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This  study  simultaneously  models  crash  severity  of  both  parties  in two-vehicle  accidents  at  signalized
intersections  in  Taipei  City,  Taiwan,  using  a novel  bivariate  generalized  ordered  probit  (BGOP)  model.
Estimation  results  show  that  the  BGOP  model  performs  better  than  the  conventional  bivariate  ordered
probit  (BOP)  model  in  terms  of  goodness-of-fit  indices  and  prediction  accuracy  and  provides  a better
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approach  to identify  the  factors  contributing  to  different  severity  levels.  According  to  estimated  param-
eters  in  latent  propensity  functions  and  elasticity  effects,  several  key  risk  factors  are  identified—driver
type  (age  >  65),  vehicle  type  (motorcycle),  violation  type  (alcohol  use),  intersection  type  (three-leg  and
multiple-leg),  collision  type  (rear  ended),  and  lighting  conditions  (night  and  night  without  illumination).
Corresponding  countermeasures  for  these  risk  factors  are  proposed.
everity level

. Introduction

Two-vehicle accidents are the most common accidents on urban
treets, especially at intersections. Without knowing the factors
ontributing to crash severity, effective countermeasures cannot
e proposed. Numerous studies have been conducted to identify
he contributing factors to crash severity. However, the severity of
wo parties (drivers or riders) involved in the same two-vehicle
ccident may  significantly differ due to different driving behaviors,
ehicle characteristics, traffic environments, and other risk factors.
or instance, speeding drivers and/or impaired drivers may  cause
erious injury to other drivers when an accident occurs, but not to
hemselves. Thus, the crash severity levels of both parties should
e simultaneously considered so as to correctly identify associated
actors.

For crash severity modeling from an individual accident per-
pective, various methodological approaches have been applied,
uch as logistic regression (e.g., Sze and Wong, 2007; Al-Ghamdi,
002), bivariate models (e.g., Yamamoto and Shankar, 2004; de
apparent, 2008; Lee and Abdel-Aty, 2008), multinomial and nested
ogit structures to evaluate accident-injury severities (e.g., Shankar
nd Mannering, 1996; Chang and Mannering, 1999; Carson and
annering, 2001; Lee and Mannering, 2002; Abdel-Aty, 2003;

lfarsson and Mannering, 2004; Holdridge et al., 2005; Savolainen
nd Mannering, 2007) and mixed logit models (Milton et al., 2008;
kritza and Mannering, 2008; Pai et al., 2009).
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Notably, the discrete ordered probability model is one of the
most common approaches used in recent accident severity studies
(Shibata and Fukuda, 1994; O’Donnell and Connor, 1996; Duncan
et al., 1998; Renski et al., 1999; Khattak, 2001; Kockelman and
Kweon, 2002; Abdel-Aty, 2003; Zajac and Ivan, 2003; Abdel-Aty
and Keller, 2005; Lee and Abdel-Aty, 2005; Williams, 2006; Eluru
and Bhat, 2007; Pai and Saleh, 2007; Eluru et al., 2008; Gray et al.,
2008; Pai and Saleh, 2008; Wang and Abdel-Aty, 2008; Yamamoto
et al., 2008). This approach has considerable appeal because sever-
ity outcomes are discrete and ordered from low severity to high
severity (e.g., property damage only, possible injury, evident injury,
and disabling injury and fatality). The injury-severity categories
are ordered in categories that are in some cases closely related
(e.g., levels of no injury and possible injury); additionally, injury
levels may be closely related (Savolainen et al., 2011). These crash
severity studies have applied ordered response modeling to accom-
modate the natural order of crash severity levels. In the same
vein, most of these studies applied the univariate ordered probit
model to analyze two-vehicle accidents (e.g., Shibata and Fukuda,
1994; Shankar et al., 1996; Chang and Mannering, 1999; Carson
and Mannering, 2001; Khattak, 2001; Kockelman and Kweon,
2002; Lee and Mannering, 2002; Abdel-Aty, 2003; Abdel-Aty and
Keller, 2005; Pai and Saleh, 2008). However, due to a restric-
tion on the number of dependent variables—only one variable is
allowed—those studies simply determined the severity level of
two-vehicle accidents by adopting the crash severity level of party

injured most.

As mentioned, the injury severity levels of the two parties
involved in the same accident may  differ markedly. Undoubt-
edly, considering the severity levels of two  parties along with the

dx.doi.org/10.1016/j.aap.2012.11.008
http://www.sciencedirect.com/science/journal/00014575
http://www.elsevier.com/locate/aap
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orresponding factors is necessary to obtain insights from crash
ata and to propose effective safety strategies. Only considering
he most-injured party may  result in loss of valuable information.

oreover, the severity levels of the two parties along with con-
ributing factors cannot be modeling separately, as these factors
re typically closely related, resulting from the interrelationships
mong potential risk factors such as driver behavior, vehicle type,
nd collision type. The interaction between risk aversion behav-
ors of both drivers may  also affect resulting severity levels. Thus,
he severity levels of the two parties along with the corresponding
ontributing factors cannot be modeling separately, as observed
r unobserved factors are usually correlated to some degree.
eglecting these potential correlations may  lead to parameter
ver-estimation in crash severity modeling, thereby endogeneity
roblems (Winston et al., 2006; de Lapparent, 2008; Savolainen
t al., 2011). Providing a relatively more efficient estimation by
onsidering common unobserved factors for all involved parties,
uch as passengers (Hutchinson, 1986; Yamamoto and Shankar,
004; Lee and Abdel-Aty, 2008) and other involved drivers (Rana,
009) in one accident is essential. From the estimated correlation
arameter (�) of the abovementioned studies indicates that the
rror terms of drivers or passengers’ injury severities are positively
orrelated with each other. Hence, the modeling of the severity of
nly one driver may  lead to the overestimation of coefficients. The
imilar endogeneity problem also exists for aggregate frequency
odeling approaches (e.g., Maher, 1990; Tunaru, 2002; Bijleveld,

005; N’Guessan et al., 2006; Geedipally and Lord, 2010).
To avoid the endogeneity and overestimation problems, this

tudy uses the bivariate generalized ordered probit (BGOP) model
o simultaneously model crash severity of both parties without los-
ng the important information of both parties. The BGOP model, a
exible and comprehensive analytical approach, can analyze two
rdered target variables simultaneously, i.e., crash severity levels
f two parties, on contributing factors. Additionally, the thresh-
ld functions of the BGOP model can be calibrated during the
odel estimation process to condense model heterogeneity and

o provide more insights for crash severity classification than the
OP model.

The remainder of this paper is organized as follows. Section 2
riefly introduces the bivariate ordered probit (BOP) and BGOP
odels. Section 3 presents the descriptive statistics of data used

o develop the models. Section 4 compares and discusses estima-
ion results by the BOP and BGOP models. Finally, Section 5 gives
onclusions and recommendations for future research.

. Model

The BGOP model is an extension of the BOP model. A common
ssumption of ordered discrete outcome models is that parameter
stimates are constant across severity levels. However, the BGOP
odel allows the thresholds of the BOP model to vary according

o both observed characteristics of two parties to minimize model

Pr(�n=1,k−1 < y∗
q,n=1 < �n=1,k; �n=2,�−1 <

= Pr(�n=1,k−1 < ˇ′
1Xq1 + εq,n=1 < �n=1,

= Pr(�n=1,k−1 − ˇ′
1Xq1 < εq,n=1 < �n=1,

= ˚2(�n=1,k − ˇ′
1Xq1, �n=2,� − ˇ′

2Xq2; �

− ˚2(�n=1,k − ˇ′
1Xq1, �n=2,�−1 − ˇ′

2X
eterogeneity and to provide additional insights for crash sever-
ty classification. To facilitate estimation in a traditional closed
og-likelihood function form, the BGOP model is derived based on
revious studies of the BOP model (Yamamoto and Shankar, 2004)
d Prevention 51 (2013) 175– 184

and generalized ordered response logit (GORL) models (Eluru et al.,
2008); this differs from the previous derivation by de Lapparent
(2008).

2.1. Bivariate ordered probit

A BOP model is a hierarchical system of two equations that can
be used to model a simultaneous relationship of two response vari-
ables, and addresses possible endogeneity problems, such that the
severity levels of injuries to two or more participants involved in
the same accident are typically correlated (Savolainen et al., 2011).

Let qn (n = 1, 2) be an index representing two  drivers involved
in the same accident q (q = 1, 2, . . .,  Q). Suppose yqn is the observed
injury severity representing the latent (unobserved) injury sever-
ity propensity of drivers. Moreover, uq1 and uq2 are thresholds or
cut-off values used to determine observed injury severity levels of
both drivers relative to their corresponding injury propensities in
crash q. Additionally, k (k = 1, 2, . . .,  K) and l (l = 1, 2, . . .,  L) are the
indices representing ordinal categories of injury severity sustained
by each driver. Thus, the latent injury severity propensities of the
two drivers match their actual injury severity, as in the following
equations:

y∗
q,n=1 = k, if �n=1,k−1 < y∗

q,n=1 < �n=1,k (1)

y∗
q,n=2 = l, if �n=2,l−1 < y∗

q,n=2 < �n=2,l (2)

Based on the above notations, the joint equation system from
modeling injury severity of the two drivers involved in a two-
vehicle accident is given by Eqs. (3) and (4),  respectively:

y∗
q,n=1 = ˇ′

1Xq1 + εq1 (3)

y∗
q,n=2 = ˇ′

2Xq2 + εq2 (4)

where ˇ′
n is a parameter vector, and εqn represents the random

components that capture all unobserved factors associated with
all involved parties. Under the assumption of a bivariate normal
distribution of random components, the joint probability of the two
drivers involved in the same accident can be expressed as follows
(Yamamoto and Shankar, 2004):

=2 < �n=2,�)

=2,�−1 < ˇ′
2Xq2 + εq,n=2 < �n=2,�)

′
1Xq1; �n=2,�−1 − ˇ′

2Xq2 < εq,n=2 < �n=2,� − ˇ′
2Xq2)

2(�n=1,k−1 − ˇ′
1Xq1, �n=2,� − ˇ′Xq2; �)

 + ˚2(�n=1,k−1 − ˇ′
1Xq1, �n=2,�−1 − ˇ′

2Xq2; �)

(5)

where ˚2(·) is the standard bivariate normal cumulative distribu-
tion function. � is an estimated correlation parameter between εq1
and εq2.

2.2. Bivariate generalized ordered probit

As abovementioned, the BGOP model is based on the BOP
(Yamamoto and Shankar, 2004) and the GORL models (Eluru et al.,
2008). In Eqs. (1) and (2), thresholds uq1 and uq2 are now sub-
scripted by index q to show that these cutoffs can vary across
accidents involving different individuals to account for individual
observed risk features.

y∗
q,n=1 = k, if �̃q,n=1,k−1 < y∗

q,n=1 < �̃q,n=1,k (6)

∗ ∗
yq,n=2 = l, if �̃q,n=2,l−1 < yq,n=2 < �̃q,n=2,l (7)

In what follows, this study adopts a specific parametric
function for each threshold to satisfy the following two order-
ing conditions: (−∞ < ũq,n=1,1 < ũq,n=1,2 < · · · < ũq,n=1,K−1 < ∞)
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Table 1
Sample distribution by explanatory variables.

Variable First party Second party

Driver type
Gender (Male) 79.9% 76.0%

Age ≤ 20 8.1% 11.4%
20 < Age ≤ 40 44.0% 54.2%

Age 40 < Age ≤ 65 44.6% 32.4%
Age > 65 3.4% 2.0%
Average (Std.) 39.9 (14.1) 35.8 (13.6)

Violation type
Liability Yes 99.9% 66.2%

No 0.01% 33.8%
Alcoholic use Yes 3.3% 0.6%

No 96.7% 99.4%
Speeding Yes 8.5% 4.5%

No 91.5% 95.5%
Use of safety equipments

(seatbelt/helmet)
Yes 98.8% 99.1%

No 1.2% 0.9%

Vehicle type
Bus 1.8% 1.1%
Truck 4.3% 1.6%
Car  41.1% 22.8%
Taxi 16.7% 10.2%
Motorcycle 36.1% 64.3%

Collision type
Head-on 0.5%
Rear-end 2.1%
Sideswipe 52.7%
Angle 44.7%

Intersection type
Four-leg intersection 76.9%
Three-leg intersection 15.6%
Multiple-leg intersection 7.2%
Roundabout 0.3%

Roadway type
Major arterial 2.2%
Minor street 96.7%
Alley 1.1%

Time
18:00–24:00 31.9%
24:00–06:00 11.4%
06:00–18:00 56.7%

Lighting conditions
Daylight 62.8%
Night with illumination 20.1%
Night without illumination 17.1%
Y.-C. Chiou et al. / Accident Analy

nd (−∞ < ũq,n=2,1 < ũq,n=2,2 < · · · < ũq,n=2,L−1 < ∞)  for crash q.
hus, this study specifies them as:

˜q,n=1,k = ũq,n=1,k−1 + exp(˛k + � ′
k · Zq,k) (8)

˜q,n=2,� = ũq,n=2,�−1 + exp(�� + ς′
l · Zq,l) (9)

here Zq,k and Zq,l are two exogenous variable vectors. Each is
inked to its associated thresholds ũq,n=1,k and ũq,n=2,�. Addition-
lly, � ′

q,k
and ς′

q,�
are coefficients associated with crash vectors.

Parameters ˛q,k and �q,l are included in each party’s specific
njury severity level k (k = 1, 2, . . .,  K−1) and l (l = 1, 2, . . .,  L−1). In
onsideration of model identification, this study employs normal-
zation, such that ũq,n=1,l=1 and ũq,n=2,l=1 equal zero for all q. Since
he BGOP model is an extension of the BOP model, which restricts
ll non-constant parameters in the threshold function to zero. One
an evaluate the validity of restrictions imposed by the restrictive
OP model using the likelihood ratio index (�2), model information
riteria: Akaike information criterion (AIC), Bayesian information
riterion (BIC) and Chi-squared test.

.3. Model estimation and validation

The log-likelihood of the BGOP model while considering both
arties is given by:

L =
∑

Ln{˚2( �̃q,n=1,k − ˇ′
1Xq1, �̃q,n=2,� − ˇ′

2Xq2; �)

− ˚2( �̃q,n=1,k−1 − ˇ′
1Xq1, �̃q,n=2,� − ˇ′Xq2; �)

− ˚2( �̃q,n=1,k − ˇ′
1Xq1, �̃q,n=2,�−1 − ˇ′

2Xq2; �)

+ ˚2( �̃q,n=1,k−1 − ˇ′
1Xq1, �̃q,n=2,�−1 − ˇ′

2Xq2; �)} (10)

The corresponding parameters ˇ′
1, ˇ′

2, �̃qk(� ′
q,k

, ˛q,k), �̃qk(� ′
q,k

,

q,k) and � are estimated simultaneously using the maximum
ikelihood method. The positive (negative) value of the coeffi-
ient estimate means that the probability of higher severity levels
ncrease (decrease).

The study utilizes GAUSS software (Aptech Systems, 1995) and
stimates the BOP and BGOP models using the maximum likeli-
ood method. Estimation results for the BOP model can identify

mportant explanatory variables and provide initial values for BGOP
odel estimations.
To ensure that the proposed model is applicable, this study

pplies mean absolute percentage error (MAPE) and root mean
quare error (RMSE) to compare different models. In this compari-
on, two datasets are separately used to estimate and validate the
OP and BGOP models. Additionally, MAPE is utilized as the decisive
erformance index because it is expressed as a generic percentage
erm with a straightforward and comprehensive meaning (Lewis,
982).

. Data

In total, 2661 two-vehicle accidents (5332 drivers) that occurred
t signalized intersections during 2006–2007 in Taipei City are
ollected. Each of accident data contains a variety of crash infor-
ation, including the severity levels of the two  parties as well as

otential factors, including driver type (for both parties), vehicle
ype (for both parties), violation type (for both parties), roadway
ype, collision type, intersection type, and lighting conditions fac-
ors (Table 1). The target variables are the injury severities of

rivers/riders of two parties. The injury severities of passengers
re not modeled in this study. Notably, four violation types are con-
idered in this study including liability, alcohol use, speeding, use
f safety equipments, where liability (a dummy variable) indicates
Total crashes 2661 (100.0%)

whether or not the party should be responsible for the crash, gauged
by the police officer at the accident site. Usually, the first party of an
accident is termed as the one who  has to take greater responsibility
for the crash than the other, which is also classified by the police
officer. Given the liability and classification, this study attempts to
examine the effect of liability to crash severity and the differences
in the injury severities of two parties. However, the proposed model
is still applicable for those accident data without classification of
involved parties.

For model estimation and validation, this dataset is randomly
divided into two sets: one set for model estimation (2050 cases
and 4100 drivers) and the other for model validation (611 cases
and 1222 drivers). Most potential explanatory variables (Table 1)
are binary coded to represent certain types of drivers, vehicles,
violations, collisions, intersections, roadways, times and lighting

conditions. However, the age variable is examined separately in
model estimation in its continuous and discretized form.

Three levels of severity in raw accident data are typically
used—property damage only, injury, and fatality. However, under
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Table  2
Cross-tabulation by the severity levels of two  parties.

First party Second party

Property damage
only

Possible injury Evident injury Disabling injury
and fatality

Total

Property damage only 527(37.7%) 723(51.8%) 85(6.1%) 62(4.4%) 1397(100.0%)
Possible  injury 249(45.0%) 253(45.8%) 28(5.1%) 23(4.2%) 553(100.0%)
Evident injury 24(49.0%) 17(34.7%) 5(10.2%) 3(6.1%) 49(100.0%)
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Disabling injury and fatality 31(60.8%) 13(25.5

Total  831 1006 

his classification system, sample distribution is generally uneven
ith too few fatal crash cases (<0.1%). Therefore, this study reclas-

ifies cases using four severity levels—property damage only,
ossible injury, evident injury, and disabling injury and fatality.
able 2 gives a cross-tabulation of severity levels of the two parties.

As shown in Table 2, injury severity levels of the first and second
arties are strongly correlated in severity levels of property damage
nly and possible injury. Notably, the total number of cases without
njury to the first party (property damage only) is much larger than
hat of the second party (1397 vs. 831), while the total number of
erious-injury cases for the first party is less than that of the second
arty (evident injury, 1006 vs. 553; disabling injury and fatality,
21 vs. 49), suggesting that the second party is more vulnerable to
erious injury than the first party, and explaining the importance
f simultaneously examining factors contributing to severity levels
or different parties.

. Results

To identify the factors contributing to crash severity for both
arties and to demonstrate the importance of incorporating gen-
ralized thresholds, both the BOP and BGOP models are estimated
nd compared. Policy implications are also proposed based on esti-
ation results.

.1. Model estimation

Tables 3 and 4 present the estimation results for the BOP and
GOP models, respectively.

The goodness-of-fit indices of the BOP and BGOP models are
retty well (Tables 3 and 4). Correlation parameters (�) in both
odels are significant, demonstrating the need to model injury

everity levels for both parties simultaneously. For comparisons,
wo separate univariate models for the first party and the second
arty have also been estimated, respectively. The results show that
he estimated standard deviations of bivariate models (i.e., BOP and
GOP) are lower than those of the univariate models and the esti-
ated coefficients of the bivariate and the univariate models are

ifferent. Moreover, the bivariate models perform better than the
nivariate models in terms of MSE  and MAPE, suggesting the high
orrelation between the severity levels of two parties and the needs
f simultaneously modeling. However, for brevity, the estimation
esults of univariate models are omitted. Since the goodness-of-fit
ndices (such as adj-�2, AIC, and BIC) of the BGOP model perform
etter than that of the BOP model, demonstrating the impor-
ance of using generalized thresholds. Moreover, the likelihood
atio test result shows that the chi-squared value is 221.38, which
xceeds the 5% significance level (	2

(5,0.95) = 11.07), suggesting the
GOP model performs significantly better than the BOP model.
ccordingly, implications, the discussion and conclusions are inter-

reted based on BGOP model results.

To classify latent propensity into four severity levels, three
hresholds are required for each party—ũn(n=1,2),l(l=1,2,3). By set-
ing two thresholds of ũn(n=1,2),1 as the reference, four threshold
3(5.9%) 4(7.8%) 51(100.0%)

121 92 2050

functions of ũn(n=1,2),l(l=2,3) are estimated. Several explanatory fac-
tors, including vehicle type (motorcycle), driver type (male), and
violation type (alcohol use), have significant effects on the shift
of thresholds, and changing severity level classification results
(Table 4). Notably, the value of correlation coefficient � decreases
slightly when compared with that of the BOP model (Table 3),
because these explanatory variables are incorporated into thresh-
old functions.

The estimated parameters with a positive sign in threshold
functions indicate that when the associated type of a condition
is present, the threshold shifts to the right and then increases
the interval of the defined severity level and increases probability,
resulting in a lower severity level compared with that of the other
party (Eluru et al., 2008). A negative estimated parameter has the
opposite effects. The estimated parameters in threshold functions
are interpreted by the elasticity effect in the following section.

Based on the estimated parameters in latent propensity func-
tions, a parameter with positive sign indicates that when the type
of an associated explanatory variable is present in an accident, the
severity level for this party increases. These estimated parameters
for the first and second parties are markedly different and some
factors related to one party have significant effects on the sever-
ity level of the other party, explaining the interaction between two
parties involved in an accident (Table 4).

For the estimated parameters for driver type (gender and age),
when the driver is male, the latent propensity to injury himself
can be curtailed by 0.326 and 0.165 for the first and the second
parties, respectively. This estimation result is in agreement with
those in previous studies (Kockelman and Kweon, 2002; Abdel-Aty,
2003; Yamamoto and Shankar, 2004; Holdridge et al., 2005; Eluru
and Bhat, 2007; de Lapparent, 2008; Eluru et al., 2008; Gkritza and
Mannering, 2008; Yamamoto et al., 2008) and the gendered stereo-
type that posits that male drivers are in better physical condition
for resisting potential dangers and are faster in responding to risk,
resulting in male drivers being less injured in accidents than female
drivers. However, the magnitude of estimated parameter of corre-
sponding variable for the second party is much lower than that of
the first party, implying that although the second party is male, he
is still more vulnerable to a severe injury than the male first party.
Additionally, the parameter of the male second party in the thresh-
old function ũn=2,l=3 is negative (−0.068), suggesting that a male
second party has a higher risk for severe injury than a female sec-
ond party; this finding runs counter to our expectation. This may
be because the driver overacts and this increases injury severity.

The age variable (continuous form in the logarithmic term
and discretized form for drivers aged > 65) only affects the latent
propensity of the first party, suggesting that when the first party
is aged > 65, his/her injury severity in an accident increases. This
finding is also consistent with that in other studies (Kockelman and
Kweon, 2002; Zajac and Ivan, 2003; Abdel-Aty, 2003; Ulfarsson

and Mannering, 2004; Yamamoto and Shankar, 2004; Eluru and
Bhat, 2007; de Lapparent, 2008; Eluru et al., 2008; Yamamoto
et al., 2008). Conversely, the ln(Age) parameter of the second party
has a negative sign, implying that older drivers may  have more
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Table  3
Estimation result of the BOP model.

Types Variables Latent propensity

First party Second party

Estimate t-Stat. Estimate t-Stat.

Constant −0.563 −1.30 −1.088 −10.27
u2 1.901 28.81 2.001 38.78
u3 2.250 28.51 2.458 40.09

Driver Male 1st −0.313 −3.57
2nd −0.134 −1.82

Age  > 65 1st 0.275 1.61
ln(Age) 2nd −0.218 −1.92

Violation Alcoholic use 1st 0.966 7.52 0.679 6.20
2nd 0.586 2.72

Liability 2nd −0.226 −3.73
Vehicle Bus 1st 0.504 3.20

2nd 1.142 7.11
Car  1st 0.255 4.12
Motorcycle 1st 2.569 29.21

2nd −0.494 −5.79 2.115 31.86
Intersection Three-leg 0.173 2.27

Multiple-leg 0.281 2.87
Roadway Major arterial −1.963 −3.35
Collision Rear-end 0.574 2.58
Lighting conditions Timing (24:00–06:00) 0.236 2.33

Lighting (night without illumination) 0.264 3.19

Number of observations (number of parameters) 2050 (27)
LL(C)  −3261.17
LL(ˇ) −2375.98
�  (t-Stat.) 0.29 (8.87)
adj-�2 0.27
AIC 4805.95
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ote: Only the variables with significantly tested parameters at  ̨ = 0.10 are reporte

xperience than young drivers and respond to potential crashes
etter, thereby reducing the possible injury to the other party.

The estimated parameters for violation type indicate that when
he first driver is drunk, injury severity of the first and the second
arties increases by 0.932 and 0.699, respectively. This analytical
esult is also in agreement with that in many previous stud-
es (O’Donnell and Connor, 1996; Kockelman and Kweon, 2002;
ajac and Ivan, 2003; Abdel-Aty, 2003; Ulfarsson and Mannering,
004; Yamamoto and Shankar, 2004; Holdridge et al., 2005; Eluru
nd Bhat, 2007; Eluru et al., 2008; Wang and Abdel-Aty, 2008;
amamoto et al., 2008), because alcohol adversely affects driver
esponses to risk by prolonging reaction time. However, if a drunk
river is the second party, only his/her injury severity increases,
nd has no significant effect on that of the first party. Surpris-
ngly, negative effects of other behaviors that break traffic laws on
njury severity of the second party are significant, implying that the
econd party breaking traffic laws may  reduce his/her injury sever-
ty. This unexpected finding resembles that obtained by Abdel-Aty
2003).

The effects of vehicle type on injury severity of the first or
econd parties are also significant. Unlike previous studies of uni-
ariate models (Kockelman and Kweon, 2002; Zajac and Ivan,
003; Yamamoto and Shankar, 2004; Holdridge et al., 2005; Eluru
nd Bhat, 2007; Eluru et al., 2008; Gkritza and Mannering, 2008;
amamoto et al., 2008) which cannot further identify the effects of
ehicle type to both parties, the BGOP model can identify the inter-
elation between the vehicle types used by two parties. According
o the estimation results, several findings are identified. First, when
he vehicle of the first party is a bus, the injury severity of the second

arty increases, since damage typically increases as vehicle size of
nother party increases and vice versa. Additionally, if the vehicle of
he first party is a car, then the injury severity of the second party
lso increases, but not vice versa. Notably, motorcycles have the
largest effect on injury severity of the riders themselves, since the
estimated parameters have the largest value among all explana-
tory variables. Those riding motorcycles typically suffer serious
injury regardless of whether they are the first or second party in
an accident. This finding underscores the dangers associated with
this transportation mode, as motorcycles lack external protection,
and coincides with the fact that motorcyclist fatalities in Taiwan
account for 56.69% of all traffic deaths (Wen  et al., 2012). How-
ever, when the vehicle type of the second party is a motorcycle,
injury severity of the first party declines slightly, due to reduced
impact from a motorcycle. This finding is similar to the previous
works of Evans (2004) on two-vehicle crashes from an aggregate
perspective.

In this analysis, intersection types affect injury severity of the
second party, not that of the first party. When an intersection is
three-legged or multiple-legged, the injury severity of the second
party increases. Because multiple-legged intersections usually
have more conflicting traffic flows with an insufficient sight dis-
tance. Although at three-legged intersections, one vehicle always
has to make a turn (at least on the third leg - the one without
on-coming traffic), which reduces the speed of the first or second
vehicle, this may  lead to a reduction of crash severity. However,
in Taiwan, motorcycles are prevailing at urban streets. To improve
traffic safety at most of four-legged intersections, motorcycles are
not allowed to turn left during the green phase. Instead, they are
required to stop in the motorcycle left-turn waiting area and wait
for the green phase of this approach to reduce potential conflicts
between through traffic and left-turning motorcycles. Such a
design does not present at many three-legged intersections due

to space limitation. Consequently, motorcycles can directly make
a left-turning without the need to stop and wait for the green
phase of the approach, which become a potential risk to higher
crash severity. Therefore, to re-design three-legged intersections
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Table 4
Estimation results of the BGOP model.

Types Variables Party Threshold function Latent propensity

ũn=1,k=2 ũn=1,k=3 ũn=2,l=2 ũn=2,l=3 1st 2nd

Estimate t-Stat. Estimate t-Stat. Estimate t-Stat. Estimate t-Stat. Estimate t-Stat. Estimate t-Stat.

Constant −0.568 −3.01 0.874 26.86 −0.417 −2.51 0.945 25.70 −0.636 −1.42 −1.217 −11.14
Driver Male  1st −0.326 −3.62

2nd  −0.068 −1.98 −0.165 −2.19
Age  > 65 1st 0.287 1.65
ln(Age)  2nd −0.217 −1.84

Violation Alcoholic use 1st 0.132 2.62 0.932 6.19 0.699 5.84
2nd  0.587 2.64

Liability  2nd −0.229 −3.62
Vehicle Bus 1st 0.530 3.40

2nd 1.031 5.66
Car  1st 0.260 4.10
Motorcycle 1st 1.320 6.98 2.737 28.05

2nd  1.116 6.77 −0.498 −5.81 2.285 31.41
Intersection  Three-leg 0.172 2.18

Multiple-leg 0.287 2.74
Roadway Major arterial −1.975 −3.35
Collision  Rear-end 0.612 2.77
Lighting  conditions Time (24:00∼06:00) 0.256 2.29

Lighting (night without
illumination)

0.296 4.95 0.218 3.86 0.640 4.77

Number  of observations (number of parameters) 2050 (33)
LL(C)  −3261.17
LL(ˇ)  −2265.29
�  (t-Stat.) 0.247 (6.26)
adj-�2 0.31
AIC  4596.57
BIC  4782.22
Likelihood ratio test with BOP model −2[LL(ˇBGOP) − LL(ˇBOP)] = 221.38

Note: Only the variables with significantly tested parameters at ˛ = 0.10 are reported.
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Table  5
Elasticity effects for the first party.

Types Variables BOP BGOP

Property
damage
only

Possible
injury

Evident
injury

Disabling
injury and
fatality

Property
damage
only

Possible
injury

Evident
injury

Disabling
injury and
fatality

Driver Male 1st 0.17 −0.56 −1.41 −1.76 −1.36 −0.56 −0.99 −2.06
2nd  0.00 0.00 0.00 0.00 −2.63 0.00 0.00 0.00

Age  > 65 1st −0.11 0.36 0.86 1.06 3.50 0.49 0.88 1.83
ln(Age)  2nd 0.13 −0.32 −0.65 −0.76 0.12 −0.30 −0.48 −0.77

Violation Alcoholic use 1st −0.47 3.04 17.18 27.40 1.27 2.50 5.93 29.91
2nd  0.00 0.00 0.00 0.00 3.95 0.00 0.00 0.00

Liability 2nd 0.00 0.00 0.00 0.00 −0.77 0.00 0.00 0.00
Vehicle Bus 1st 0.00 0.00 0.00 0.00 3.93 0.00 0.00 0.00

2nd  −0.52 4.07 29.21 50.32 1.75 2.92 7.35 43.42
Car  1st 0.00 0.00 0.00 0.00 3.38 0.00 0.00 0.00
Motorcycle 1st −2.59 14.60 655.46 2348.98 −4.53 23.14 3.11 5231.09

2nd  0.29 −0.94 −2.73 −3.57 2.16 −0.88 −1.61 −4.04
Intersection Three-leg 0.00 −0.01 −0.03 −0.03 2.75 −0.01 −0.01 −0.02

Multiple-leg 0.01 −0.02 −0.05 −0.06 3.52 −0.01 −0.02 −0.04
Major  arterial −0.01 0.06 0.13 0.16 3.58 0.03 0.05 0.09

Collision Rear-end −0.28 1.33 4.68 6.44 3.40 1.31 2.66 8.53
Lighting conditions Time (24:00–06:00) −0.15 0.51 1.29 1.61 1.00 0.50 0.89 1.84
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0.01 −0.02

or accommodating the waiting areas for left-turning motorcycles
s strongly recommended. Furthermore, when one roadway at an
ntersection is a major arterial, injury severity for the second party
s decreased. This is because major arterials have a high geometrical
esign standard. Drivers on such roads have better sight distance
nd longer time to respond than drivers on other minor roads.

Rear-end collision is the only collision type that affects injury
everity. Similar findings were obtained by Chang and Mannering
1999), Khattak (2001),  Kockelman and Kweon (2002),  Eluru and
hat (2007),  de Lapparent (2008),  and Gkritza and Mannering
2008). Injury severity of the first party increases in a rear-end col-
isions (Table 4). The reason is likely that in rear-end accidents,
rivers of following vehicles are usually the first party and fail to
aintain a safe distance from the front vehicles. For a rear-end col-

ision, drivers of front vehicles and drivers of following vehicles
end to have more-severe injuries than the other drivers.

Last, lighting condition factors also affect injury severity of the
rst or second parties. The injury severity level of the first party is
igher when a crash occurs at night (24:00–6:00), because vehicles
uring that period are often moving at relatively high speeds and
rivers can become distracted (Eluru and Bhat, 2007; Eluru et al.,
008). Additionally, injury severity of the second party is higher
hen an accident occurs under a poor lighting condition (Abdel-
ty, 2003; Zajac and Ivan, 2003; Holdridge et al., 2005; Eluru and
hat, 2007). Under this condition, drivers have poor visualization
nd lack sufficient reaction time to avoid serious accidents.

.2. Elasticity effect

The estimated parameters of explanatory variables (Table 4) do
ot directly show the magnitude of effects on the probability of each

njury severity level. Some explanatory variables have different
ffects on injury severity level of one party in threshold functions
nd latent propensity functions. To elucidate the impact of con-
ributing factors, this study computes the aggregate level elasticity
ffects of variables (Tables 5 and 6) for the first and second parties
sing the BOP and BGOP models. Thus, one can calculate aggregate

evel elasticity of any dummy  variable by changing the variable

alue to 1 for the subsample of observations for which the variable
as a value of 0, and to 0 for a subsample of observations for which
he variable has a value of 1. Following computation, this study
ums shifts in expected aggregate shares in the two  subsamples
−0.04 −0.05 2.39 0.00 0.00 0.00

after reversing the signs of shifts in the second subsample, and com-
putes an effective percentage change in expected aggregate shares
in the entire sample after changing the dummy  variable value from
0 to 1 (Eluru and Bhat, 2007; Eluru et al., 2008). The elasticity effect
can be interpreted as percentage change in probability of an injury
severity category due to changing the variable to 1 from 0, except
for the continuous variable, ln(Age).

Without considering flexible thresholds, all elasticity effects of
the BOP model increase monotonically or decrease across severity
levels (Tables 5 and 6). However, for the BGOP model, elasticity
effects may  exhibit a bi-modal pattern (i.e., have a larger effect
on the two  extreme severity levels), which can better describe the
effect of a factor. Most variables considered in this study are cat-
egorical. The heterogeneity of variables may  be rather large. The
estimation results of the BOP and BGOP models differ, not only for
signs of elasticity, but also for magnitude.

To avoid redundant implications and discussions based on esti-
mation results for latent propensity, the following only focuses on
factors that have relatively large elasticity effects. Vehicle type of
motorcycle has the largest positive elasticity effect on disabling
injury and fatality (5231.09), underlining the danger to the first
party when they are riding a motorcycle. Notably, the elasticity
effect of this variable does not increase monotonically with injury
severity, but has a large effect on severity levels of possible injury,
and disabling injury and fatality. Additionally, this variable only
reduces the probability of property damage, again emphasizing
the risk of riding a motorcycle. This estimations result is in agree-
ment with that obtained by Wen  et al. (2012).  The second-largest
positive elasticity effect is colliding with a bus (43.42), and this
variable (vehicle type = bus driven by the second party) exhibits a
monotonic pattern from the least-serious severity level to the most-
serious severity level. The third-largest positive elasticity effect is
drunk driving. Drunk drivers tend to get injured with monotonically
increasing probability. Conversely, the largest negative elasticity
effect is to collide with a motorcycle (−4.04).

For the second party (Table 6), similar to the first party, the
largest elasticity effect is riding a motorcycle (1514.77), under-
scoring the danger in using this transportation mode regardless

of whether the motorcycle is driven by the first or second party.
In Taipei City, which has a convenient public transportation sys-
tem, motorcycle ridership accounts for approximately 30% of total
trips; however, in other cities in Taiwan, ridership is as high as
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Table  6
Elasticity effects for the second party.

Types Variables BOP BGOP

Property
damage
only

Possible
injury

Evident
injury

Disabling
injury and
fatality

Property
damage
only

Possible
injury

Evident
injury

Disabling
injury and
fatality

Driver Gender (Male) 1st 0.00 0.00 0.00 0.00 −4.02 0.00 0.00 0.00
2nd 0.14  −0.09 −0.30 −0.40 −1.95 −0.10 −0.53 0.02

Age  > 65 1st 0.00 0.00 0.00 0.00 6.06 0.00 0.00 0.00
Violation Alcoholic use 1st −0.56 0.56 3.27 5.32 4.83 0.69 0.65 6.25

2nd  −0.48 0.46 2.48 3.92 6.06 0.41 1.46 4.24
Liability 2nd 0.24 −0.14 −0.51 −0.70 −0.59 −0.14 −0.41 −0.74

Vehicle Bus 1st −0.44  0.38 1.88 2.89 6.01 0.37 1.27 3.41
Car 1st −0.28 0.16 0.57 0.78 −0.27 0.15 0.46 0.83

2nd 0.00  0.00 0.00 0.00 6.68 0.00 0.00 0.00
Motorcycle 1st 0.00 0.00 0.00 0.00 3.32 0.00 0.00 0.00

2nd −3.62  5.81 211.52 624.11 −7.98 10.86 1.35 1514.77
Intersection Three-leg −0.18 0.11 0.40 0.55 3.32 0.10 0.31 0.57

Multiple-leg −0.28 0.19 0.76 1.08 4.68 0.18 0.57 1.16
Roadway Major arterial 3.20 −3.68 −100.97 −262.45 7.50 −4.00 −14.19 −361.55
Collision Rear-end 0.00 0.00 0.00 0.00 6.45 0.00 0.00 0.00
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Lighting conditions Time (24:00–06:00) 0.00 0.00
Lighting (night without
illumination)

−0.27 0.18

0%, similar to that in many Asian cities. Thus, motorcycles should
e equipped with enhanced riders protection and collision warning
ystems. Of course, the most effective countermeasure is to reduce
otorcycle usage.
The second- and third-largest positive elasticity effects are

runk drivers as the first or second party. According to the mag-
itudes of these elasticity effects of the two parties, being hit by a
runk driver is more dangerous than a drunk driver hitting another
ehicle. Notably, for major arterials, the injury severity level of the
econd party is markedly reduced (−361.55), due to high design
tandards and improved sight distance.

.3. Safety implications
Several key risk factors of two-vehicle accident severity at sig-
alized intersections are identified. One of the most dangerous

actors is motorcycle use. Potentially effective strategies to improve

able 7
alidation result of the BOP and BGOP models.

Dataset Actual 

Estimation sample
Shares (%) 1st 2nd 

Property damage only 68.15 40.54 

Possible injury 26.98 49.07 

Evident injury 2.39 5.90 

Disabling injury and fatality 2.49 4.49 

MAPE (RMSE)
Property damage only
Possible injury 

Evident injury 

Disabling injury and fatality 

Overall MAPE 

Validation sample
Shares (%) 1st 2nd 

Property damage only 71.36 36.82 

Possible injury 24.71 53.52 

Evident injury 1.80 4.91 

Disabling injury and fatality 2.13 4.75 

MAPE (RMSE)
Property damage only (%) 

Possible injury (%) 

Evident injury (%)
Disabling injury and fatality (%) 

Overall MAPE
0.00 0.00 4.85 0.00 0.00 0.00
0.69 0.96 0.10 0.81 0.38 0.13

the safety of motorcycles or reduce motorcycle usage are allocating
lanes to motorcycles on urban streets so as to mitigate interactions
among different vehicle types, to strictly enforce mandatory use of
helmets for motorcycle riders, discouraging motorcycle usage by
proving a convenient and affordable public transportation system,
and increasing motorcycle parking fees. For further discussion of
motorcycle safety measures, see Pai (2011).

The second key factor is alcohol use. Obviously, cracking down
on drunk driving is an effective countermeasure, especially dur-
ing the night (24:00–6:00). Additionally, drivers aged > 65 are at
high risk for severe accidents. Programs that educate aged people
not to ride motorcycles and drive cars instead should be consid-
ered. Further, a periodic review of the physical condition of aged

drivers (riders) is also important. Moreover, the geometric design
of intersections and roadways is also a factor key to injury sever-
ity. Well-designed roadway systems (e.g., major arterials) reduce
injury severity, while poorly designed intersections (e.g., multi-leg

Predictions

BOP BGOP

1st 2nd 1st 2nd
69.33 41.60 68.88 41.21
24.99 47.30 25.76 47.70
2.29 5.62 2.30 5.99
3.39 5.49 3.06 5.11

0.50(0.43) 0.80(0.55) 0.52(0.45) 0.84(0.57)
1.00(0.54) 0.50(0.38) 1.11(0.60) 0.57(0.43)
1.22(0.22) 0.68(0.19) 0.81(0.17) 0.50(0.15)
1.64(0.46) 0.97(0.27) 1.51(0.42) 0.88(0.24)
4.36 2.95 3.95 2.79

1st 2nd 1st 2nd
71.25 42.56 70.88 42.22
23.83 46.67 24.35 47.02
2.06 5.47 2.18 5.88
2.86 5.30 2.59 4.88

0.45(0.41) 0.86(0.58) 0.47(0.43) 0.91(0.61)
1.06(0.55) 0.44(0.38) 1.17(0.61) 0.51(0.42)
1.45(0.24) 0.84(0.21) 0.97(0.18) 0.58(0.17)
1.66(0.41) 0.90(0.25) 1.54(0.38) 0.80(0.22)
4.62 3.04 4.14 2.80
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ntersections) increase injury severity. In summary, crash severity
an be reduced through education, engineering, enforcement, and
ncouragement, the so-called 4Es.

.4. Model validation

Another dataset consisting of 611 cases is used to validate the
OP and BGOP models in terms of two commonly used performance

ndices—MAPE and RMSE—for each crash level and overall perfor-
ance (Table 7). For comparison, both indices are computed for

he estimation dataset. Both models perform extreme well with
n MAPE < 5% and hit ratio >80% (Table 5). Additionally, the BGOP
odel outperforms the BOP model with a lower overall MAPE.
otably, the BGOP model has better prediction accuracy than the
OP model for two most-severe injury levels of evident injury and
isabling injury and fatality.

. Conclusions

The injury severity of two parties involved in two-vehicle acci-
ents differs markedly. Thus, factors contributing to injury severity
arrant analysis. This study applies the BGOP model, which relaxes

he assumption of fixed threshold values for injury severity levels.
stimation results show that the BGOP model performs better than
he conventional BOP model in terms of goodness-of-fit and pre-
iction accuracy, and provides a superior understanding of factors
ontributing to different injury severity levels.

According to estimated parameters in latent propensity func-
ions and threshold functions and elasticity effects, several key risk
actors are identified—driver type (aged > 65), vehicle type (motor-
ycle), violation type (alcohol use), intersection type (three-leg and
ultiple-leg intersections), collision type (rear-end), and lighting

onditions (night and night without illumination). Corresponding
ountermeasures for such risk factors are also proposed. Although
ost of our findings are consistent with previous studies, two  issues

hould be raised. First, in this study, the liability and classification of
he involved parties mainly rely on police subjective judgment. To
e more scientific, an artificial neural network model for accident
ppraisal proposed by Chiou (2006) can be used to systemati-
ally determine the liabilities of two parties at the data processing
tage. Second, underreporting effect is indeed a problem which
ay lead to biased estimation results. Ordered probability models

re particularly susceptible to underreporting of crash-injury data.
o rectify this problem, to obtain the underreporting rates in the
opulation for using the weighted maximum likelihood function to
stimate the proposed model or to develop a new model, such as
ivariate sequential logit and probit models, is worthy of a further
tudy.

Additionally, several research directions for future studies
re identified. First, based on our proposed BGOP model, more
eneralized multivariate models can be developed for modeling
ulti-vehicle crashes or analyzing injury-severities of drivers and

assengers in an accident. Second, additional explanatory variables
e.g., road width, number of lanes, and signal control) with regard
o two-vehicle accidents can be collected and analyzed to propose
elatively more effective improvement strategies. Third, the injury
everity levels can be re-designed according to injured body parts
f involved parties; different body parts can be injured by different
ontributing factors such as collision type (e.g., head-on, rear-end,
nd sideswipe collisions), crash sites (e.g., intersection and seg-

ent), and driver traits (helmet use and traffic violations). Last

ut not least, the random coefficient specification and latent class
pproach can be utilized to derive the mixed BGOP model and latent
lass BGOP model to reveal the unobserved heterogeneity of latent
njury propensity of the two parties.
d Prevention 51 (2013) 175– 184 183
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