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Abstract: We present a formulation to analyze photonic periodic structures
from viewpoints of sources and gain. The approach is based on a generalized
eigenvalue problem and mode expansions of sources which sustain optical
fields with phase boundary conditions. Using this scheme, we calculate
power spectra, dispersion relations, and quality factors of Bloch modes in
one-dimensional periodic structures consisting of dielectrics or metals. We
also compare the results calculated from this scheme with those from the
complex-frequency method. The outcomes of these two approaches gener-
ally agree well and only deviate slightly in the regime of low quality factors.
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1. Introduction

Photonic periodic structures [1–4] have been widely utilized in optical fibers [5], laser cavities
[6–8], and gratings [9] due to the effect of photonic bands. For these structures composed of
generic dielectrics at optical frequencies, the material dispersions are often mild. As a result,
the time-harmonic Maxwell’s equations in a source-free periodic structure can be written in the
form of a generalized eigenvalue (GE) problem, in which the frequency ωb of the Bloch mode
E(r) is solved:

∇×∇×E(r) =
(ωb

c

)2
¯̄εr(r)E(r), E(r) = eik·rF(r), (1a)

¯̄εr(r+Rm) = ¯̄εr(r); F(r+Rm) = F(r), m = 1−3, (1b)

where ¯̄εr(r) is the relative permittivity tensor of the structure, which is approximately disper-
sionless in the frequency range of interest; c is the speed of light in vacuum; Rm (m = 1−3) are
primitive vectors of the unit cell; k is the wave vector corresponding to the crystal momentum;
and F(r) is the Bloch periodic part of E(r). In Eq. (1a), the factor (ωb/c)2 plays the role of
eigenvalues, and the convention of exp(−iωbt) is adopted. The real part Re[ωb] indicates the
dispersion curve while the ratio −Re[ωb]/(2Im[ωb]) is the quality (Q) factor. Equation (1a) is
often converted into an approximate matrix form and solved numerically.

The condition of minor frequency dispersions is not always valid. This fact becomes espe-
cially true if dispersive metals at optical frequencies are incorporated into periodic structures.
Since surface plasmon polaritons (SPPs) may be excited in the presence of metals [10–13],
the effect of dispersions on wave propagations has to be taken into account a priori. Under
these circumstances, the permittivity tensor, now denoted as ¯̄ε(r,ω), does depend on the fre-
quency ω , and solving the SPP band diagrams with frequency dispersions is necessary in the
first place [14–19]. The frequency dispersion, nevertheless, turns the GE problem in Eq. (1a)
into a nonlinear one. A few authors have proposed specific techniques [20–26] for the nonlinear
GE problem in the presence of dispersions. In addition to complicated numerical analyses, one
concern is that ¯̄ε(r,ω) needs to be extended to the complex frequency (complex ω) because the
imaginary part of the solution ωb is present due to the loss. The generalization often requires
some preexisting theories such as the Drude (-Lorentz) model and is not always straightforward.

The finite-difference-time-domain (FDTD) method can model metallic components by
evolving Maxwell’s equations in the time domain [27, 28]. However, the approach has low-
order spatial and temporal accuracies. In addition, to obtain ωb and field distributions of Bloch
modes, numerical outcomes corresponding to different locations of the excitation source usu-
ally have to be examined because they may critically depend on positions of the source [29,30].

To overcome these shortcomings, we generalize the idea of sources, gain, and eigenfunction
expansions [31–38] to fields, sources, and Bloch modes in photonic crystals (PhCs). At a given
real frequency ω , the GE problem in Eq. (1a) is transformed into a modified one in order to
construct a basis set for expansions of the optical field and sustaining sources, in analogy to
the formulation of cavities in Ref. [38]. The presented formulation is able to take two factors
which are not often addressed simultaneously under a single frame into account. First, the
resonance as a characteristic of optical modes is manifest. The Bloch mode in this formalism
can be regarded as or at least well approximated by the obtained optical field when ω hits
the so-called resonance frequency. Second, the fact that sources and gain only exist in specific
active regions is embedded in the formulation explicitly. This feature enables us to obtain the
threshold gains and confinement factors of Bloch modes with geometries of unit cells and active
regions as well as the distribution of absorption automatically taken into account [39]. In fact,
the presented formalism is more like a resonance calculation based on the variation of complex
permittivity rather than the direct perturbation of the resonance frequency.
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Fig. 1. The schematic diagram of the unit cell Ωuc in a generic periodic structure. The active
region and its complement are denoted as Ωa and Ωb, respectively.

With these points, we apply the formulation to a few one-dimensional (1D) periodic struc-
tures including the nondispersive and lossless dielectric/dielectric, nondispersive but lossy
metal/dielectric, as well as dispersive and lossy metal/dielectric bilayers. Band diagrams, white-
source power spectra, and Q factors of Bloch modes are calculated based on this approach and
compared to those from the dispersive complex-ω method similar to Eq. (1a). The results from
these two approaches in general agree with each other and only deviate slightly as Q factors
are low. The minor difference can be attributed to the fact that this scheme is constructed from
viewpoints of active photonic devices, while the complex-ω method is based on passive ones.

The rest of this paper is organized as follows. The GE formulation, band diagrams, power
spectra, and Q factors are described in section 2. The biorthogonality relation of modes in
PhCs based on this formulation is also provided in the appendix. Calculations of 1D periodic
bilayers using this approach are presented and compared with those of the complex-ω method
in section 3. The conclusion is given in section 4.

2. Formulation

The unit cell Ωuc of a typical PhC and its surface Suc are shown in Fig. 1. It contains an active
region Ωa, solely inside which the current source sustaining the field exists. The remaining
part of the unit cell is denoted as Ωb. Our goal is to obtain the field Ek(r) generated by a
given source Js,k(r) only present in Ωa, which additionally satisfies the Bloch phase boundary
condition (BC) of the wave vector k in the first Brillouin zone (BZ) at a frequency ω:

∇×∇×Ek(r)−
(ω

c

)2
¯̄εr(r,ω)Ek(r) = iωμ0Js,k(r) = 0, ∀ r /∈ Ωa, (2a)

Js,k(r+Rm) = eik·RmJs,k(r), m = 1−3. (2b)

The invariance of ¯̄εr(r,ω) under translations of primitive vectors in Eq. (1b) ensures that Ek(r)
satisfies the same phase BC. One procedure to solve Eq. (2a) is to expand Ek(r) and Js,k(r) (at
least partially) with some basis sets of fields {fnk(r,ω)} and sources {js,nk(r,ω)}, respectively,
under the constraint of the phase BC (n is the label of the basis). For simplicity, we demand that
js,nk(r,ω) generates fnk(r,ω) so that the two fields also satisfy the wave equation in Eq. (2a).
In this way, the field Ek(r) and source Js,k(r) can be approximately expanded with the same
set of expansion coefficients {cnk(ω)} as

Ek(r)≈ ∑
n

cnk(ω)fnk(r,ω), (3a)

Js,k(r)≈ ∑
n

cnk(ω)js,nk(r,ω). (3b)
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A sensible construction of js,nk(r,ω) is to set it proportional to fnk(r,ω) in Ωa but force it to
vanish elsewhere [38], namely,

js,nk(r,ω) =−iωε0Δεr,nk(ω)U(r)fnk(r,ω), (4a)

U(r+Rm) =U(r), m = 1−3, (4b)

where U(r) is also a periodic function in repeated unit cells and is unity in Ωa but zero in Ωb;
and Δεr,nk(ω) is a proportional factor. The function U(r) assures that Js,k(r) is only present in
Ωa through the expansion of the basis set {js,nk(r,ω)}. The substitution of the ansatz in Eq. (4a)
into the wave equation of fnk(r,ω) leads to a GE problem as follows:

∇×∇× fnk(r,ω)−
(ω

c

)2
¯̄εr(r,ω)fnk(r,ω) =

(ω
c

)2
Δεr,nk(ω)U(r)fnk(r,ω), (5a)

fnk(r+Rm,ω) = eik·Rmfnk(r,ω), m = 1−3. (5b)

In Eq. (5a), the factor (ω/c)2Δεr,nk(ω) at the right-hand side plays the role of eigenvalues and
derives its dependence on ω through solving the GE problem. If the phase BC is imposed on
fnk(r,ω), it is applied to js,nk(r,ω) in Eq. (4a) automatically. This condition ensures that Js,k(r)
also satisfies the phase BC. In addition, the phase BC in Eq. (5b) and Bloch theorem enables us
to express fnk(r,ω) as

fnk(r,ω) = eik·rψψψnk(r,ω), ψψψnk(r+Rm,ω) = ψψψnk(r,ω), m = 1−3, (6)

where ψψψnk(r) is the Bloch periodic part of fnk(r,ω), Similarly, we write the source js,nk(r,ω)
in the Bloch form as

js,nk(r,ω) = eik·rςςς s,nk(r,ω), ςςς s,nk(r+Rm,ω) = ςςς s,nk(r,ω), m = 1−3, (7a)

ςςς s,nk(r,ω) =−iωε0Δεr,nk(ω)U(r)ψψψnk(r,ω), (7b)

where ςςς s,nk(r,ω) is the Bloch periodic part of the source js,nk(r,ω).
We note that the basis set {js,nk(r,ω)} may not exhaust all the possibilities of the current

source Js,k(r). The basis current density in {js,nk(r,ω)} could be approximately transverse in
Ωa [∇ · js,nk(r,ω) ≈ 0, r ∈ Ωa], for example, when Ωa is composed of a homogeneous and
isotropic medium [38]. Under such circumstances, the charge density may not be restored with
the expansion based solely on this set. Another complementary set of sources can be introduced
to make the expansion more complete. Here, we do not run into this issue further because
characteristics of Bloch modes can be often grasped well with the set {js,nk(r,ω)}.

Extracting the amplitude cnk(ω) of a basis source js,nk(r,ω) in Js,k(r) confined in Ωa may
be necessary in more detailed calculations such as the Purcell effect and spontaneous emission
coupling factors [see Eq. (3a) and (3b)]. Rather than the orthogonality relation for reciprocal
cavities [38], we have to use the biorthogonality relation for the Bloch periodic parts ψψψnk(r,ω)
and ςςς s,nk(r,ω) for reciprocal PhCs. This biorthogonality condition also serves as a tool to
uniquely determine the expansion coefficient cnk(ω). The derivation is presented in the ap-
pendix.

Following similar procedures to those for reciprocal cavities in Ref. [38], we obtain the
white-source power spectrum Pnk(ω), (resonance) frequency ωnk, and quality factor Qnk of
mode (n,k). We first consider a source Js,k(r) that is proportional to js,nk(r,ω) and demand the
spatial integration of |Js,k(r)|2 in Ωa to be frequency-independent (white source):

Js,k(r) = a(ω)js,nk(r,ω), (8a)

J 2Va =
∫

Ωa

dr|Js,k(r)|2 = |a(ω)|2ε2
0 |ωΔεr,nk(ω)|2

∫

Ωa

dr|fnk(r,ω)|2, (8b)
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Fig. 2. The unit cell of a 1D periodic bilayer structure. The widths of Ωa, Ωb, and the whole
unit cell are d1, d2 and a = d1 +d2, respectively.

where a(ω) is a frequency-dependent amplitude; J is the spatially averaged strength of the
source Js,k(r) and is frequency-independent; and Va is the volume of Ωa. The expression of
|a(ω)|2 can be obtained through the white-source condition in Eq. (8b). After the substitution
of this expressions for |a(ω)|2 in the generated power, the white-source power spectrum Pnk(ω)
is connected to the parameter Δεnk(ω) as follows:

Pnk(ω) =−1
2

∫

Ωa

drRe
[
J∗s,k(r) ·Ek(r)

]
=−|a(ω)|2

2

∫

Ωa

drRe
[
j∗s,nk(r,ω) · fnk(r,ω)

]

=
J 2Va

2ε0
Im

[
1

ωΔεr,nk(ω)

]
. (9)

The (resonance) frequency ωnk is the one which minimizes the absolute value |ωΔεr,nk(ω)|
of the denominator that appears inside the imaginary part of Eq. (9). The dispersion curve of
ωnk versus k is taken as the band diagram of band n in this formulation. This curve would be
compared with that obtained from the complex-ω method. With the identification of ωnk, the
field fnk(r,ωnk) is considered as (at least approximately) the Bloch mode of band n at k. Also,
if one sets ω = ωnk in Eq. (5a), the imaginary part Im[Δεr,nk(ωnk)] corresponds to the amount
of threshold gain required for the lasing of mode (n,k) in the active region Ωa. The effects of
geometries of unit cells and active regions as well as the distribution of loss are incorporated in
Im[Δεr,nk(ωnk)] automatically.

The magnitude Pnk(ωnk) at ω = ωnk is usually close to the peak value if the lineshape around
ωnk is sufficiently narrow. Under these circumstances, we can approximate Pnk(ωnk) around
ωnk with a Lorentzian. The ratio between the resonance frequency ωnk and full width at half
maximum of the Lorentzian is the Q factor of mode (n,k). Its expression can be derived from
the linear expansion of ωΔεr,nk(ω) around ω = ωnk [38] and is written as

Qnk =
i

2Δεr,nk(ωnk)

∂ [ωΔεr,nk(ω)]

∂ω

∣∣∣∣
ω=ωnk

. (10)

3. Calculations and discussions

We utilize the 1D periodic bilayer structure in Fig. 2 to demonstrate the aforementioned formu-
lation. Layer 1 (2) is the active (complement) region Ωa (Ωb) with a width d1 (d2). The unit cell
has a size a = d1 +d2. Various combinations of materials will be considered.

The modes in this PhC can be analytically solved with transcendental equations. The deriva-
tion is briefly presented in section 3.1. The wave vector k = kxx̂+k‖ can be decomposed into

#179977 - $15.00 USD Received 15 Nov 2012; revised 11 Jan 2013; accepted 11 Jan 2013; published 17 Jan 2013
(C) 2013 OSA 28 January 2013 / Vol. 21,  No. 2 / OPTICS EXPRESS  1977



the component kx ∈ [−π/a,π/a] (the first BZ) perpendicular to layer planes and in-plane part
k‖ = kyŷ+ kzẑ which is unlimited in magnitude due to infinitesimal in-plane periods. We cal-
culate the parameters Δεr,nk(ω) of a few low-order bands in the first BZ for kx ∈ [0,π/a]. In
general, the in-plane wave vector k‖ is set to the null vector except for some cases. The white-
source power spectra Pnk(ω) of these modes will be depicted on the kxa/π −ωa/(2πc) plane
for easy visualizations. The resonance frequencies ωnk obtained with minimum estimations of
|ωΔεr,nk(ω)| are also plotted as a function of kxa/π on the same plane. Both ωnk and Qnk will
be compared with those calculated from the complex-ω method.

3.1. Analytical solution of 1D periodic bilayer structure

For simplicity, we only take the wave propagating along the y direction into account and set
kz = 0 since the structure is rotationally invariant in layer planes. In this way, the modes can be
classified as either transverse-magnetic (TM) or transverse-electric (TE) to the y direction. We
rewrite the mode label n = (s, l) as a two-tuple, where s indicates TM/TE, and l is the mode
index within each category. Consistent with Eq. (5a), the GE problem is conveniently cast into
Helmholtz equations for other cartesian field components in different regions:

∂ 2φnk(x)
∂x2 +

{(ω
c

)2
[εa(ω)+Δεr,nk(ω)]− k2

y

}
φnk(x) = 0, x ∈ Ωa, (11a)

∂ 2φnk(x)
∂x2 +

[(ω
c

)2
εb(ω)− k2

y

]
φnk(x) = 0, x ∈ Ωb, (11b)

where φnk(x), aside to a factor exp(ikyy), is proportional to the z component of the magnetic
(electric) field for the TM (TE) mode; and εa(ω) [εb(ω)] is the relative permittivity in Ωa (Ωb).

The field φnk(x) can be separately solved in Ωa and Ωb as

φnk(x) =

{
AeiMx +Be−iMx, x ∈ Ωa,
CeiNx +De−iNx, x ∈ Ωb,

{
M2 = (ω/c)2[εa(ω)+Δεr,nk(ω)]− k2

y ,

N2 = (ω/c)2εb(ω)− k2
y ,

(12)

where A, B, C, and D are amplitudes to be determined. With Eq. (12), we demand the continuity
of φnk(x) at x = 0 and impose the phase BC at x = −d1 and d2 with a phase factor exp(ikxa).
In addition, y components of the electric field (TM case) and magnetic field (TE case) also
satisfy the same continuity condition and phase BC. These constraints lead to the following
characteristic equation in the matrix form:

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

1 1 −1 −1
M
N −M

N −τ τ
ei(kxa−Md1) ei(kxa+Md1) −eiNd2 −e−iNd2

M
N ei(kxa−Md1) −M

N ei(kxa+Md1) −τeiNd2 τe−iNd2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A
B
C
D

⎞
⎟⎟⎠ , (13a)

τ =

{
[εa(ω)+Δεr,nk(ω)]/εb(ω) (TM),

1 (TE).
(13b)

The determinant of of the matrix at the right-hand side of Eq. (13a) has to vanish so that nontriv-
ial solutions of A, B, C, and D exist. This condition leads to a transcendental equation analogous
to that of the Kronig-Penney model for electrons in a periodic rectangular potential [40]:

cos(kxa) = cos(Md1)cos(Nd2)+
1
2

(
M
τN

+
τN
M

)
sin(Md1)sin(Nd2). (14)

For given ω , kx, and ky, parameters Δεr,nk(ω) are solved self-consistently using Eq. (14). These
parameters are then processed to extract the information of interest.
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Fig. 3. (a) The behaviors of |ωΔεr,n0(ω)| as a function of the normalized frequency for
TE modes with l = 2 and 3. The periodic structure is composed of nondispersive and
lossless dielectric/dielectric bilayers. (b) The band diagrams from the loci of minima of
|ωΔεr,nk(ω)| at ky = 0 (sold lines) and counterparts from the complex-ω method (red cir-
cles). For clear illustrations, the magnitudes |ωΔεr,nk(ω)| increase as the curves bend into
the figure.

3.2. Nondispersive and lossless structure of dielectric/dielectric bilayers

For the nondispersive and lossless dielectric/dielectric structure, we set εa(ω) = 1 and εb(ω) =
12.25. The two widths d1 and d2 are both equal to a/2. We do not specify the size a of the
unit cell here because the nondispersive Maxwell’s equations bring about scale-invariant band
diagrams when depicted in the kxa/π −ωa/(2πc) plane. Also, since there is no dispersion,
the complex-ω method in Eq. (1a) can be simplified into a transcendental equation similar to
that in Eq. (14). The differences between two transcendental equations lie in that the parameter
Δεr,nk(ω) is no longer present in the equation corresponding to the complex-ω method, and as
a result of lossless dielectrics, it is real frequencies of Bloch modes that are solved.

Without the absorption, we project that the counterparts ωnk calculated from the proposed
GE problem are identical to those obtained from the complex-ω method. Since no source is
required to sustain the field in absence of the loss, we expect Δεr,nk(ωnk) = 0, namely, the
magnitudes |ωΔεr,nk(ω)| have minima equal to zero at resonances. In addition, the parameter
Δεr,nk(ω) is real when ω is off resonances because the power Pnk(ω) in Eq. (9) does not need
to balance any loss.

Figure 3(a) shows |ωΔεr,n0(ω)| at the BZ center as a function of the normalized frequency
ωa/(2πc) for TE modes with l = 2 and 3. The resonance frequencies ω(TE,2),0 and ω(TE,3),0
are positions of the respective minima. For simplicity, at each frequency ω , we only show
the smallest among magnitudes |ωΔεr,n0(ω)| that are taken into account. The yellow lines
in Fig. 3 mark adjacencies of neighboring modes in the frequency domain, at which the be-
havior of |ωΔεr,n0(ω)| abruptly changes due to mode switching. As expected, the magnitude
|ωΔεr,n0(ω)| approaches zero as the frequency comes close the resonance frequency. We fur-
ther carry out the above procedure to the two TE branches at kx ∈ [0,π/a] and ky = 0 and show
the corresponding curves of |ωΔεr,nk(ω)| in Fig. 3(b). For clear illustrations, these curves are
depicted in a 3D manner so that magnitudes |ωΔεr,nk(ω)| increase as the curves bend into the
figure. The loci of minima (zeros) on each curve are projected onto the kxa/π −ωa/(2πc)
plane. These loci correspond to the band diagrams calculated from the proposed GE problem.
The counterparts from the complex-ω method are also shown for comparisons. The two sets of
band diagrams are identical, as anticipated. Additional band diagrams using the two approaches
at ky = π/(2a) are shown in Fig. 4. The two lowest-order TE and TM modes are taken into ac-
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Fig. 4. Comparisons between band diagrams of the two lowest-order TE and TM modes
using the proposed formulation (solid lines) and complex-ω method (red circles) at ky =
π/(2a) in the periodic structure of nondispersive and lossless dielectric/dielectric bilayers.

count in this case. Again, the two sets of dispersion curves from the two schemes agree with
each other.

In lossless structures, we can alternatively imagine that the parameter Δεr,nk(ω) acquires an
infinitesimal imaginary part at the resonance. In this way, the power spectrum Pnk(ω) in Eq. (9)
is proportional to a delta function centered at ωnk, which is the sign of a persistent mode with
an infinitely long lifetime. Accordingly, the Q factor Qnk in Eq. (10) also approaches infinity.

3.3. Nondispersive but lossy structure of dielectric/metal bilayers

For the nondispersive but lossy structure of dielectric/metal bilayers, we set εa(ω) = 1 and
εb(ω) =−140+48i. The widths d1 and d2 are 0.99 a and 0.01 a, respectively. For this nondis-
persive structure, it is also possible to calculate band diagrams and Q factors with the complex-
ω method [23] and the proposed GE problem using the transcendental equation in Eq. (14).
However, the mode frequencies from the complex-ω are no longer real. Under these circum-
stances, we take real parts of these complex frequencies as the mode frequencies.

The band diagrams of the four lowest-order TE modes calculated through the complex-ω
method and the GE problem are shown in Fig. 5(a). The propagation constant ky is set to zero.
From the inset, the two approaches lead to slightly but distinguishably different dispersion
curves for the lowest-order TE mode (l = 1) near the BZ center around 0≤ kxa/π � 0.3. Except
for this special case, other dispersion curves calculated from two approaches nearly coincide
with each other. From Fig. 5(b), the Q factors obtained through the two approaches are almost
identical in most cases except for the lowest-order mode in the same range of kxa/π . Reflecting
these differences, the modes with high (low) Q factors in Fig. 5(b) always correspond to narrow
(wide) power spectra in Fig. 5(c).

A quick observation reveals that the agreements (disagreements) tend to take place when Q
factors are high (low). In Table 1, the comparison of resonance frequencies and Q factors at the
BZ center calculated from the two methods makes the correlation between Q factors and devi-
ations more transparent. These observations indicate a connection between loss and frequency
deviations. In fact, the origin of deviations may be inferred from the parameter Δεnk(ωnk). At
the resonance, the parameter Δεnk(ωnk) is nearly imaginary, as can be observed from Table 1.
In this case, Δεnk(ωnk) reflects the amount of gain to be inserted into Ωa so that the metal loss
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Fig. 5. (a) Band diagrams, (b) Q factors Qnk versus kxa/π , and (c) quasi-3D views of
Pnk(ω) as a function of kxa/π . The periodic structure is composed of nondispersive but
lossy dielectric/metal bilayers. The propagation constant ky is set to zero.

Table 1. Comparisons between resonance frequencies as well as Q factors, and a list of
Δεr,n0(ωn0) for the four lowest TE modes at the BZ center in Fig. 5.

Complex-ω method [Eq. (1a)] GE problem [Eq. (5a)]
l ωn0a/(2πc) Qn0 ωn0a/(2πc) Qn0 Δεr,n0(ωn0)
1 0.33863 1.99319 0.31900 1.66022 −0.03136−0.20758i
2 1.00044 3522.60 1.00044 3522.60 (0.048423−2.8i)×10−4

3 1.46613 47.614 1.46619 47.595 (−0.05718−1.9774i)×10−2

4 2.00310 1179.21 2.00310 1179.21 (−0.00979−8.5i)×10−4

is compensated, and the mode (n,k) can start to self oscillate (lase) at the real frequency ωnk.
On the other hand, a huge gain may also shift the resonance significantly, which just reflects
the deviated resonance frequencies obtained from the complex-ω method (passive structures)
and GE problem (active structures) for the lowest TE mode. Therefore, the low-Q (high-loss)
modes tend to bring about observable deviations between the two approaches while the high-Q
(low-loss) modes do not.

#179977 - $15.00 USD Received 15 Nov 2012; revised 11 Jan 2013; accepted 11 Jan 2013; published 17 Jan 2013
(C) 2013 OSA 28 January 2013 / Vol. 21,  No. 2 / OPTICS EXPRESS  1981



0.2

0.6

1

1.4

0 0.5 10.25 0.75

(TE,1)

(TE,2)

(TE,3)

0.2

0.6

1

1.4

0 0.5 10.25 0.75

(TE,1)

(TE,2)

(TE,3)

GE problem

Complex- method�

�
�

(a) (b)

�
�

k a/
x

� k a/
x

�

Fig. 6. (a) The band diagrams and (b) quasi-3D views of Pnk(ω) of the three lowest TE
modes in the periodic structure of dispersive and lossy dielectric/metal bilayers. The prop-
agation constant ky is set to zero.

3.4. Dispersive and lossy structure of dielectric/metal bilayers

For the periodic structure of dispersive and lossy dielectric/metal bilayers, we set εa(ω) = 1
and adopt the Drude model εb(ω) = 1−ω2

p/(ω2 + iγω) for the dispersive metal, where the
plasma frequency ωp is 1015 rad·s−1, and the damping term γ is set to 0.01ωp. The width d1

and d2 are set to 0.9 a and 0.1 a, respectively, with a = 1 μm.
Figure 6(a) and (b) shows the band diagrams and power spectra Pnk(ω) of the three lowest-

order TE modes, respectively. The calculations of the complex mode frequencies are imple-
mented with the transfer-matrix method [21]. The mode frequencies ωnk corresponding to the
GE problem are still obtained from the transcendental equation in Eq. (14). Fairly good agree-
ments for all the modes are present between calculations based on these two approaches due to
decently high Q factors, as can be inferred from the narrow lineshapes of Pnk(ω) in Fig. 6(b).

We further consider TM modes at ky = 0.9π/a because SPP waves propagating along layer
planes are of TM characteristics. The band diagrams of the three lowest-order TM modes are
shown in Fig. 7(a). The x component of the electric-field magnitude at the BZ center and bound-
ary are also illustrated. From the profile of the field magnitude, the lowest-order TM modes
exhibit maxima at the metal-dielectric interface, which is the feature of generic surface waves.
On the other hand, although the magnitude profiles of the second TM branch (l = 2) still exhibit
surface-like behaviors, the flat field profile and relatively high strength of the x electric field in
the metal layer indicates ω � ωp/

√
2 so that |εb(ω)|� 1. In a single dielectric/metal interface,

such a surface wave should not exist, but the double interfaces and periodic structure help sus-
tain these surface-wave-like Bloch modes. For this branch, the portion of the field strength in
lossy metal does not change significantly as kx increases from the BZ center to boundary. As
a result, the lineshapes of corresponding power spectra Pnk(ω) in Fig. 7(b) do not vary much,
indicating that the Q factor is quite flat across the first BZ. In contrast, the third TM branch
(l = 3) is not surface-wave-like in dielectric layers. The mode profiles there indicate that these
modes resemble the guided mode of a metal/dielectric/metal waveguide. For this branch, the
portion of the field strength in metal layers decreases significantly as kx varies across the first
BZ. Accordingly, the corresponding power spectra Pnk(ω) in Fig. 7(b) becomes sharper as kx

comes closer to the BZ boundary, indicating a high Q factor of the branch there.
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Fig. 7. (a) The band diagrams for the three lowest-order TM modes and (b) lateral 3D views
of Pnk(ω) for TM modes with l = 2 and 3. The periodic structure is composed of dispersive
and lossy dielectric/metal bilayers. The x component of the electric-field magnitude at the
BZ center and boundary are also shown in (a). The propagation constant ky is set to 0.9π/a.

4. Conclusion

We have presented a formulation in the form of a GE problem to calculate power spectra,
band diagrams, and Q factors of periodic structures. The approach is based on viewpoints of
active photonic devices and can be applied to PhCs with arbitrary frequency dispersions and
absorption. The calculations indicate that in most cases, outcomes from this formalism agree
well with those from other approaches such as the complex-ω method. Slight deviations may
occur in the low-Q regime. However, with decently high-Q factors, the formulation leads to
reliable outcomes but is free from the complexity brought by frequency dispersions. In this
way, the features of frequency dispersions can be easily grasped.

Appendix: Biorthogonality between Bloch modes

For a given wave vector k, the reciprocity theorem in Lorentz or Rayleigh-Carson form [41–43]
is inapplicable among the corresponding basis fields because sources are present in each unit
cell and does not vanish at infinity. Under these circumstances, we appeal to an alternative
reciprocity theorem for Bloch periodic parts. With Faraday’s law, we first define the magnetic
field gnk(r,ω) from fnk(r,ω) as follows:

gnk(r,ω) =
1

iωμ0
∇× fnk(r,ω)≡ eik·rϕϕϕnk(r,ω), (15a)

ϕϕϕnk(r+Rm,ω) = ϕϕϕnk(r), m = 1−3, (15b)

where ϕϕϕnk(r,ω) is the Bloch periodic part of the magnetic field gnk(r,ω). In terms of the Bloch
periodic parts ψψψnk(r,ω), ϕϕϕnk(r,ω), and ςςς s,nk(r,ω), Maxwell’s equations are rewritten as

∇×ψψψnk(r,ω)+ ik×ψψψnk(r,ω) = iωμ0ϕϕϕnk(r,ω), (16a)

∇×ϕϕϕnk(r,ω)+ ik×ϕϕϕnk(r,ω) = iωε0 ¯̄εr(r,ω)ψψψnk(r,ω)+ ςςς s,nk(r,ω). (16b)
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In reciprocal PhCs, the relative permittivity tensor is symmetric when represented in real and
orthonormal coordinate bases, namely, ¯̄εr(r,ω) = ¯̄εT

r (r,ω). With this property, we apply an
analogous derivation of the general reciprocity theorem (integral form in a unit cell Ωuc) [43]
to two sets of Bloch periodic parts with labels (n,k) and (n,k′) and obtain

∮

Suc

da · [ψψψnk(r,ω)×ϕϕϕn′k′(r,ω)−ψψψn′k′(r,ω)×ϕϕϕnk(r,ω)]

=−
∫

Ωuc

dr i(k+k′) · [ψψψnk(r,ω)×ϕϕϕn′k′(r,ω)−ψψψn′k′(r,ω)×ϕϕϕnk(r,ω)]

−
∫

Ωuc

dr
[
ψψψnk(r,ω) · ςςς s,n′k′(r,ω)−ψψψn′k′(r,ω) · ςςς s,nk(r,ω)

]
. (17)

In Eq. (17), the surface integral on the first line always vanishes because the integrand repeats
on opposite sides of Suc while the corresponding outward normal vectors of differential surface
areas (da) are antiparallel. If we further choose k′ = −k, the volume integral on the second
line also becomes zero. These two conditions convert Eq. (17) into an analogy to the Rayleigh-
Carson reciprocity for fields ψψψnk(r,ω), ςςς s,nk(r,ω), ψψψn′−k(r,ω), and ςςς s,n′−k(r,ω):

0 =
∫

Ωuc

dr
[
ψψψnk(r,ω) · ςςς s,n′−k(r,ω)−ψψψn′−k(r,ω) · ςςς s,nk(r,ω)

]

=−iωε0[Δεr,n′−k(ω)−Δεr,nk(ω)]
∫

Ωa

drψψψnk(r,ω) ·ψψψn′−k(r,ω). (18)

From the second line of Eq. (18), if Δεr,n′−k(ω) �= Δεr,nk(ω), the volume integral of the dot
product ψψψnk(r,ω) ·ψψψn′−k(r,ω) in Ωa has to be zero. The integral can be nonvanishing if the
two parameters Δεr,n′−k(ω) and Δεr,nk(ω) are identical. These characteristics motivate us to
adopt the following biorthogonality relation after proper mutual orthogonalizations between
Bloch periodic parts with wave vectors k and −k:

∫

Ωa

drψψψnk(r,ω) ·ψψψn′−k(r,ω) =
∫

Ωa

drfnk(r,ω) · fn′−k(r,ω)≡ δnn′Λnk(ω), (19a)
∫

Ωa

drςςς s,nk(r,ω) · ςςς s,n′−k(r,ω) =
∫

Ωa

drjs,nk(r,ω) · js,n′−k(r,ω)≡ δnn′Θnk(ω), (19b)

Θnk(ω) =−[ωε0Δεr,nk(ω)]2Λnk(ω), (19c)

where δnn′ is the Kroneckers delta; Λnk(ω) = Λn−k(ω) is the complex normalization con-
stant for fnk(r,ω) and fn−k(r,ω); and Θnk(ω) = Θn−k(ω) is the counterpart for js,nk(r,ω)
and js,n−k(r,ω). Thus, in Eq. (3b), if the amplitude cnk(ω) of js,nk(r,ω) in Js,k(r) is required,
we should extract it by carrying out the integral of [exp(−ik ·r)Js,k(r)] ·ςςς s,n−k(r,ω) rather than
[exp(−ik · r)Js,k(r)] · ςςς s,nk(r,ω) in Ωa because the Bloch periodic part ςςς s,nk(r,ω) would not
necessarily be orthogonal to other counterparts with identical k, namely,

cnk(ω) =
1

Θnk(ω)

∫

Ωa

dre−ik·rJs,k(r) · ςςς s,n−k(r,ω)

=
1

Θnk(ω)

∫

Ωa

drJs,k(r) · js,n−k(r,ω). (20)

Equation (20) uniquely determines the expansion coefficient cnk(ω) once a source Js,k(r)which
is only present in Ωa and satisfies the phase BC is given.

Still, if equation (19a) and (19b) needs to be utilized properly, the parameters from the set
{Δεr,nk(ω)} have to repeat in {Δεr,n′−k(ω)} and vice versa. It also means that the correspond-
ing degenerate subsets in {Δεr,nk(ω)} and {Δεr,n′−k(ω)} must have identical degeneracies. In
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this way, the biorthogonalization leading to Eq. (19a) and (19b) among various nondegener-
ate and degenerate sets can proceed without ambiguities. Otherwise, some degrees of freedom
(amplitudes of basis sources) in the source Js,k could be left behind. Without going into more
details, we assert that this property is expected in reciprocal (guiding) structures, in which the
bidirectionality is present [44–46]. Further understanding on this point shall be pursued in the
future study.
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