancement of Tc; nevertheless, we would like

to emphasize that the d-wave superconducting state is quite
robust toward the proliferation of quasiparticles favored by the
single-(quasi)particle tunneling term between the layers and
therefore Tc remains almost constant until moderate values
of the interlayer tunneling coupling. We also build the BCS
Hamiltonian in the band representation of the bilayer system;
this is particularly useful to treat the interlayer hopping nonper-
turbatively. In Sec. IV, we thoroughly compute the superfluid
stiffness and Tc in the presence of a finite hole asymmetry.

II. MODEL AND METHODOLOGY

Our starting point is the renormalized low-energy
theory47,62 which takes into account the proximity of the Mott
insulating ground state. Essentially, the Gutzwiller projector63

ensuring that configurations with doubly occupied sites are
forbidden is replaced by statistical weighting factors. The
projection operator then is eliminated in favor of the reduction
factor gti = 2δi/(1 + δi) in the kinetic term64 where δi repre-
sents the hole doping or the number of holes per site in the
layer i = 1 or 2. In addition, the projection operator enhances
spin-spin correlations in each layer: gsi = 4/(1 + δi)2.47

The bilayer system in the strong-interaction limit then is
described by the general Hamiltonian:

H = −tgt1

∑
〈i,j〉σ

c
†
iσ cjσ − t ′gt1

∑
〈〈m,n〉〉σ

c†mσ cnσ + H.c.

− tgt2

∑
〈i,j〉σ

d
†
iσ djσ − t ′gt2

∑
〈〈m,n〉〉σ

d†
mσdnσ + H.c.

− t⊥gt⊥

∑
iσ

d
†
iσ ciσ + H.c.

−μ1

∑
iσ

c
†
iσ ciσ − μ2

∑
iσ

d
†
iσ diσ

+ Jgs1

∑
〈i,j〉

Sc
i · Sc

j + Jgs2

∑
〈i,j〉

Sd
i · Sd

j

+ J⊥gs⊥
∑

i

Sc
i · Sd

i , (1)

where the operators cσ and dσ represent electron operators with
spin σ for layers 1 and 2, respectively, 〈i,j 〉 and 〈〈m,n〉〉 refer
to nearest-neighbor and next-nearest-neighbor pairs (and we
have implicitly assumed i < j and similarly for m and n), and
Sc and Sd denote the spin-1/2 operators in each layer. In our
model, the dopings of the two layers are independently tuned
through the chemical potentials μ1 and μ2. At a general level,
the two layers are coupled via the single-particle tunneling
contribution t⊥gt⊥ and through the exchange term J⊥gs⊥,
where gt⊥ = √

gt1gt2 and gs⊥ = √
gs1gs2.

In Appendix A, we briefly introduce the methodology and
the numerical procedure in the context of the single layer fol-
lowing Zhang and Rice.47 The advantage of starting with this
effective low-energy theory is that the d-wave superconducting
ground state can be studied essentially using the usual (unpro-
jected) BCS wave function. In the superconducting state, the
results obtained within this method are in excellent agreement
with variational Monte Carlo for projected d-wave states.48

The main results for the single-layer situation are
presented in Fig. 2. We check that the Fermi liquid order
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FIG. 2. (Color online) Magnitudes of the mean-field variables (in
units of 3gsJ/4) and the zero-temperature superfluid density (in units
of t) for the single layer described by the renormalized t − t ′ − J

model versus hole doping. Here, we fix J/t = 0.2, t ′ = 0, and Tc is
determined from Tc ≈ gt� and from ρs(Tc) = 0.

parameter χij = (3gsJ/4)
∑

σ 〈c†iσ cjσ 〉 is almost doping
independent whereas the pairing order parameter �ij =
(3gsJ/4)

∑
σσ ′ εσσ ′ 〈ciσ cjσ ′ 〉 follows the pseudogap

(crossover) line11 (the indices i and j here involve
nearest-neighbor sites); we look for mean-field solutions with
χij = χ , and �ij = � along the x direction and �ij = −�

along y direction to ensure d-wave pairing. The d-wave nature
of the order parameter here is dictated by the prominent
antiferromagnetic fluctuations at (π,π ).23,46 Similarly to
Ref. 49, here we assume a unique superconducting gap
spreading over the full Fermi surface. In reality, the antinodal
points of the Fermi surface are rather governed by the
pseudogap.11,37 In fact, we cannot exclude that the two-gap
structure might arise from another competing order with the
superconductivity which may alter the results found below.
On the other hand, the superfluid density can be formally
derived from the quasiparticle contribution close to the nodal
points. Hence, this argument rather supports that Tc mostly
depends on the superconducting gap. We have checked that
our numerical approach to minimize the free energy perfectly
agrees with the mean-field equations (A7).

Within the “renormalized” mean-field theory (or equiva-
lently the slave-boson theory9,65–67), the superfluid density at
T = 0 in Eq. (B3) is proportional to the hole doping δ, as
confirmed experimentally.68

The superconducting transition temperature of the isolated
layer is evaluated using two complementary approaches.47

First, the renormalized mean-field theory predicts Tc ≈ gt�

(see Appendix B). The second approach consists of evaluating
the temperature dependence of the superfluid stiffness. A
theory of Tc for the underdoped cuprates has first been
built by analogy to the Kosterlitz-Thouless transition in two
dimensions. Indeed, Emery and Kivelson in 1995 proposed
a model based on phase fluctuations.3 In their picture, the
pseudogap region is governed by phase fluctuations and at Tc

the superfluid stiffness jumps by the universal amount 2Tc/π .

On the other hand, as mentioned by Lee and Wen in 1997,69

the thermal excitation of quasiparticles near the nodal points
rather produce a linear decrease of the superfluid stiffness
ρs(T ) with temperature. This is the earliest experimental
evidence of d-wave symmetry.20 Now, coming back to the
Kosterlitz-Thouless scenario, this implies that the ρs which
controls the transition is not ρs(0) but ρs(T ) which is greatly di-
minished by quasiparticle excitations, ρs(T ) ∼ ρs(0) − g(T ),
where g(T ) is a linear function at low temperatures. Thus,
Tc can also be defined by ρs(Tc) = 0. Then, Tc can also
be evaluated numerically using Eq. (B1). Performing an
expansion very close to the nodal points leads to69,70

g(T → 0) = aT , a = α2 2 ln 2

π

vF

v�

, (2)

and the ratio between the longitudinal and transverse velocities
at the nodes reads (see Appendix B)

vF /v� = 2tgt + χ

�
. (3)

(We neglect the temperature dependence of χ and � below
Tc as J 
 T .) The ratio vF /v� is measured through the
thermal conductivity.71 An important assumption made in
Eq. (2) is that the d-wave quasiparticles are characterized
by a renormalized current70 −αevF (see Appendix B). We
introduce the parameter α which can be seen as a phenomeno-
logical Landau parameter inherited from the normal state. In
principle, the quasiparticle charge αe should be determined
experimentally.49

To have a good agreement between the two definitions of
Tc and to reproduce the dome-shaped Tc(δ) phase diagram of
the single layer (see Fig. 2), then we fix α ∼ 0.9. Note that
the value of α depends on the precise scheme used to treat
interactions close to the Mott state.49

III. BILAYER AT OPTIMAL DOPING

First, we apply the methodology of Sec. II to the optimally
doped bilayer system. We intend to check that the supercon-
ducting state and therefore Tc are rather stable toward single-
(quasi)particle tunneling favored by the transverse hopping
term t⊥. In fact, since the transverse hopping term is still
weakened by the Gutzwiller statistical weighting factor gt⊥
(which is equal to gt for symmetric layers), we shall show
that Tc is almost unchanged until moderate values of t⊥ where
gt⊥t⊥ ∼ J . Essentially, the prominent superconducting gap in
each layer tends to prevent the proliferation of quasiparticles.

A. Diagonalization in the band basis

In the case of a symmetric bilayer model (with equal hole
dopings δ1 = δ2 = δ and μ1 = μ2 = μ) it is convenient to use
the bonding and antibonding representation:

biσ = 1√
2

(ciσ + diσ ), aiσ = 1√
2

(ciσ − diσ ), (4)

which allows to diagonalize all the single-particle hopping
terms and therefore to treat t⊥ nonperturbatively.
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It is also judicious to introduce explicitly the mean-field
order parameters for the two layers:

χ1
ij = 3

4
gsJ

∑
σ

〈c†iσ cjσ 〉,

χ2
ij = 3

4
gsJ

∑
σ

〈d†
iσ djσ 〉,

χ⊥
ii = 3

4
gsJ⊥

∑
σ

〈c†iσ diσ 〉,
(5)

�1
ij = 3

4
gsJ

∑
σσ ′

εσσ ′ 〈ciσ cjσ ′ 〉,

�2
ij = 3

4
gsJ

∑
σσ ′

εσσ ′ 〈diσ djσ ′ 〉,

�⊥
ii = 3

4
gsJ⊥

∑
σσ ′

εσσ ′ 〈ciσ diσ ′ 〉.

For symmetric layers, we can define gsi = gs⊥ = gs = 4/(1 +
δ)2, and we look for mean-field solutions χ1

ij = χ1, χ2
ij = χ2,

where χ1 = χ2 = χ , χ⊥
ii = χ⊥, �1

ij = +�1 for two nearest
neighbors along the x direction and −�1 for two nearest
neighbors along the y direction, and similarly for the second
layer with �1 = �2 = �.

We also check that for 0 < t⊥/t < 0.5, the order parameter
�⊥

ii is always negligible which means that the only pairing
contribution is the intralayer pure d-wave contribution. [In
this paper, we are not interested in the regime of (very) large
interlayer transverse hopping amplitudes.] Hereafter, we thus
omit the negligible contribution from �⊥

ii . Therefore the main
coupling between the layers is the single-(quasi)particle tun-
neling term (when assuming J⊥ ∝ t2

⊥/U � t⊥) and the term
J⊥ just renormalizes t⊥ by producing a finite χ⊥.

In the band basis, the mean-field Hamiltonian reads

Hsym = HKin + H� + Hconst, (6)

where

HKin =
∑
kσ

ξk,bb
†
kσ bkσ +

∑
kσ

ξk,aa
†
kσ akσ ,

H� =
∑

k

�k,bb
†
k↑b

†
−k↓ + �k,aa

†
k↑a

†
−k↓ + H.c., (7)

Hconst = Ns

∑
i=1,2,⊥

[
|χi |2
3
4gsi

J
+ |�i |2

3
4gsi

J

]
− 2Nsμδ.

Our convention for the chemical potential follows that of
Ref. 47 and Ns is the total number of sites. We identify

ξk,b/a = −(2tgt + χ )[cos(kx) + cos(ky)]

− [4gt t
′ cos(kx) cos(ky) ± gt t⊥ ± χ⊥] − μ. (8)

For simplicity, the lattice spacing is set to unity and for sym-
metric layers, gt⊥ = √

gt1gt2 = gt = 2δ/(1 + δ). The Fermi
surfaces associated with the two bands get split as a result
of the transverse hopping amplitude t⊥ and χ⊥. Further, the
pairing parameters �k,a and �k,b are coupled through the

mean-field order parameter �; more precisely, neglecting �⊥
ii

results in

�k,a = �k,b = �[cos(kx) − cos(ky)]. (9)

Interestingly, one can easily diagonalize Hsym for any value
of t⊥ and the mean-field free energy is given by (again χ1 =
χ2 = χ , �1 = �2 = �, and �⊥ = 0):

FMF
sym = −2T

∑
k,i=a,b

ln

[
cosh

(
Ek,i

2T

)]

+Ns

∑
i=1,2,⊥

[
|χi |2
3
4gsi

J
+ |�i |2

3
4gsi

J

]
− 2Nsμδ. (10)

The quasiparticle excitation energy for each band is reminis-
cent of the BCS theory:

Ek,a/b =
√

(ξk,a/b)2 + (�k,a/b)2. (11)

The mean-field equations can be obtained by minimizing the
free energy with respect to μ, χ , �, and χ⊥ along the lines of
the single-layer case and at zero temperature:

δ = 1

2Ns

∑
i=a,b

∑
k

ξk,i

Ek,i

,

χ = − 3

8Ns

gsJ
∑
i=a,b

∑
k

[cos(kx) + cos(ky)]
ξk,i

2Ek,i

,

(12)

� = 3

8Ns

gsJ
∑
i=a,b

∑
k

[cos(kx) − cos(ky)]
�k,i

2Ek,i

,

χ⊥ = 3

8Ns

gsJ⊥
∑

j=a,b

∑
k

j
ξk,j

2Ek,j

,

where in the last line j = + when j = a and j = − when
j = b. Results for the mean-field order parameters at zero
temperature are shown in Fig. 3. Here, it is worth mentioning
that even though χ⊥ increases as a result of the finite t⊥ the
d-wave gap remains almost constant reflecting the stability of
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FIG. 3. (Color online) Magnitudes of the order parameters (in
units of 3gsJ/4) and superfluid density (in units of t) for the optimally
doped bilayer system at zero temperature as a function of t⊥. Optimal
doping means δ = 0.17, J/t = 0.2, and for this figure, t ′/t =
−0.3 �= 0.
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the d-wave state toward the interlayer single-(quasi)particle
tunneling term.

Further, it should be noted that in the band representation
the two bands are still characterized by the same d-wave gap.
However, details of their distinct Fermi surfaces may matter
when evaluating the superfluid stiffness.

B. Superfluid density and Tc

The diamagnetic current is (JD)μ = DμνAν , where

Dμν =
∑
kσ

∂2ξ 0
k

∂kμ∂kν

(c†kσ ckσ + d
†
kσ dkσ ), (13)

and ξ 0
k is the “bare” spectrum (the magnetic term J does not

contribute to the electric current):

ξ 0
k = −2tgt [cos(kx) + cos(ky)] − 4gt t

′ cos(kx) cos(ky). (14)

The vector potential A is directed along the layers. Then, we
can rewrite Dμν in the band basis as

Dμν =
∑
kσ

∂2ξ 0
k

∂kμ∂kν

(b†kσ bkσ + a
†
kσ akσ ). (15)

Using the standard BCS ground-state wave function and the
mean-field Hamiltonian in the band representation, then we
identify ∑

σ

〈b†kσ bkσ 〉 = 1 − ξk,b

Ek,b

tanh

(
Ek,b

2T

)
. (16)

We obtain 〈a†
kσ akσ 〉 in a similar way. The zero-temperature

part of the superfluid density then takes the form

ρs(T = 0) = 1

Ns

∑
k,i=a,b

ξ ′′
k,0

(
1 − ξk,i

Ek,i

)
. (17)

Here, ξ ′′
k,0 = d2ξ 0

k/dk2
x means that the vector potential is

directed along the x axis. For small t⊥, we find the following
expression:

ρs(T = 0)

2ρs(0)
≈ 1 + 3

2ρs(0)

∑
k

(t⊥gt + χ⊥)2 ξkξ
′′
k,0

E3
k

, (18)

with ρs(0) being the zero-temperature superfluid density of the
isolated layer and ξk and Ek of the isolated layer are defined in
Appendix A. At a general level,

∑
k ξ ′′

k,0ξk/E
3
k < 0, which

tends to suggest a light downturn of the zero-temperature
superfluid density when switching on the interlayer coupling
t⊥. On the other hand, we check that the exact superfluid
density at zero temperature computed from Eq. (B1) does not
substantially decrease until quite large values of t⊥ ∼ 0.5t . At
small values of t⊥, we note an excellent agreement between
the exact expression of ρs(T = 0) in Eq. (B1) and the weak-
coupling approximation in Eq. (18); see Fig. 4.

To compute the critical temperature Tc for the bilayer
system at optimal doping, first we follow Goren and Altman49

and diagonalize the mean-field Hamiltonian in the layer
basis. The critical temperature Tc is defined via Eq. (B1) by
ρs(Tc) = 0 in the layer and band basis. Remember that the
transition temperature Tc can be equivalently defined in the
band basis using Eq. (10).

0 0.05 0.1 0.15 0.2 0.25
t   / t

0.4

0.5

analytical approx
numerical

ρs

⊥

(T=0)

FIG. 4. (Color online) ρs(T = 0) from Eq. (B1) (in units of t)
and a weak-coupling approximation in the band basis (t ′ = 0).

At low temperatures, the linear T dependence of the
superfluid stiffness essentially stems from the paramagnetic
component (see Appendix B). In the band basis, interestingly,
this can be separated into bonding and antibonding contribu-
tions. Close to the nodal points, we get

ρs(T ) ≈ ρs(T = 0) −
∑
i=a,b

α2
i

2 ln 2

π
T

vF,i

v�,i

, (19)

where formally

αi = α
vF

vF,i

(20)

and vF for the single layer has been defined in Appendix B. It
is relevant to mention that in the band basis close to the nodal
points the longitudinal and transverse velocities obey

vF,a

v�,a

= vF,b

v�,b

= 2tgt + χ

�
. (21)

This shows that the ratio (vF,a/b/v�,a/b) remains quite constant
until moderate values of t⊥; in particular, it does not involve
χ⊥. This allows us to safely approximate αi ∼ α ∼ 0.9. We
shall also mention that since the ratio vF,i/v�,i remains
almost identical to that of the isolated layer until moderate
values of t⊥ this already suggests a very slow reduction of Tc

with t⊥.
For small values of t⊥, the zero-temperature value of the

gap obeys

�(t⊥)

�
= 1 −

∑
k

(t⊥gt + χ⊥)2

4E3
k

[cos(kx) − cos(ky)]2 (22)

(where � corresponds to the value of the gap for the isolated
layer at optimal doping; see Fig. 2). For small t⊥, we predict
Tc = Tc0 − C(gt t⊥ + χ⊥)2 with C > 0.

The curve of Tc versus t⊥ for the optimally doped bilayer
system is presented in Fig. 5. This unambiguously confirms
that the bilayer system at optimal doping is rather stable
toward single-(quasi)particle tunneling until quite large values
of t⊥, defined roughly by gt t⊥ ∼ J (J controls the pairing
properties of the two layers). The prominent superconducting
gap hinders the proliferation of quasiparticles close to the nodal
points.
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⊥
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FIG. 5. (Color online) Transition temperature for the bilayer
at optimal doping, normalized to Tc of the isolated layer for the
same doping (denoted Tc0 in this figure), versus t⊥. The two curves
correspond to the two approaches defined in Sec. III for accessing Tc.
We use the parameters t ′ = 0, J/t = 0.2, and δ = 0.17.

IV. ASYMMETRIC LAYERS

In this section, we address the case of asymmetrically
doped layers, i.e., 0 � δ1 < 0.2 and 0.2 < δ2 � 0.3 (0.2 is
roughly the hole density in each layer at optimal doping).
We seek to understand whether such a finite asymmetry in
the hole dopings of the layers will result in an increase or
in a decrease of Tc. Using the band basis, we show how a
finite hole asymmetry will result in a pairing term coupling
the bonding and antibonding bands which helps diminish the
quasiparticle nodal contribution for weak asymmetries, then
enhancing Tc of the optimally doped situation. The results
derived below assume that each layer exhibits intrinsic d-wave
pairing correlations.

A. Interband pairing term

More precisely, the Hamiltonian becomes H = Hsym +
Hasy where Hsym can be found in Sec. III and

Hasy =
∑
kσ

ξas
k (a†

kσ bkσ + b
†
kσ akσ )

+
∑

k

�as
k (a†

k↑b
†
−k↓ + b

†
k↑a

†
−k↓ + H.c.). (23)

In this case, the c electrons of the first layer and the d
electrons of the second layer are characterized by different
band structures ξk,1 and ξk,2, respectively (since gt1 �= gt2 and
gs1 �= gs2). In general, one can decompose

ξk,1 = ξav
k + ξas

k , ξk,2 = ξav
k − ξas

k . (24)

Then, we identify

ξas
k = − 1

2 (μ1 − μ2) − (
t(gt1 − gt2) + 1

2 (χ1 − χ2)
)

× [cos(kx) + cos(ky)]. (25)

For simplicity, hereafter we assume that t ′ = 0. Similarly, one
can rewrite the pairing order parameters of the two layers
as

�k,1 = �av
k + �as

k , �k,2 = �av
k − �as

k , (26)

which also results in

�as
k = 1

2 (�1 − �2)[cos(kx) − cos(ky)]. (27)

Concerning the Hsym part this involves ξav
k and �av

k :

ξk,b/a = − 1
2 (μ1 + μ2) ∓ gt⊥t⊥ ∓ χ⊥

− (
t(gt1 + gt2) + 1

2 (χ1 + χ2)
)

[cos(kx) + cos(ky)],

�k,a = �k,b = 1
2 (�1 + �2)[cos(kx) − cos(ky)]. (28)

One can still compute the critical temperature Tc and the
superfluid density ρs(Tc) [from Eq. (B1)] in the layer basis by
diagonalizing the Hamiltonian. On the other hand, to gain
some intuition, we also treat the asymmetry terms in the
Hamiltonian to second order in perturbation theory (which
is justified for quite small asymmetries around the optimal
doping).

Essentially, in the band basis, this results in corrections to
ξk,a/b and �k,a/b such that ξk,b and �k,b become ξ̃k,b and �̃k,b

defined as (see Appendix C)

ξk,b − 1

E2
k,a

[(
ξas

k

)2
ξk,a − (

�as
k

)2
ξk,a + 2ξas

k �as
k �k,a

]
,

�k,b − 1

E2
k,a

[(
�as

k

)2
�k,a − (

ξas
k

)2
�k,a + 2ξas

k �as
k ξk,a

]
,

(29)

and similarly for ξ̃k,a and �̃k,a . (There is no first-order
correction to the ground-state energy.) Note that even though
the main pairing contribution is the pure d-wave intraband
component, the interband pairing correlations favored by �as

k
will contribute to reduce the nodal quasiparticle contribution
to the superfluid stiffness ρs(T ).

From second-order perturbation theory, the effect of ξas
k and

�as
k is primarily to renormalize the band structure parameters

entering into the energies Ek,a and Ek,b of the quasiparticles
at the nodal points.

B. Renormalization of nodal contributions

The next step to compute the transition temperature Tc is to
check how ξ̃k,a/b and �̃k,a/b vary to linear order in k space for
points around the nodal points.

Notice that the bonding (b) Fermi “surface” is larger than
the antibonding (a) Fermi surface. This is a very general
fact stemming from the finite interlayer hopping term t⊥.
Therefore, we can denote Nb and Na the nodes associated
with the bonding and antibonding bands, respectively, and
kab > 0 (proportional to t⊥) is the k space distance between
the bonding and antibonding Fermi surfaces. Now, (k1,k2) are
local coordinates with origin at Nb such that

ξk,b = vF,bk1, �k,b = v�,bk2,
(30)

ξk,a = vF,a(k1 + kab), �k,a = v�,ak2,

where k1,k2 → 0. Then, terms such as (�as
k )2 are of order k2

2
and therefore do not contribute to linear order. As a result, we
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can approximate

ξ̃k,b ≈ ξk,b −
(
ξas

k

)2
ξk,a

E2
k,a

≈ ξk,b −
(
ξas
NB

)2

vF,akab

(
1 − k1

kab

)
. (31)

The first correction term in ξ̃k,b shifts the position of the node
NB and the second term gives a correction to vF,b:

ṽF,b = vF,b +
(
ξas
NB

)2

vF,ak
2
ab

. (32)

Writing �as
k = vas

� k2 we also get

�̃k,b ≈ �k,b − 1

(vF,akab)2

[
2ξas

NB
vF,akabv

as
� − (

ξas
NB

)2
v�,a

]
k2.

(33)

Therefore, v�,b is renormalized as

ṽ�,b ≈ v�,b − 1

(vF,akab)2

[
2ξas

NB
vF,akabv

as
� − (

ξas
NB

)2
v�,a

]
.

(34)

Similarly, we also find

ṽF,a = vF,a +
(
ξas
NA

)2

vF,bk
2
ab

(35)

and

ṽ�,a ≈ v�,a + 1

(vF,bkab)2

[
2ξas

NA
vF,bkabv

as
� + (

ξas
NA

)2
v�,b

]
.

(36)

Now, a close inspection of all the contributions leads to

ṽF,a

ṽ�,a

+ ṽF,b

ṽ�,b

≈ vF,a

v�,a

(
1 − 2ξas

NA
vas

�

v�,avF,bkab

)

+ vF,b

v�,b

(
1 + 2ξas

NB
vas

�

v�,bvF,akab

)
. (37)

It should be noted that for very small values of t⊥ such that
kab → 0 then we could approximate ξas

NA
∼ ξas

NB
and the nodal

corrections would have practically no effect. For the symmetric
case, remember that vF,a/v�,a = vF,b/v�,b and we also check
that v�,avF,b = v�,bvF,a .

C. Enhancement of Tc

Now, let us assume a moderate value of t⊥ such that 0 �
gt⊥t⊥ � J . At a general level, we can compute ξas

NA
and ξas

NB

numerically and then extract the superconducting transition
Tc. Here, it should be noted that since a prominent t⊥ makes
cos(kx) + cos(ky) larger for a small Fermi surface and (gt1 −
gt2) < 0 then this immediately implies ξas

NA
> ξas

NB
(for μ1 ∼

μ2 and χ1 ∼ χ2). Based on the nodal quasiparticle contribution
only, in the case of a finite (small) hole asymmetry, one then
predicts

Tc

Tc,opt
≈

(
1 + ξas

NB
vas

�

v�,bvF,akab

− ξas
NA

vas
�

v�,avF,bkab

)−1

> 1. (38)
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FIG. 6. Here, we consider that the overdoped layer is sufficiently
doped such that it is described by a free-electron model (α2 = 1 and
χ2 = 0) (Ref. 49); the doping level of the metallic layer is δ2 = 0.35.
Parameters are t⊥/t = 0.5, J/t = 0.3, and similar to Ref. 49; for this
figure, we set the renormalized quasiparticle charge of α1 = 0.5 and
δ1 = δ. Here, T Max

c0 refers to the maximal value of Tc for the single
layer. The enhancement of Tc is in agreement with Ref. 49 (but it
clearly depends on the precise choice of α1).

Here, Tc,opt refers to Tc at optimal doping for the symmetric
bilayer. In Fig. 1, we compare the result of Eq. (38) valid for a
small doping asymmetry with the numerical results obtained
in the layer basis directly. Both results seem in excellent
agreement for small asymmetries. This traduces that additional
(weak) superconducting fluctuations mediated by �as

k mostly
affect the nodal contribution(s) whereas other regions (in k

space) are protected by the large d-wave gap.
The enhancement of Tc is attributed to the interplay between

interband pairing correlations (vas
� ) and the finite interlayer

hopping. This result relies on the existence of a large and small
Fermi surface induced by a finite interlayer hopping term. In
Fig. 1 we maintain the average hole density (δ1 + δ2)/2 ∼
0.2 fixed and each layer exhibits intrinsic d-wave pairing
correlations (the parameter α ∼ 0.9 for each layer). In Fig. 6,
in contrast, we consider an overdoped layer described by
a free-electron-like model (with α2 = 1) and essentially we
corroborate the result obtained in Ref. 49, choosing α1 = 0.5
for the underdoped layer. Hence, we conclude that two
scenarios allow one to increase Tc in bilayer systems; one
relies on the presence of a very overdoped free-electron layer
and the other relies on the enhancement of pairing fluctuations
in the band basis induced by a finite hole asymmetry around
optimal doping.

V. CONCLUSION

In this paper we corroborate that significant enhancement
of Tc in strongly correlated heterostructures is possible under
realistic conditions. More precisely, applying an effective
low-energy theory of the doped Mott insulator we have
investigated a bilayer Hubbard system where both layers
exhibit intrinsic intralayer (intraband) d-wave superconducting
correlations. Using the renormalized mean-field theory which
is usually well controlled when focusing primarily on the
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superconducting state, we have shown that the increase of
Tc results from the delicate balance between the moderate
single-particle tunneling term coupling the layers and the
finite hole asymmetry around optimal doping which tends to
reduce the quasiparticle contribution to the superfluid stiffness
by reinforcing superconducting fluctuations. In fact, we have
built the BCS Hamiltonian in the band representation of the
bilayer system, which is particularly judicious for building a
nonperturbative theory in the single-particle tunneling term
coupling the layers. We have also shown that the d-wave
superconducting state is quite robust toward the interlayer
single-(quasi)particle tunneling term. The key point to enhance
Tc in these heterostructures is that a finite interlayer hopping
produces a larger and smaller Fermi surface and a moderate
hole asymmetry between the two layers reinforces (interband)
superconducting fluctuations. This scenario requires that both
bands are filled (vF,a �= 0 and vF,b �= 0) and hence t⊥ should
not be too large; a too large t⊥ rather favors single-quasiparticle
interlayer tunneling and therefore is generally not helpful for
superconductivity (see Fig. 5).

It is important to distinguish this scenario based on two
layers exhibiting prominent d-wave pairing from the other
scenario based on a very overdoped layer described by a
metallic bath which essentially serves to increase the number
of carriers49 (see also Fig. 6). The latter situation using a very
overdoped metallic layer seems to lead to a more substantial
increase of Tc (note that the values of α1 in Figs. 1 and 6 are
different).

It should also be mentioned that in this paper we have
ignored gauge (phase) fluctuation effects which may play an
important role for (quasi-) two-dimensional systems.
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APPENDIX A: DOPED MOTT INSULATOR AND d-WAVE
SUPERCONDUCTIVITY

The effective Hamiltonian of a doped Mott insulator takes
the form

Ht−t ′−J = −tgt

∑
〈i,j〉σ

c
†
iσ cjσ + H.c.

− t ′gt

∑
〈〈m,n〉〉σ

c†mσ cnσ + H.c.

−μ
∑
iσ

c
†
iσ ciσ + Jgs

∑
〈i,j〉

Sc
i · Sc

j . (A1)

Here, 〈i,j 〉 represent the nearest-neighbor pairs and 〈〈m,n〉〉
the next-nearest-neighbor pairs (and we implicitly assume that
i < j and similarly for m and n). The statistical weighting
factors for the hopping and spin exchange coupling are gt =

2δ
1+δ

(Ref. 64) and gs = 4
(1+δ)2 (Ref. 47), respectively, and δ

is the hole doping. Below, we closely follow the notations of
Zhang and Rice.47

We then introduce the mean-field order parameters:

χij = 3

4
gsJ

∑
σ

〈c†iσ cjσ 〉,

�ij = 3

4
gsJ

∑
σσ ′

εσσ ′ 〈ciσ cjσ ′ 〉, (A2)

with ε↑↓ = 1 = −ε↓↑ and zero otherwise. Then, we look for
mean-field solutions with χij = χ , and �ij = � along the x

direction and �ij = −� along the y direction to ensure d-wave
pairing. The mean-field Hamiltonian then reads

HMF
t−t ′−J = HKin + H� + Hconst,

HKin =
∑
kσ

ξkc
†
kσ ckσ ,

(A3)
H� =

∑
k

�k

2
(c†k↑c

†
−k↓ − c

†
k↓c

†
−k↑ + H.c.),

Hconst = Ns

[
|χ |2
3
4gsJ

+ |�|2
3
4gsJ

]
− Nsμδ,

where Ns is the total number of sites (and the chemical
potential has been introduced following Zhang and Rice47).
Assuming a square lattice geometry, we identify

ξk = −(2tgt + χ )[cos(kx) + cos(ky)]

− 4gt t
′ cos(kx) cos(ky) − μ, (A4)

�k = �[cos(kx) − cos(ky)].

The mean-field free energy is given by

FMF = −2T
∑

k

ln

[
cosh

(
Ek

2T

)]

+Ns

[
|χ |2
3
4gsJ

+ |�|2
3
4gsJ

]
− Nsμδ, (A5)

where the quasiparticle excitation energy obeys

Ek =
√

ξ 2
k + �2

k. (A6)

The Boltzmann constant is set to unity.
The mean-field equations can be obtained by directly

minimizing the free energy with respect to χ , � and by
imposing (∂FMF /∂μ) = 0. The mean-field variables of Fig. 2
are solutions of the following equations:

δ = 1

Ns

∑
k

ξk

Ek
tanh

(
Ek

2T

)
,

χ = − 3

4Ns

gsJ
∑

k

[cos(kx) + cos(ky)]
ξk

2Ek
tanh

(
Ek

2T

)
,

� = 3

4Ns

gsJ
∑

k

[cos(kx) − cos(ky)]
�k

2Ek
tanh

(
Ek

2T

)
.

(A7)
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APPENDIX B: SUPERFLUID DENSITY AND Tc

The superfluid density is formally defined as

ρμν
s = 1

Vol

[
∂2FMF

∂Aμ∂Aν

]
A=0

, (B1)

where Vol is the volume of the system and A is the vector
potential entering in the kinetic part of the Hamiltonian through
a phase

HKin(A) = −tgt

∑
〈i,j〉σ

eieAij c
†
iσ cjσ

− t ′gt

∑
〈〈m,n〉〉σ

eieAmnc†mσ cnσ . (B2)

Here, without loss of generality, we assume the vector potential
to be along the x axis: A = Ax . The superfluid density at any
temperature can therefore be evaluated numerically through
Eq. (B1).

Further, at T = 0, the superfluid density can be easily
obtained analytically, and it is given by (see Sec. III B)

ρs(0) = 1

Ns

∑
k

ξ ′′
k,0(1 − ξk/Ek), (B3)

where ξ ′′
k,0 = d2ξ 0

k/dk2
x with ξ 0

k = −2tgt [cos(kx) +
cos(ky)] − 4gt t

′ cos(kx) cos(ky) being the hopping part
of the kinetic energy. [Below, we neglect the T dependence
of this diamagnetic contribution since a power-counting
argument shows that this T dependence is O(T 2).]

At finite temperature, the superfluid density is inevitably
suppressed by the normal state quasiparticle excitations near
the four nodal points q = (±q,±q) with q = π/2 at half-
filling. In the vicinity of the node (q,q), we have the anisotropic
Dirac spectrum:

Ek ≈
√

v2
F k2

1 + v2
�k2

2, (B4)

where for the square lattice

vF =
√

2(2tgt + χ ) sin(q),

v� =
√

2� sin(q), (B5)

cos(q) = −μ

2(2tgt + χ )
.

vF and v� are the nodal quasiparticle velocities in the longitu-
dinal and transverse directions, respectively. For simplicity,
here we assume that t ′ = 0 allowing a simple analytical
solution. More precisely, by definition

v� = ∂Ek

∂k2

∣∣∣∣
k1,k2→0

, vF = ∂Ek

∂k1

∣∣∣∣
k1,k2→0

, (B6)

where k1 = (kx + ky − 2q)/
√

2 and k2 = (kx − ky)/
√

2 with
q being associated with the Fermi momentum kF = (q,q) on
the nodal point (q = π/2 at half-filling on the square lattice if
t ′ = 0). The Fermi momentum obeys

ξkF
= 0 = −(2tgt + χ )[cos(kx) + cos(ky)] − μ. (B7)

Therefore, we get cos(q) = −μ

2(2tgt+χ) . We can expand ξk and
�k near a given node,

ξk ≈
√

2(2tgt + χ ) sin(q)k1, �k ≈ −
√

2� sin(q)k2. (B8)

This results in Eqs. (B4) and (B5).
In the presence of a vector potential, the quasiparticle

spectrum exhibits a shift:

E(k,A) = E(k) − j(k) · A, (B9)

where the current j carried by the normal-state quasiparticles
can be formally written as

j = −eαvF . (B10)

Ignoring interactions between the quasiparticles would result
in α = gtv

0
F /vF where v0

F corresponds to the bare Fermi
velocity when setting χ = 0. Such a choice of α would not
allow one to reproduce the dome-shaped Tc(δ). Therefore,
in this paper, α ∼ 0.9 will be rather taken as an effective
(constant, doping independent) parameter70 which can also
be regarded as an effective charge. In Eq. (B1), we adjust the
vector potential A such that it reproduces the correct effective
charge.

Using Eqs. (A5), (B1), (B4), and (B9) and performing the
integral in Eq. (A5) in momentum space near the nodes gives
the low-temperature linear approximation:

ρs(T ) = ρs(T = 0) − aT , a = α2 2 ln 2

π

vF

v�

. (B11)

The ratio v�/vF near a nodal point reads

vF

v�

= 2tgt + χ

�
. (B12)

The transition temperature Tc is determined through
Eq. (B1) as the temperature at which the superfluid density
vanishes due to the thermal excitation of quasiparticles (but,
not necessarily nodal); see Fig. 7.

Setting α ∼ 0.9 in Eq. (B1) through the vector potential A
allows us to recover a form of Tc(δ) which is reminiscent of

0 0.02 0.04 0.06
T/t

0

0.05

0.1

0.15

0.2

0.25

numerics
analytical approximation

ρs

FIG. 7. (Color online) ρs(T ) in units of t using Eq. (B1). The
analytical approximation (B11) corresponds to a low-temperature
expansion very close to the nodes. The parameters are the same as in
Fig. 2 and α is fixed around 0.9. Here, δ = 0.17.
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the superconducting order parameter

�2
SC = 〈BCS|P (c†i↑c

†
j↓ci+l↑cj+l↓)P |BCS〉 ∼ g2

t �
2 (B13)

for a large distance l, as shown in Fig. 2.

APPENDIX C: PERTURBATION THEORY

Here, we derive Eqs. (29) in the main text obtained by
treating Hasy in perturbation theory. First, it is convenient to
write the Hamiltonians of each band as 2 × 2 block matrices.
When Hasym = 0 then this results in

HB =
[

ξb �b

�b −ξb

]
, HA =

[
ξa �a

�a −ξa

]
. (C1)

For simplicity, we suppress the momentum index k. The
mixing between the bonding and antibonding sectors is given
by VAB = VBA = Hasy:

Hasy =
[

ξas �as

�as −ξas

]
. (C2)

Solving the time-independent Schrödinger equation and inte-
grating out the A subsystem the effective Hamiltonian for B
subsystem is given by

H̃B = HB + VBA(−HA)−1VAB, (C3)

with VBA(−HA)−1VAB =
1

E2
a

[
ξas �as

�as −ξas

] [ −ξa −�a

−�a ξa

] [
ξas �as

�as −ξas

]
. (C4)

Therefore, we check that

HB + VBA(−HA)−1VAB =
[

ξ̃b �̃b

�̃b −ξ̃b

]
, (C5)

where ξ̃b and �̃b are precisely defined as

ξ̃b = ξb − 1

E2
a

[
(ξas)2ξa − (�as)2ξa + 2ξas�as�a

]
,

(C6)

�̃b = �b − 1

E2
a

[
(�as)2�a − (ξas)2�a + 2ξas�asξa

]
.
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