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Abstract The ultrafast quasiparticle dynamics in FeSe sin-
gle crystals were measured by using dual-color transient
reflectivity measurements (AR/R) from 4.4 to 290 K. In
general, the typical AR/R of FeSe includes two significant
components. One is the relaxation of photoinduced quasi-
particles, which has been used to estimate the electron—
phonon coupling strength (A = 0.16). The other is the os-
cillation component due to the acoustic phonon. Moreover,
the acoustic phonon’s energy estimated from the period of
oscillation in AR/R markedly shrinks around 90 K, which
is the so-called phonon softening.

Keywords Fe-based superconductors - Electron—phonon
coupling strength - Ultrafast quasiparticle dynamics
1 Introduction

The discovery of LaFeAsO_,F, with T, ~ 26 K [1] ini-
tiated the investigations of the diverse family of Fe-based
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superconductors (FeSC), e.g., Baj_,KAsyFey (122-type)
with 7. < 38 K [2], LiFeAs (111-type) with 7, < 18 K [3],
and FeSe (11-type) with 7. < 10 K [4]. Among various
FeSCs, the iron chalcogenide FeSe [4] stands out due to
its structure simplicity, which consists of iron-chalcogenide
layers stacking one by another with the same Fe™? charge
state as the iron pnictides. This so-called “11” system is
so simple that it could be the key structure to understand-
ing the origin of high-T; superconductivity [5]. There has
been considerable concern over the interplay between elec-
tronic structure, phonons, magnetism and superconductivity
in 11-type FeSe. Therefore, further studies of their quasipar-
ticle dynamics are indispensable to understanding the high-
T, mechanism in FeSCs. Here we report the time-resolved
femtosecond spectroscopy of FeSe single crystals to eluci-
date the electronic structure and the quasiparticle (QP) dy-
namics.

2 Experiments

In this study, the FeSe single crystals were grown in evacu-
ated quartz ampoules using a KCI/AICI3 flux [6]. The crys-
talline structure of the samples was examined by X-ray
diffraction. The low temperature feature related to supercon-
ducting transition is at 7, = 8.8 K.

The femtosecond spectroscopy measurement was per-
formed by using a dual-color pump—probe system (for the
laser light source, the repetition rate is 5.2 MHz, the wave-
length is 800 nm, and the pulse duration is 100 fs) and
an avalanche photodetector with the standard lock-in tech-
nique. The fluences of the pump beam and the probe beam
are 9.92 and 1.40 uJ/cm?, respectively. The pump pulses
have corresponding photon energy (3.1 eV) where the higher
absorption occurred in the absorption spectrum of FeSe [7]
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Fig. 1 Temperature-dependent AR/R curves in a FeSe single crystal.
The solid line at 290 K is the fitting curve using an exponential decay
function (Color figure online)

and hence can generate electronic excitations. The pho-
toinduced QP dynamics is studied by measuring the pho-
toinduced transient reflectivity changes (AR/R) of a probe
beam with photon energy of 1.55 eV.

3 Results and Discussion

Figure 1 shows the typical transient reflectivity changes
(AR/R) taken at various temperatures on a FeSe single
crystal. Above 230 K, there is a fast negative response
with a relaxation time of about 1.5 ps together with a long
period oscillation. When the temperature decreases below
230 K, a positive and slow response appears and AR/R
gradually becomes smaller until 7 = 90 K. Below 90 K,
the slow positive response disappears and is replaced by a
complicated mixture of the positive and negative compo-
nents. For T < T (8.8 K), a negative response appears as
that one in the region above 230 K. In order to figure out
the QP relaxation processes after excitation, we try to fit
the AR/R curves as shown in Fig. 1 and obtain the relax-
ation time of QPs. In the case of Co-doped BaFe;As;, the
symmetric A1, mode is coherently excited by photoexcita-
tion and efficiently coupled [8]. Consequently, we take the
A1, mode into account in the present case of FeSe, which
is the strongest phonon mode in electron-phonon spectral
function, «?F (@) [9]. Then, we can obtain the electron-
phonon coupling strength, A = 0.16, in FeSe from Allen’s
model [10]. This value is consistent with the theoretical
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Fig. 2 Temperature-dependent oscillation component of AR/R in a
FeSe single crystal, which was obtained by subtracted the decay back-
ground (solid line in Fig. 1) from AR/R in Fig. 1. Dashed lines are a
guide to the eyes (Color figure online)

results of A = 0.17 [9] obtained by using linear response
within the generalized gradient approximation (GGA).

However, the temperature-dependent AR /R in FeSe can-
not be solely fitted by an exponential decay function as
shown in the case of 290 K in Fig. 1. By subtracting the
decay background (e.g., the solid line in Fig. 1), a signifi-
cant oscillation component is clearly observed as shown in
Fig. 2. This oscillation is caused by the propagation of strain
pulses inside a FeSe single crystal, namely the interference
between the probe beams reflected from the crystal surface
and the wave front of the propagating strain pulse [11]. At
high temperatures, the damping time is very short and the
oscillation sustains only for one period. However, the num-
ber of oscillation period markedly increase around 100 K
in FeSe; hence the damping time becomes much longer.
Besides, the oscillation period significantly increases be-
low 90 K. This means that the longitudinal-acoustic (LA)
phonons can propagate further into the interior of FeSe crys-
tals with the orthorhombic structure. According to the dif-
ference between the first trough (at 23.52 ps) and the second
trough (at 72.78 ps) at T = 110 K in Fig. 2, the phonon fre-
quency is found to be 20.3 GHz. The phonon energy is esti-
mated to be ~0.087 meV. It is worth to note that the phonon
energy drops by 60 % around 90 K where a structural phase
transition occurs and by 6 % at superconducting transition
temperature, which is consistent with the larger distance be-
tween the first trough and first peak in Fig. 2.

Very recently, the phonon softening near the structure
transition in BaFeyAs, and Co-doped BaFe;As; was ob-
served by inelastic X-ray scattering [12] and resonant
ultrasound spectroscopy [13, 14], respectively. Fernan-
des et al. [13] found the 16 % softening of shear mod-
ulus in BaFe; g4Cog.16Asy at T, = 22 K. For the non-
superconducting case of BaFe;As;, however, the rather



J Supercond Nov Magn (2013) 26:1213-1215

1215

large softening of 90 % was observed around 130 K where is
the structural and AFM phase transition temperature. Here,
the larger phonon softening due to structural phase transi-
tion and rather small phonon softening due to the supercon-
ducting phase transition are also observed in 11-type FeSe.
These results suggest that the reduction of phonon energy at
both the structural and the superconducting phase transitions
is a general feature in FeSCs and may participate in the su-
perconductive pairing, albeit not the mechanism responsible
for high T; in FeSCs.

4 Summary

We have studied the ultrafast quasiparticle dynamics and
phonon softening in FeSe single crystals by dual-color fem-
tosecond spectroscopy. The relaxation time of quasiparti-
cles reveals an electron—phonon coupling strength A = 0.16.
Moreover, the energy of LA phonons at 110 K was esti-
mated to be 0.087 meV from the oscillation component of
AR/R, which markedly softens around both the structural
phase transition and superconducting transition. Our results
provide the vital understanding of the role of phonons in Fe-
based superconductors.
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