QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, VOL. 13, 355-360 (1997)

AN APPLICATION OF NON-NORMAL PROCESS
CAPABILITY INDICES

k. s. chen and w. l. pearn*
Department of Industrial Engineering & Management, National Chin-Yi Institute of Technology, Taichung,
Taiwan ROC
Department of Industrial Engineering & Management, National Chiao Tung University, Hsinchu, Taiwan 30050
ROC

SUMMARY

Numerous process capability indices, includi@g C,, C,m andC,,. have been proposed to provide
measures of process potential and performance. In this paper, we consider some generalizations of these
four basic indices to cover non-normal distributions. The proposed generalizations are compared with
the four basic indices. The results show that the proposed generalizations are more accurate than those
basic indices and other generalizations in measuring process capability. We also consider an estimation
method based on sample percentiles to calculate the proposed generalizations, and give an example to
illustrate how we apply the proposed generalizations to actual data collected from the facta®@7
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1. INTRODUCTION butions. In this paper, we consider some generaliza-
tions of those basic indices to cover non-normal
distributions. Comparisons on accuracy of the capa-
bility measurement between the basic indices and
She proposed generalizations are provided.

Process capability indices (PCls) have been widely
used in the manufacturing industry, to provide a
numerical measure on whether a process is capabl
of producing items meeting the quality requirement
preset in the factory. Numerous capability indices
have been proposed to measure process potential 2. THE INDICES Cy(u,\)

and performance. Examples include the two most .. ' P

commonly used indicesC, and C,, discussed in  Vannmanf constructed a superstructure for the four
Kané, and the two more-advanced indic€s,, and basic indices,C,, C,, C,m and C,, The super-
Comk developed by Charet al® and Pearnet al® structure has been referred to @g(u,v), which can
There are many other indices but they can be viewed be defined as the following:

as modifications of the above four basic indices (see

Boyles', Pearn and Chénand Zwick). d - ujpu-m|
Discussions and analysis of these indices on point Co(uyv) = S (1)
estimation and construction of confidence intervals 3\o? + V(u-T)

have been the focus of many statistician and quality

researchers including KafeChan et al.,> Chou et where . is the process meany is the process
al.,” Pearnet al.® Kotz et al® Vannman? Pearn and  standard deviationgd = (USL-LSL)/2 is half of the
Chen}® and many others. Most of the investigations, length of the specification interval, m=
however, depend heavily on the assumption of nor- (USL+LSL)/2 is the mid-point between the upper
mal variability. If the underlying distributions are and the lower specification limitsT is the target
non-normal, then the capability calculations are value, andu, v=0. It is easy to verify that
highly unreliable since the conventional estima®r  C,(0,0) = C,, C,(1,0) = C,, Cy(0,1) = C,,, and
of o is sensitive to departures from normality, and C,(1,1) = C,. which have been defined explicitly
estimators of those indices are calculated usidg S as:

(see Changet al,'* Gunter!? and Somerville and

Montgomery®). Therefore, those basic indices are USL - LSL

inappropriate for processes with non-normal distri- Co R
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c - USL-LsL
" 6o+ (uoT)?
, USL - - LSL
Comk = mln{ = H }
3)0% + (w=T)? 3yo? + (u-T)*

The index C, only considers the process varia-
bility o thus provides no sensitivity on process
departure at all. The indexC,, takes the process
mean into consideration but it can fail to distinguish
between on-target processes from off-target pro-
cesses (Pearet al®). The index C,, takes the
proximity of process mean from the target value

into account, and is more sensitive to process depar-

ture than C, and C,. The index C,, adds an
addition term (1—T)2 in the definition, as a penalty

to the process quality due to the departure of process

mean from the target value. This additional penalty
ensures thaC,,, will be more sensitive to departure
thanC,, andC,,, and therefore is able to distinguish

better between off-target and on-target processes.

Clearly without the term |(-T)? in the denominator,
the indexC,,« become<C,,. The ranking of the four
basic indices, in terms of sensitivity to departure of
process mean from the target value, from the most
sensitive one up to the least sensitive are ¢},
(2) Com (3) Co, and (4)C,.

Estimators of the indice€,(u,v) may be obtained
by replacingu. by the sample meaiX = (2, X|)/n,
and o® by the sample variance &
(n-1)" 2, (X-X)? in definition (1). For normal
distributions, those estimators based ¥nand &,
are quite stable and reliable. But, for non-normal
distributions, those estimates become highly unstable
since the distribution of the sample varian&, is
sensitive to departures from normality, and esti-
mators of those indices are calculated usig as
pointed out by Charet al'* Gunter!? and Somer-
vile and Montgomer{? demonstrated the strong
impact this has on the sampling distribution Gf,.

3. THE GENERALIZATIONS Cy(u,v)

To accommodate cases where the underlying distri-
butions may not be normal, we consider the follow-
ing generalizations o€,(u,v), which we refer to as
Cyp(uv). The generalizationsCy,(u,v) can be
defined as (in superstructure form):

.

whereF, is the ath percentile,M is the median of
the distribution,m = (USL+LSL)/2 is the mid-point
between the upper and the lower specification limits,
andu, v = 0. Thus, in developing the generalizations
we have replaced the process mean, by the
process mediaM, and the process standard devi-

d-ulM-m|

CNP(U,V) = ’ (2)

F99.865_F0.13

5 ﬂ2+WM—U2
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ation o by (FgogesFo.135/6 in the definition of
the basic indicesCy(u,v). The idea behind such
replacements is to mimic the property of the normal
distribution for which the tail probability outside the
+30 limits from p is 0.27%, thus assuring that if
the calculated value o€y,(u,v) =1 (assuming the
process is well-centred, or on-target) the probability
that process is outside the specification interval
(LSL, USL) will be negligibly small. It should be
noted that the mediaM is a more robust measure
of central tendency than the meaw) particularly,
for skewed distributions with long-tails.

By setting (,v) = (0,0), (0,1), (1,0), and (1,1),
we obtain the following generalizations of the four
basic indices for non-normal distributions, which we
refer to asCyp, Cnpk Crpme @Nd Crpmic

USL-LSL

= i)
F99.865_ I:0.135

[F
V|

Crpmk = Min

USL-M M-LSL
FO.135:|’ [Fgg.ee

Chipk = Min
5":0.13

2

99.865

2

5}'

USL-LSL

CNpm =

F99.865_F0.13

6 ﬂ2+(M_TV

USL-M

F99.865_F0.13

3 5 ﬂ2+(M—TF

M-LSL

F99.865_F0.135

[

The ranking of the four generalized indices (when
applied to non-normal distributions) in terms of
sensitivity to departure of process median from the
target value, from the most sensitive one up to the
least sensitive turns out to be the same. They are
(1) Cypmie (2) Crpme (3) Crpwe @nd (4) Cyp. In the
special case where the underlying distribution is
normal, thenM = ., and Fgg gs5Fo 135= 60. Clearly,
the generalization€y,(u,v) reduce to the basic indi-
ces Cy(u,v), and soCy, = Cp,, Cypk = Coks Crpm =
Com and Cypmk = Comke

Recently, Zwick® and Schneideret al'* con-
sidered two generalizations o, and C,, which
are similar toCy,, and Cy, but with process mean
w rather than process mediavt in the definitions.
Extending their definitions to include the other two

basic indi€gg, and C,.,, a superstructure can be
constructed in the following, which we refer to

ag(@v):

i + (M-T)?
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Figure 1. Distributions of processes B, and C

Table I. Characteristics of processAsB, andC

percentage comparisons, 61% versus 39%, displayed
in Figure 1 will be replaced by 62% versus 38%.

Process P M o X635 OBoses Table Il is a comparison between the proposed
A 10.00 937 245 703 22.63 generalizationsCyy(u,v) and other genergliza}tions
B 17.80 17.70 245 14.83 3043 Gp(u,v) on the three processes depicted in Figure 1.
C 2560 2497 245 2263 3823 The index valuesZ,(u,v) given to processeé and
C are the same (1.00, 0.00, 0.32, 0.00) for béth
and C), which inconsistently measure process capa-
() = d—ufp—m (3  Dbility in this case.

3\/|:F99.8656_F0.135:|2 +v(pu-T)?

4. COMPARISONS

To compare the proposed generalizatidDg,(u,v)
with C,(u,v), we consider an example of three pro-
cessesA, B, and C depicted in Figure 1. All three
processes are distributed &8 with three degrees
of freedom (a skewed distribution). The character-
istics are summarized in Table b{ = 05 = 0¢c =
(6)¥2). ProcessB is on-target iz =T), but pro-
cessesA and C are severely off-targetp(y = LSL
and pc = USL).

Table Il is a comparison betwee@,(u,v) and
Cnp(u,v) on the three processés B, andC depicted
in Figure 1. TheC,, C,, Cyy, and C, values given
to processe#\ and C are the same. Both processes
are severely off-target. But, the proportion of non-
conforming is 61% for procesa, which is signifi-
cantly greater than that for proce<s (which is
39%). Obviously, the basic indic&3,(u,v) inconsist-
ently measure process capabilities of procesées

and C in this case. On the other hand, the proposed -~

generalizationsCy,(u,v) clearly differentiate pro-
cessesA and C by giving smaller values tA and
larger values toC (excluding Cy, which never

considers process median and hence provides no

5. CALCULATIONS OF Cy,(u,v)

Pearn and Chérproposed an estimator for calculat-
ing the indices C,(u,v) assuming the underlying
distributions are Pearsonian types. The estimators
essentially apply Clements’ methiddby replacing
the 6r interval length by U,-L,, which can be
calculated based on available sample data collected
from a stable process utilizing estimates of the mean,
standard deviation, skewness and kurtosis. Under
the assumption that these four parameters determine
the type of the Pearson distribution curve, thg
percentiles of the Pearson curves as a function of
skewness and kurtosis can be calculated utilizing
the tables provided by Grusket al'® Those esti-
mators can be written as (see Pearn and &hen

d-uM-m|

3\/[Up;|—p]2+v(|\}|_-r)2

wherelJ,, estimates the 99.865 percenthgg gqs L,
estimates the 0.135 percentig ;35 andM estimates
the mediaifo obtain the values ob,, L,, and
M tables from Gruskaet al'® along with some
interpolation calculations are required.
Based on sample percentiles, Chang and’Lu
considered a different method for calEwating

éNp(u,v) =

(4)

sensitivity to process departure at all). For processesF, 135 and the mediatM. The method is essentially
distributed as Weibull (often used in practice as a based on sample percentiles which can be calculated
model for skewed data), the result is the same. In using interpolations, and does not require the tables
fact, for Weibull @,8) with « =3 and 8 =1.1, the in Gruskaet al ¢ Applying this methd we can

Table Il. A comparison betwee@,(u,v) and Cy,(u,v)

Process C, Cox Com Comk Chp Chpk Crpm Cripmk
A 1.06 0.00 0.26 0.00 1.00 -0.08 0.29 -0.02
B 1.06 1.06 1.06 1.06 1.00 0.92 0.97 0.89
C 1.06 0.00 0.26 0.00 1.00 0.08 0.34 0.03
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Table lll. A comparison betweefx,(u,v) and Cy,(u,v)

Process G Clok Clom Clomk Cnp Cupk Capm Cripmic
A 1.00 0.00 0.32 0.00 1.00 -0.08 0.29 -0.02
B 1.00 1.00 1.00 1.00 1.00 0.92 0.97 0.89
C 1.00 0.00 0.32 0.00 1.00 0.08 0.34 0.03

obtain the percentile estimators fQy,(u,v), which
may be expressed as the following:

Cu(U) = d-uM-m . (5)

3\/|:F99.8656_F0.135:|2 + V(I\A/I—T)Z

- 99.86m+0.135
Foo.865= X(Rl) + ([100] - Rl)

(X(Rl+1)_X(R1))1 (6)
- 0.135:1+99.865
Foas X (| 500 )

(X(R2 + 1)_X(R2))v (7)

n+1

M =Xy + ([2]—R3)(X(R3+1)—X(R3)), (8)

whereR; = [(99.86% + 0.135)/100],R, = [(0.135
+ 99.865)/100],R; = [(n+1)/2]. In this setting, R]

is defined as the greatest integer less than or equal

to the numberR, and X; is defined as theith
order statistic.

6. AN APPLICATION

To illustrate how to calculate process capability
using Cy,(u,v), we consider the following example

in is the weight. For each model of rubber edges,
a unique production specificatiordgL, T, LSL) is

set to the manufacturing processes. The weight of
the rubber edge should not fall outside the specifi-
cation intervals or the customers will not accept
the products.

In the rubber-edge manufacturing factory, the raw
rubber is first compounded through the kneader with
some chemical powder. The compounded raw rubber
is then cut into thin rubber strips with appropriate
length, loaded onto the mold machines, and thermo-
casted into the desired shape of rubber edges. Differ-
ent models of rubber edges have different designs,
shapes, weights, and have different production speci-
fications. One characteristic of the rubber edge
which we studied was the weight. The upper and
lower specification limits,USL and LSL, of the
weight for a particular model of rubber edge, which
we studied, were set to 8.94 and 8.46 (in grams).
The target value is the mid-point between the two
specification limits, which is 8.70. The collected
ample data (a total of 100 observations) are dis-
played below in Table IV.

Figure 3 displays the normal probability plot for
the collected data. We also perform Shapiro—Wilk
test for normality check, obtaining/=0.91 with p-
value=0.0001. Since thep-value is sufficiently
small, we may conclude that the data set comes
from a non-normal distribution. To calculate the

taken from a company who is a manufacturer and values of the estimator€y,(u,v), we first calculate

supplier of speaker components (parts) supplying >
various kinds of rubber edges to speaker driver Foo g65=
manufacturing factories for making speaker driver
units. A standard (woofer) driver unit, as depicted Cnp = 0.96,
in Figure 2, consists of the following components
spider

(parts) including edge, cone, dustcap,

the sample percentiles obtaining=,55=8.53,
9.03, and M=8.69. Then, we substitute
these values into the definition @f,(u,v) obtaining
Cupk=0.92,  Cypm=0.95, and
Crnpmk = 0.91. We note thaCy,, value is less than
1.00, which indicates that the process is not adequate

(damper), voice coil, lead wire, frame (basket), with respect to the given ma'nu'facturing specifi-
magnet, front plate, and back plate (T-york). The cations, either the process variation® needs to
rubber edge is one of the key components which b reduced or the process meam) (needs to be
reflect sound quality of the driver units, such as Shifted closer to the target value. In fact, there are
musical image and clarity of the sound. One charac- four observations (8.98, 8.99, 9.00, 9.03) falling
teristic of the rubber edge which we were interested Outside the specification interval L, USL), and

Edge Edge

Dustcap

Lead Wire

Front Plate

1 | Back Plate

Figure 2. A speaker woofer driver

the proportion non-conforming is 4%.

The quality condition of such a process was con-
sidered to be unsatisfactory in the company. Some
quality improvement activities involving Taguchi’s
parameter designs, were initiated to identify the
significant factors causing the process failing to meet
the company’s requirement. Consequently, machine
settings for cutting the rubber strips as well as other
process parameters were adjusted. To check whether
the adjusted process was satisfactory, a new sample
of 100 from the adjusted process were collected
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Table IV. 100 Observations of weight
8.61 8.81 8.72 8.69 8.65 8.64 8.68 8.74 8.68 8.67
8.64 8.68 8.98 8.70 8.74 8.75 8.66 9.00 8.64 8.70
8.53 8.74 8.59 8.69 8.70 9.03 8.83 8.87 8.79 8.68
8.76 8.71 8.71 8.67 8.67 8.68 8.69 8.74 8.80 8.59
8.68 8.55 8.73 8.67 8.71 8.73 8.67 8.68 8.69 8.74
8.55 8.71 8.74 8.70 8.62 8.61 8.79 8.69 8.68 8.77
8.66 8.72 8.81 8.63 8.78 8.64 8.66 8.63 8.71 8.99
8.67 8.71 8.63 8.74 8.67 8.69 8.69 8.68 8.70 8.81
8.76 8.64 8.54 8.71 8.69 8.80 8.70 8.59 8.53 8.74
8.71 8.81 8.60 8.64 8.71 8.75 8.67 8.73 8.61 8.84
903 1 1 note that for the new process the departure ratio
- g7 k=|T-p|/d=0.01 is quite small, which indicates
- that the new process is nearly on-target. As a result,
the quality of the new process improved signifi-
o t cantly, and was considered to be satisfactory in
s tt the company.
878
&7 7. CONCLUSIONS
5% In this paper, we considered some generalizations
863 4 of the basic indicesCy(u,v), which we referred to
858 ] il as Cyp(u,v), to cover non-normal distributions. If the
4+ underlying distribution is normal, then the proposed
834 1 . . .. .
AR RARRS LARRD RARAY RARAY RRARS RAARY ARSI RAARS RARRE generalizationsCy,(u,v) reduce to the basic indices
25 20 45 40 05 00 45 10 15 20 25 Cy(uv). The proposed generalizatior@,(u,v) are
7 compared with the basic indiceS,(u,v) and other

Figure 3. The normal probability plot for the collected datas
(from the original process)

generalizationsC'y,(u,v). The results indicated that
the proposed generalization€y,(u,v) are more
accurate thanCy(u,v) and G(u,v) in measuring

yielding the following measurements. Figure 4 dis- process capability.

plays the normal probability plot for the collected

data presented in TableV. We perform Shapiro—

Wilk test for normality check, obtainingV=0.87
with p-value=0.0001. Since thep-value is suf-

In addition, we considered an estimation method
based on sample percentiles to calcul@g,(u,v).
Computations for obtaining the estimata@y,(u,v)
do not require any statistical tables, or any assump-

ficiently small, we conclude that the adjusted process tions on the underlying distributions. We also gave
is non-normal. We performed the same CQ'CU|at|0nS an example on speaker components manufacturing
over the new sample of 100 observations. We process to illustrate how we apply the proposed

obtained the sample percentilEg 35 = 8.52, Fgg g5
= 8.94, andM =8.69. ThenCy, =1.14,Cy, = 1.10,
Cnpm=1.13, and Cypmk=1.08. We note that the

generalizationsCy,(u,v) to the actual data collected
from the factory. The calculations are easy to under-
stand, straightforward to apply, and should be

new (adjusted) process has zero defectives. We alscencouraged for applications.
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