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SUMMARY

Numerous process capability indices, includingCp, Cpk, Cpm, and Cpmk, have been proposed to provide
measures of process potential and performance. In this paper, we consider some generalizations of these
four basic indices to cover non-normal distributions. The proposed generalizations are compared with
the four basic indices. The results show that the proposed generalizations are more accurate than those
basic indices and other generalizations in measuring process capability. We also consider an estimation
method based on sample percentiles to calculate the proposed generalizations, and give an example to
illustrate how we apply the proposed generalizations to actual data collected from the factory. 1997
John Wiley & Sons, Ltd.
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1. INTRODUCTION butions. In this paper, we consider some generaliza-
tions of those basic indices to cover non-normal

Process capability indices (PCIs) have been widely
distributions. Comparisons on accuracy of the capa-

used in the manufacturing industry, to provide a
bility measurement between the basic indices and

numerical measure on whether a process is capable
the proposed generalizations are provided.

of producing items meeting the quality requirement
preset in the factory. Numerous capability indices
have been proposed to measure process potential 2. THE INDICES Cp(u,v)
and performance. Examples include the two most
commonly used indices,Cp and Cpk discussed in Vännman9 constructed a superstructure for the four
Kane1, and the two more-advanced indicesCpm and basic indices,Cp, Cpk, Cpm, and Cpmk. The super-
Cpmk developed by Chanet al.2 and Pearnet al.3 structure has been referred to asCp(u,v), which can
There are many other indices but they can be viewed be defined as the following:
as modifications of the above four basic indices (see
Boyles4, Pearn and Chen5 and Zwick6).

Cp(u,v) =
d − uum−mu

3Îs2 + v(m−T)2
, (1)Discussions and analysis of these indices on point

estimation and construction of confidence intervals
have been the focus of many statistician and quality
researchers including Kane,1 Chan et al.,2 Chou et where m is the process mean,s is the process
al.,7 Pearnet al.,3 Kotz et al,8 Vännman,9 Pearn and standard deviation,d = (USL−LSL)/2 is half of the
Chen,10 and many others. Most of the investigations, length of the specification interval, m =
however, depend heavily on the assumption of nor- (USL+LSL)/2 is the mid-point between the upper
mal variability. If the underlying distributions are and the lower specification limits,T is the target
non-normal, then the capability calculations are value, and u, v $ 0. It is easy to verify that
highly unreliable since the conventional estimatorS2 Cp(0,0) = Cp, Cp(1,0) = Cpk, Cp(0,1) = Cpm, and
of s2 is sensitive to departures from normality, and Cp(1,1) = Cpmk which have been defined explicitly
estimators of those indices are calculated using S2 as:
(see Changet al.,11 Gunter,12 and Somerville and
Montgomery13). Therefore, those basic indices are

Cp =
USL − LSL

6s
,inappropriate for processes with non-normal distri-
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3s
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ation s by (F99.865−F0.135)/6 in the definition of
Cpm =

USL − LSL

6Îs2 + (m−T)2
, the basic indicesCp(u,v). The idea behind such

replacements is to mimic the property of the normal
distribution for which the tail probability outside the

Cpmk = minH USL − m

3Îs2 + (m−T)2
,

m − LSL

3Îs2 + (m−T)2
J. 63s limits from m is 0.27%, thus assuring that if

the calculated value ofCNp(u,v) = 1 (assuming the
process is well-centred, or on-target) the probability

The index Cp only considers the process varia- that process is outside the specification interval
bility s thus provides no sensitivity on process (LSL, USL) will be negligibly small. It should be
departure at all. The indexCpk takes the process noted that the medianM is a more robust measure
mean into consideration but it can fail to distinguish of central tendency than the meanm, particularly,
between on-target processes from off-target pro- for skewed distributions with long-tails.
cesses (Pearnet al.3). The index Cpm takes the By setting (u,v) = (0,0), (0,1), (1,0), and (1,1),
proximity of process mean from the target value we obtain the following generalizations of the four
into account, and is more sensitive to process depar-basic indices for non-normal distributions, which we
ture than Cp and Cpk. The index Cpmk adds an refer to asCNp, CNpk, CNpm, and CNpmk:
addition term (m−T)2 in the definition, as a penalty
to the process quality due to the departure of process

CNp =
USL − LSL

F99.865− F0.135
,

mean from the target value. This additional penalty
ensures thatCpmk will be more sensitive to departure
thanCpk andCpm, and therefore is able to distinguish
better between off-target and on-target processes. CNpk = min5 USL−M

FF99.865−F0.135

2 G,
M−LSL

FF99.865−F0.135

2 G6,Clearly without the term (m-T)2 in the denominator,
the indexCpmk becomesCpk. The ranking of the four
basic indices, in terms of sensitivity to departure of

CNpm =
USL−LSL

6!FF99.865−F0.135

6 G2

+ (M−T)2

,process mean from the target value, from the most
sensitive one up to the least sensitive are (1)Cpmk,
(2) Cpm, (3) Cpk, and (4)Cp.

Estimators of the indicesCp(u,v) may be obtained
by replacingm by the sample meanX = (Sn

i=1 Xi )/n,
and s2 by the sample variance S2 =
(n−1)−1 Sn

i=1(Xi−X)2 in definition (1). For normal
CNpmk = min5 USL−M

3!F99.865−F0.135

6 G2

+ (M−T)2

,distributions, those estimators based onX and S2,
are quite stable and reliable. But, for non-normal
distributions, those estimates become highly unstable
since the distribution of the sample variance,S2, is
sensitive to departures from normality, and esti-
mators of those indices are calculated usingS2, as
pointed out by Chanet al.11 Gunter,12 and Somer- M−LSL

3!FF99.865−F0.135

6 G2

+ (M−T)2
6.ville and Montgomery13 demonstrated the strong

impact this has on the sampling distribution ofCpk.

The ranking of the four generalized indices (when
3. THE GENERALIZATIONS CNp(u,v) applied to non-normal distributions) in terms of

sensitivity to departure of process median from theTo accommodate cases where the underlying distri-
target value, from the most sensitive one up to thebutions may not be normal, we consider the follow-
least sensitive turns out to be the same. They areing generalizations ofCp(u,v), which we refer to as
(1) CNpmk, (2) CNpm, (3) CNpk, and (4)CNp. In theCNp(u,v). The generalizationsCNp(u,v) can be
special case where the underlying distribution isdefined as (in superstructure form):
normal, thenM = m, andF99.865−F0.135= 6s. Clearly,
the generalizationsCNp(u,v) reduce to the basic indi-

CNp(u,v) =
d−uuM−mu

3!FF99.865−F0.135

6 G2

+ v(M−T)2

, (2) ces Cp(u,v), and soCNp = Cp, CNpk = Cpk, CNpm =
Cpm, and CNpmk = Cpmk.

Recently, Zwick,6 and Schneideret al.14 con-
sidered two generalizations ofCp and Cpk, which
are similar toCNp, and CNpk but with process meanwhere Fa is the ath percentile,M is the median of

the distribution,m = (USL+LSL)/2 is the mid-point m rather than process medianM in the definitions.
Extending their definitions to include the other twobetween the upper and the lower specification limits,

andu, v $ 0. Thus, in developing the generalizations basic indices,Cpm and Cpmk, a superstructure can be
constructed in the following, which we refer towe have replaced the process mean,m, by the

process medianM, and the process standard devi- as C9Np(u,v):
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Figure 1. Distributions of processesA, B, and C

Table I. Characteristics of processesA, B, and C percentage comparisons, 61% versus 39%, displayed
in Figure 1 will be replaced by 62% versus 38%.

Process m M s x2
0.135 s2

99.865 Table III is a comparison between the proposed
generalizationsCNp(u,v) and other generalizations

A 10.00 9.37 2.45 7.03 22.63
C9Np(u,v) on the three processes depicted in Figure 1.B 17.80 17.70 2.45 14.83 30.43
The index valuesC9Np(u,v) given to processesA andC 25.60 24.97 2.45 22.63 38.23
C are the same (1.00, 0.00, 0.32, 0.00) for bothA
and C), which inconsistently measure process capa-
bility in this case.C9Np(u,v) =

d−uum−mu

3!FF99.865−F0.135

6 G2

+ v(m−T)2

. (3)

5. CALCULATIONS OF CNp(u,v)

Pearn and Chen5 proposed an estimator for calculat-
ing the indices Cp(u,v) assuming the underlying
distributions are Pearsonian types. The estimators4. COMPARISONS
essentially apply Clements’ method15 by replacing

To compare the proposed generalizationsCNp(u,v) the 6s interval length by Up−Lp, which can be
with Cp(u,v), we consider an example of three pro- calculated based on available sample data collected
cessesA, B, and C depicted in Figure 1. All three from a stable process utilizing estimates of the mean,
processes are distributed asx2 with three degrees standard deviation, skewness and kurtosis. Under
of freedom (a skewed distribution). The character- the assumption that these four parameters determine
istics are summarized in Table I (sA = sB = sC = the type of the Pearson distribution curve, theFa(6)1/2). ProcessB is on-target (mB = T), but pro- percentiles of the Pearson curves as a function of
cessesA and C are severely off-target (mA = LSL skewness and kurtosis can be calculated utilizing
and mC = USL). the tables provided by Gruskaet al.16 Those esti-

Table II is a comparison betweenCp(u,v) and mators can be written as (see Pearn and Chen5):
CNp(u,v) on the three processesA, B, andC depicted
in Figure 1. TheCp, Cpk, Cpm andCpmk values given
to processesA and C are the same. Both processes C

˜
Np(u,v) =

d−uuM
ˆ

−mu

3!FUp−Lp

6 G2

+ v(M
ˆ

−T)2

, (4)
are severely off-target. But, the proportion of non-
conforming is 61% for processA, which is signifi-
cantly greater than that for processC (which is
39%). Obviously, the basic indicesCp(u,v) inconsist- whereUp estimates the 99.865 percentileF99.865, Lp

estimates the 0.135 percentileF0.135, andM
ˆ

estimatesently measure process capabilities of processesA
and C in this case. On the other hand, the proposed the medianM. To obtain the values ofUp, Lp, and

M
ˆ

tables from Gruskaet al.16 along with somegeneralizationsCNp(u,v) clearly differentiate pro-
cessesA and C by giving smaller values toA and interpolation calculations are required.

Based on sample percentiles, Chang and Lu17larger values toC (excluding CNp which never
considers process median and hence provides no considered a different method for calculatingF99.865,

F0.135, and the medianM. The method is essentiallysensitivity to process departure at all). For processes
distributed as Weibull (often used in practice as a based on sample percentiles which can be calculated

using interpolations, and does not require the tablesmodel for skewed data), the result is the same. In
fact, for Weibull (a,b) with a = 3 and b =1.1, the in Gruskaet al. 16 Applying this methd we can

Table II. A comparison betweenCp(u,v) and CNp(u,v)

Process Cp Cpk Cpm Cpmk CNp CNpk CNpm CNpmk

A 1.06 0.00 0.26 0.00 1.00 −0.08 0.29 −0.02
B 1.06 1.06 1.06 1.06 1.00 0.92 0.97 0.89
C 1.06 0.00 0.26 0.00 1.00 0.08 0.34 0.03
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Table III. A comparison betweenC9Np(u,v) and CNp(u,v)

Process C9Np C9Npk C9Npm C9Npmk CNp CNpk CNpm CNpmk

A 1.00 0.00 0.32 0.00 1.00 −0.08 0.29 −0.02
B 1.00 1.00 1.00 1.00 1.00 0.92 0.97 0.89
C 1.00 0.00 0.32 0.00 1.00 0.08 0.34 0.03

obtain the percentile estimators forCNp(u,v), which in is the weight. For each model of rubber edges,
a unique production specification (USL, T, LSL) ismay be expressed as the following:
set to the manufacturing processes. The weight of
the rubber edge should not fall outside the specifi-

C
ˆ

Np(u,v) =
d−uuM

ˆ
−mu

3!FF
ˆ

99.865−F
ˆ

0.135

6 G2

+ v(M
ˆ

−T)2

, (5) cation intervals or the customers will not accept
the products.

In the rubber-edge manufacturing factory, the raw
rubber is first compounded through the kneader with

F
ˆ

99.865= X(R1) + SF99.865n+0.135
100 G − R1D some chemical powder. The compounded raw rubber

is then cut into thin rubber strips with appropriate
(X(R1+1)−X(R1)), (6) length, loaded onto the mold machines, and thermo-

casted into the desired shape of rubber edges. Differ-
ent models of rubber edges have different designs,F

ˆ
0.135 = X(R2) + SF0.135n+99.865

100 G−R2D
shapes, weights, and have different production speci-
fications. One characteristic of the rubber edge(X(R2 + 1)−X(R2)), (7)
which we studied was the weight. The upper and
lower specification limits,USL and LSL, of the

M
ˆ

= X(R3) + SFn+1
2 G−R3D(X(R3+1)−X(R3)), (8) weight for a particular model of rubber edge, which

we studied, were set to 8.94 and 8.46 (in grams).
The target value is the mid-point between the twowhereR1 = [(99.865n + 0.135)/100],R2 = [(0.135n
specification limits, which is 8.70. The collected+ 99.865)/100],R3 = [(n+1)/2]. In this setting, [R]
sample data (a total of 100 observations) are dis-is defined as the greatest integer less than or equal
played below in Table IV.to the numberR, and X(i) is defined as theith

Figure 3 displays the normal probability plot fororder statistic.
the collected data. We also perform Shapiro–Wilk
test for normality check, obtainingW = 0.91 with p-

6. AN APPLICATION value= 0.0001. Since thep-value is sufficiently
small, we may conclude that the data set comesTo illustrate how to calculate process capability
from a non-normal distribution. To calculate theusing CNp(u,v), we consider the following example
values of the estimatorsC

ˆ
Np(u,v), we first calculatetaken from a company who is a manufacturer and

the sample percentiles obtainingF
ˆ

0.135= 8.53,supplier of speaker components (parts) supplying
F
ˆ

99.865= 9.03, and M
ˆ

= 8.69. Then, we substitutevarious kinds of rubber edges to speaker driver
these values into the definition ofC

ˆ
Np(u,v) obtainingmanufacturing factories for making speaker driver

C
ˆ

Np = 0.96, C
ˆ

Npk = 0.92, C
ˆ

Npm = 0.95, andunits. A standard (woofer) driver unit, as depicted
C
ˆ

Npmk = 0.91. We note thatCNpk value is less thanin Figure 2, consists of the following components
1.00, which indicates that the process is not adequate(parts) including edge, cone, dustcap, spider
with respect to the given manufacturing specifi-(damper), voice coil, lead wire, frame (basket),
cations, either the process variation (s2) needs tomagnet, front plate, and back plate (T-york). The
be reduced or the process mean (m) needs to berubber edge is one of the key components which
shifted closer to the target value. In fact, there arereflect sound quality of the driver units, such as
four observations (8.98, 8.99, 9.00, 9.03) fallingmusical image and clarity of the sound. One charac-
outside the specification interval (LSL, USL), andteristic of the rubber edge which we were interested
the proportion non-conforming is 4%.

The quality condition of such a process was con-
sidered to be unsatisfactory in the company. Some
quality improvement activities involving Taguchi’s
parameter designs, were initiated to identify the
significant factors causing the process failing to meet
the company’s requirement. Consequently, machine
settings for cutting the rubber strips as well as other
process parameters were adjusted. To check whether
the adjusted process was satisfactory, a new sample

Figure 2. A speaker woofer driver of 100 from the adjusted process were collected
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Table IV. 100 Observations of weight

8.61 8.81 8.72 8.69 8.65 8.64 8.68 8.74 8.68 8.67
8.64 8.68 8.98 8.70 8.74 8.75 8.66 9.00 8.64 8.70
8.53 8.74 8.59 8.69 8.70 9.03 8.83 8.87 8.79 8.68
8.76 8.71 8.71 8.67 8.67 8.68 8.69 8.74 8.80 8.59
8.68 8.55 8.73 8.67 8.71 8.73 8.67 8.68 8.69 8.74
8.55 8.71 8.74 8.70 8.62 8.61 8.79 8.69 8.68 8.77
8.66 8.72 8.81 8.63 8.78 8.64 8.66 8.63 8.71 8.99
8.67 8.71 8.63 8.74 8.67 8.69 8.69 8.68 8.70 8.81
8.76 8.64 8.54 8.71 8.69 8.80 8.70 8.59 8.53 8.74
8.71 8.81 8.60 8.64 8.71 8.75 8.67 8.73 8.61 8.84

note that for the new process the departure ratio
k = uT−mu/d = 0.01 is quite small, which indicates
that the new process is nearly on-target. As a result,
the quality of the new process improved signifi-
cantly, and was considered to be satisfactory in
the company.

7. CONCLUSIONS

In this paper, we considered some generalizations
of the basic indicesCp(u,v), which we referred to
asCNp(u,v), to cover non-normal distributions. If the
underlying distribution is normal, then the proposed
generalizationsCNp(u,v) reduce to the basic indices
Cp(u,v). The proposed generalizationsCNp(u,v) are
compared with the basic indicesCp(u,v) and other
generalizationsC9Np(u,v). The results indicated that

Figure 3. The normal probability plot for the collected datas
the proposed generalizationsCNp(u,v) are more(from the original process)
accurate thanCp(u,v) and C9Np(u,v) in measuring

yielding the following measurements. Figure 4 dis- process capability.
plays the normal probability plot for the collected In addition, we considered an estimation method
data presented in Table V. We perform Shapiro– based on sample percentiles to calculateCNp(u,v).
Wilk test for normality check, obtainingW = 0.87 Computations for obtaining the estimatorsC

ˆ
Np(u,v)

with p-value= 0.0001. Since thep-value is suf- do not require any statistical tables, or any assump-
ficiently small, we conclude that the adjusted process tions on the underlying distributions. We also gave
is non-normal. We performed the same calculations an example on speaker components manufacturing
over the new sample of 100 observations. We process to illustrate how we apply the proposed
obtained the sample percentilesF

ˆ
0.135 = 8.52, F

ˆ
99.865 generalizationsCNp(u,v) to the actual data collected

= 8.94, andM
ˆ

= 8.69. Then,C
ˆ

Np = 1.14,C
ˆ

Npk = 1.10, from the factory. The calculations are easy to under-
C
ˆ

Npm = 1.13, and C
ˆ

Npmk = 1.08. We note that the stand, straightforward to apply, and should be
new (adjusted) process has zero defectives. We alsoencouraged for applications.
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