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We show that if A is an n-by-n (n � 3) matrix of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a1

0
. . .

. . . an−1

an 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

then the boundary of its numerical range contains a line segment

if and only if the aj ’s are nonzero and the numerical ranges of the

(n−1)-by-(n−1) principal submatrices of A are all equal. For n = 3,

this is the case if and only if |a1| = |a2| = |a3| �= 0, in which case

W(A), the numerical range of A, is the equilateral triangular region

withvertices the three cubic roots ofa1a2a3. Forn = 4, the condition

becomes |a1| = |a3| �= 0 and |a2| = |a4| �= 0, in which case W(A)
is the convex hull of two (degenerate or otherwise) ellipses.
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An n-by-n (n � 2) weighted shift matrix A is one of the form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a1

0
. . .

. . . an−1

an 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the aj ’s, called theweights of A, are complex numbers. The purpose of this paper is to study the

numerical ranges of such matrices.

Recall that for any n-by-n complex matrix A, its numerical range W(A) is by definition the subset

{〈Ax, x〉 : x ∈ Cn, ‖x‖ = 1} of the plane, where 〈·, ·〉 and ‖ · ‖ denote the standard inner product and

its associated norm in Cn. It is known that W(A) is a nonempty compact convex subset of C. For its

other properties, the reader may consult [7, Chapter 1] or [5].

The numerical ranges of certain weighted shift matrices are easier to determine. For example, if

any of the weights of an n-by-n weighted shift matrix A is zero, then its numerical range is a circular

disc centered at the origin. On the other hand, if all the weights of A have equal (nonzero) moduli,

then W(A) is a polygonal region with its boundary a regular n-gon. The main theorem below gives

necessary and sufficient conditions for the boundary ofW(A) to have a line segment.More specifically,

it is shown that this is the case if and only if the weights are all nonzero and all its (n − 1)-by-(n − 1)

principal submatrices have identical numerical ranges (which are necessarily circular discs centered

at the origin). This is then used to give a characterization of such amatrix A of size 4with line segments

on ∂W(A) purely in terms of its weights, namely, for

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 a1

0 a2

0 a3

a4 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

the boundary of W(A) has a line segment if and only if |a1| = |a3| �= 0 and |a2| = |a4| �= 0. Along

the way, we also prove various properties of the numerical ranges of such matrices.

In the literature, there are works on the numerical ranges and numerical radii of weighted shift

matrices and operators. For example, [12, Lemma2] gives amethod to compute the numerical radius of

a weighted shift matrix with at least one zero weight. The authors in Refs. [11,12,1] discuss properties

of thenumerical ranges andnumerical radii ofweighted shifts on l2 withperiodic or geometricweights.

For an n-by-nmatrix A, let AT denote its transpose, A∗ its adjoint and Re A its real part (A + A∗)/2.
For 1 � i1 < · · · < im � n, let A[i1, . . . , im] denote the (n − m)-by-(n − m) principal submatrix

of A obtained by deleting its rows and columns indexed by i1, . . . , im. The numerical radius w(A) and
generalized Crawford number w0(A) of A are, by definition, max {|z| : z ∈ W(A)} and min {|z| : z ∈
∂W(A)}, respectively. A diagonalmatrixwith diagonals a1, . . . , an is denoted by diag(a1, . . . , an). Our
basic reference for properties of matrices is [6].

For any nonzero complex number z = x + iy (x and y real), arg z is the angle θ , 0 � θ < 2π ,

from the positive x-axis to the vector (x, y). If z = 0, then arg z can be an arbitrary real number. In the

following, let B(0; r) = {z ∈ C : |z| � r} for r > 0 and ωn = e2π i/n for n � 1. For any subset � of

C, �∧ denotes its convex hull.

The main result of this paper is the following.

Theorem 1. Let A be an n-by-n (n � 3) weighted shift matrix with weights a1, . . . , an. Then ∂W(A)
has a line segment if and only if the aj ’s are nonzero and W(A[1]) = · · · = W(A[n]). In this case,

W(A[j]) is the circular disc centered at the origin with radius w0(A), the line segment lies on one of the

lines x cos θk + y sin θk = w0(A), where θk = ((2k + 1)π + ∑n
j=1arg aj)/n, 0 � k < n, and there are

exactly n line segments on ∂W(A).
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The necessity of this theorem is easier to establish. It follows from the next two results.

Lemma 2. Let A and B be n-by-n (n � 2)weighted shiftmatriceswithweights a1, . . . , an and b1, . . . , bn,
respectively.

(1) If, for some fixed k, 1 � k � n, bj = ak+j (an+j ≡ aj) for all j, then A is unitarily equivalent to B.

(2) If |aj| = |bj| for all j, then A is unitarily equivalent to eiψkB,whereψk = (2kπ + ∑n
j=1(arg aj−arg

bj))/n for 0 � k < n.

Proof

(1) If U is the n-by-n weighted shift matrix with weights 1, . . . , 1, then U is unitary and AUn−k =
Un−kB. This proves the unitary equivalence of A and B.

(2) If U = diag(eiφ1 , . . . , eiφn), where φ1 = 0 and φj = φj−1 + (arg bj−1−arg aj−1) + ψk for

2 � j � n, then U is unitary and AU = U(eiψkB). �

Using this lemma,wecandeducemanyproperties of thenumerical rangeof aweighted shiftmatrix.

These are gathered together in the following. Note that some of them have already been obtained in

[8], the Ph.D. dissertation of Issos on irreducible nonnegative matrices. For example, (1) below is a

special case of [8, Theorem 6] and (4) follows from [8, Theorem 7].

Proposition 3. Let A be an n-by-n (n � 3) weighted shift matrix with weights a1, . . . , an, and let

θ = (
∑n

j=1arg aj)/n.

(1) W(A) satisfies W(A) = ωnW(A).
(2) W(A) is symmetric with respect to the lines y = x tan γk , where γk = (kπ/n)+ θ for 0 � k < n.

(3) The following conditions are equivalent:

(a) aj = 0 for some j,

(b) A is unitarily equivalent to eiθA for all real θ , and
(c) W(A) is a circular disc centered at the origin.

(4) If aj �= 0 for all j, then ∂W(A) intersects ∂B(0;w(A)) (resp., ∂B(0;w0(A))) at exactly the n points

w(A)eiαk (resp., w0(A)e
iβk ), where αk = (2kπ/n) + θ (resp., βk = ((2k − 1)π/n) + θ ) for

0 � k < n.

(5) w(A) � w0(A) sec(π/n) and

B(0;w0(A)) ⊆ W(A) ⊆ w0(A)

(
sec

π

n

)
eiθ

{
1, ωn, . . . , ω

n−1
n

}∧
.

(6) If∂W(A)hasa line segment L, thendist(0, L) = w0(A), L lies ononeof the lines x cosβk+y sinβk =
w0(A), where the βk ’s are as in (4), and there are exactly n line segments on ∂W(A).

Proof. (1) Letting B = A and k = 1 in Lemma 2 (2) yields the unitary equivalence of A and ωnA. The

assertionW(A) = ωnW(A) then follows.

(2) By Lemma 2 (2), A is unitarily equivalent to eiαkB (resp., eiβkC), where B (resp., C) is the n-by-n

weighted shiftmatrixwithweights |a1|, . . . , |an| (resp., |a1|, . . . , |an−1|,−|an|) andαk = (2kπ/n)+
θ (resp., βk = ((2k − 1)π/n) + θ ) for 0 � k < n. Since the numerical ranges of the real matrices

B and C are symmetric with respect to the x-axis, the unitary equivalences above yield the symmetry

of W(A) with respect to the lines lk : y = x tanαk (resp., Lk : y = x tanβk), 0 � k < n. Note that

for odd n, lk and L(k+((n+1)/2))(mod n) coincide while for even n, lk and l(k+(n/2))(mod n) (resp., Lk and

L(k+(n/2))(mod n)) coincide. Thus W(A) is symmetric with respect to the n distinct lines among them,

namely, the lines y = x tan γk , 0 � k < n.

(3) If (a) holds, then theψk ’s in Lemma 2 (2) can be arbitrary. Letting B = A in there, we obtain (b).

The implication (b)⇒ (c) is trivial. To prove (c)⇒ (a), note that 0, the center of the circular discW(A),
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is an eigenvalue of A (cf. [10, Theorem 4.2]). Hence det A = (−1)n+1a1, . . . , an = 0, which shows

that aj = 0 for some j.

(4) We first prove the assertion for w(A). As shown in (2) above, A is unitarily equivalent to eiαkB

for 0 � k < n. Since B is a nonnegative matrix, w(B) belongs toW(B) (cf. [9, Proposition 3.3]). Hence

w(A) is in e−iαkW(A) and thus w(A)eiαk is in W(A) for 0 � k < n. If there are more than n points in

∂W(A)∩ ∂B(0;w(A)), then Anderson’s theorem (cf. [13, Lemma 6] or [10, Theorem 4.12]) implies that

W(A) and B(0;w(A)) coincide. This would contradict the assertions in (3) since aj �= 0 for all j. Hence

∂W(A) ∩ ∂B(0;w(A)) consists of exactly the n points w(A)eiαk , 0 � k < n.

For the assertion on w0(A), as in (2) above, A is unitarily equivalent to eiβkC for 0 � k < n.

Let w0(C)e
iβ (β real) be any point in ∂W(C) ∩ ∂B(0;w0(C)). Then w0(A)e

i(β+βk) is in ∂W(A) ∩
∂B(0;w0(A)) for 0 � k < n. In particular, W(A) contains the regular n-polygonal region with these

pointsasvertices. FromtheconvexityofW(A)andtheminimalityofw0(A),we infer thatB(0;w0(A)) ⊆
W(A). If there are more than n points in ∂W(A)∩ ∂B(0;w0(A)), then [3, Theorem 2.5 (b)] implies that

∂W(A) contains at least one arc of ∂B(0;w0(A)). The n-symmetry of W(A) from (1) then yields that

either ∂W(A) = ∂B(0;w0(A)) or ∂W(A) contains n arcs of ∂B(0;w0(A)). The former implies that

W(A) = B(0;w0(A)), which contradicts (3), while the latter would contradict [3, Theorem 2.5 (a)].

Thus ∂W(A) ∩ ∂B(0;w0(A)) consists of exactly n points. These points must be on the lines y =
x tan γk in (2) for otherwise by symmetry there will be at least 2n points in ∂W(A) ∩ ∂B(0;w0(A))
contradicting what we have proved above. We conclude that the points in ∂W(A)∩ ∂B(0;w0(A)) are
exactly w0(A)e

iβk , 0 � k < n.

(5) Since the points w(A)eiαk , 0 � k < n, are in W(A) by (4), the regular n-polygonal region R

whose vertices are these points is contained in W(A). Hence

w0(A) � dist(0, R) = w(A)
1

2
|eiα0 + eiα1 | = w(A) cos

π

n
.

This proves that w(A) � w0(A) sec(π/n).
The containment B(0;w0(A)) ⊆ W(A)was already noted in the proof of (4). For the other direction,

note that ifu is any point ofW(A)which is in a different half-plane, determined by the line L connecting

w0(A) sec(π/n)e
iα0 andw0(A) sec(π/n)e

iα1 , from the origin, then, by (2), its symmetric point u′ with

respect to the line connecting 0 andw0(A)e
iβ1 is also inW(A). Thus (u+u′)/2 is inW(A), whichwould

contradict the fact that w0(A)e
iβ1 is on the boundary of W(A). This shows that W(A) is contained in

the same half-plane of L as the origin. The n-symmetry ofW(A) from (1) then yields that

W(A) ⊆ w0(A)

(
sec

π

n

) {
eiαk : 0 � k < n

}∧

= w0(A)

(
sec

π

n

)
eiθ

{
ωk

n : 0 � k < n
}∧
.

(6) If L is a line segment on ∂W(A), then L intersects ∂W(A[j]) for every j, 1 � j � n (cf. [2,

Lemma 5]). Since W(A[j]) ⊆ W(A) and W(A[j]) is a circular disc centered at the origin, we obtain

dist(0, L) = w0(A[j]) � w0(A) for every j. But dist(0, L) � w0(A) is obviously true. This shows that

dist(0, L) = w0(A[1]) = · · · = w0(A[n]) = w0(A). It follows from (4) that L must lie on one of the

lines x cosβk + y sinβk = w0(A), 0 � k < n. Together with (1), this implies that there are exactly n

line segments on ∂W(A). �
The necessity of Theorem 1 then follows easily from Proposition 3 (3) and (6).

As a side result, the next proposition gives conditions for a weighted shift matrix to have a regular

polygonal region as its numerical range. The equivalence of some conditions below can also be derived

from [8, Theorem 13].

Proposition 4. Let A be a nonzero n-by-n (n � 3) weighted shift matrix with weights a1, . . . , an. Then
the following conditions are equivalent:

(1) A is normal,

(2) |a1| = · · · = |an|,
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(3) A is unitarily equivalent to diag(λ, λωn, . . . , λω
n−1
n ), where λ = (a1, . . . , an)

1/n,

(4) W(A) is a regular n-polygonal region with center at the origin and the distance from the center to

its vertices equal to |a1, . . . , an|1/n,
(5) ∂W(A) has a nondifferentiable point, and

(6) w(A) = w0(A) sec(π/n).

Proof. That (1) ⇒ (2), (3) ⇒ (4) and (4) ⇒ (5) are trivial. To prove (2) ⇒ (3), note that, under (2), A

is unitarily equivalent to |a1|eiθB, where B is the n-by-n weighted shift matrix with weights 1, . . . , 1

by Lemma 2 (2). It is easily seen that B is unitarily equivalent to diag(1, ωn, . . . , ω
n−1
n ) and |a1|eiθ =

|a1|ei(
∑n

j=1 arg aj)/n = (a1, . . . , an)
1/n = λ. Hence (3) follows. For (5) ⇒ (1), if λ is a nondifferentiable

point of ∂W(A), then so areλωk
n, 0 � k < n, by Proposition 3 (1). Since eachof suchpoints is a reducing

eigenvalue of A, we obtain that A is unitarily equivalent to diag(λ, λωn, . . . , λω
n−1
n ). In particular, A

is normal, that is, (1) holds. Finally, if (4) holds, then (2) is true and hence

w(A) = |a1, . . . , an|1/n = |a1| = w0(A) sec
π

n
,

that is, (6) holds. Conversely, if (6) is true, then Proposition 3 (5) says thatW(A) ⊆ w(A)eiθ {1, ωn, . . . ,

ωn−1
n }∧. But the vertices of this latter regularn-polygonal region, namely,w(A)eiθωk

n, 0 � k < n, are in

W(A) by Proposition 3 (4). Hence we must have W(A) = w(A)eiθ {1, ωn, . . . , ω
n−1
n }∧. Hence ∂W(A)

has nondifferentiable points, that is, (5) holds. �

We now proceed to prepare ourselves for the proof of the sufficiency of Theorem 1. This will be

done in a series of lemmas and propositions. We start with the following.

Lemma 5. Let A and B be the n-by-n (n � 2) weighted shift matrices with weights a1, . . . , an−1, 0 and

b1, . . . , bn−1, 0, respectively.

(1) If |aj| � |bj| for all j, then W(A) ⊆ W(B).

(2) If the bj ’s are nonzero, |aj| � |bj| for all j and |ak| < |bk| for some k, then W(A) � W(B).

(3) If the aj ’s are nonzero, then W(A[n]) � W(A).

Proof. In view of Lemma 2 (2), we may assume that the aj ’s and bj ’s are all nonnegative. Since W(A)
andW(B) are circular discs centered at the origin by Proposition 3 (3), the assertions in (1) and (2) are

equivalent to w(A) � w(B) and w(A) < w(B), respectively. These in turn follow from [9, Corollary

3.6]. To prove (3), let C = A[n] ⊕ [0]. Then W(A[n]) = W(C) � W(A) by (2). �

The next lemma is needed for the proof of Proposition 7.

Lemma 6. If A and B are n-by-n (n � 2) weighted shift matrices with weights a1, . . . , an−1, 0 and

an−1, . . . , a1, 0, respectively, then W(A) = W(B).

Proof. SinceW(A) andW(B) are circular discs centered at the origin by Proposition 3 (3),weneed only

check that w(A) = w(B). By Lemma 2 (2), we may assume that aj � 0 for all j. Let x = [x1, . . . , xn]T
be a unit vector with nonnegative components such that w(A) = 〈Ax, x〉. Then

w(A) =
n−1∑
j=1

ajxj+1xj = 〈By, y〉 � w(B),

where y = [xn, . . . , x1]T . Similarly, we have w(B) � w(A). Thus w(A) = w(B) as asserted. �

As indicated by the referee, the preceding lemma can also be proven by noting, under aj � 0 for all

j, that Re A and Re B are unitarily equivalent:
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J(Re A)=(Re B)J, where J = [Jij]ni,j=1 is the n-by-n skew identity matrix with

Jij =
⎧⎨
⎩ 1 if i + j = n + 1,

0 otherwise,

and hence w(A) = ‖Re A‖ = ‖Re B‖ = w(B).

Proposition 7. Let A be an n-by-n (n � 3) weighted shift matrix with weights a1, . . . , an. If |a1| =
· · · = |an−3| and ∂W(A) has a line segment, then |an−2| = |an| �= 0.

Proof. By Lemma 2 (2), wemay assume that aj � 0 for all j. Since ∂W(A) has a line segment, we even

have aj > 0 by Proposition 3 (3). Let A1 and A2 be the (n− 1)-by-(n− 1) weighted shift matrices with

weights a1, . . . , an−3, an−2, 0 and a1, . . . , an−3, an, 0, respectively. Then A1 = A[n] and W(A2) =
W(A3), where A3 is the (n − 1)-by-(n − 1) weighted shift matrix with weights an, an−3, . . . , a1, 0,
by Lemma 6. Since a1 = · · · = an−3, by Lemma 2 (1), A3 is unitarily equivalent to A[n − 1]. Thus
W(A3) = W(A[n−1]). Note that the existence of a line segment on ∂W(A) guarantees thatW(A[n]) =
W(A[n − 1]) by the necessity part of Theorem 1. We conclude that W(A1) = W(A2). Therefore,
an−2 = an by Lemma 5 (2). �

From Proposition 7, we can derive the following for weighted shift matrices of size 3 or 4: (1) a

3-by-3 weighted shift matrix A with weights a1, a2, a3 is such that ∂W(A) contains a line segment if and

only if |a1| = |a2| = |a3| �= 0, and (2) if the 4-by-4 weighted shift matrix A with weights a1, a2, a3, a4
is such that ∂W(A) contains a line segment, then |a1| = |a3| �= 0 and |a2| = |a4| �= 0. The necessity in

(1) and (2) is a consequence of Proposition 7 and Lemma 2 (1). The sufficiency in (1) has already been

proven in Proposition 4. Note that the condition in (2) is actually also sufficient, but its proof has to

wait until the proving of Theorem 1 (cf. Proposition 12).

The next proposition is the major step in proving the sufficiency of Theorem 1.

Proposition 8. Let A be an n-by-n (n � 3) weighted shift matrix with nonzero weights a1, . . . , an, and
let θ = (π + ∑n

j=1arg aj)/n.

(1) If W(A[j − 1]) = W(A[j]) = W(A[j + 1]) = B(0; r) for some j, 1 � j � n (A[0] ≡ A[n] and
A[n+ 1] ≡ A[1]) and some r > 0, then r is either the largest or the second largest eigenvalue of Re

(e−iθA).

(2) If W(A[1]) = · · · = W(A[n]) = B(0; r)(r > 0), then r = w0(A) is the largest eigenvalue of Re

(e−iθA) with multiplicity at least two.

For the proof, we need the following lemma.

Lemma 9. Let A be an n-by-n (n � 5) weighted shift matrix with nonzero real weights a1, . . . , an. For

1 � j � n − 2, let B = Re A[n] be partitioned as

⎡
⎣ Aj Bj

Cj Dj

⎤
⎦ with Aj , Bj , Cj and Dj of sizes j-by-j, j-by-

(n− j − 1), (n− j − 1)-by-j and (n− j − 1)-by-(n− j − 1), respectively. If λ is the maximum eigenvalue

of B, then a22, . . . , a
2
n−3λ

2 = 4n−4 det(λIn−3 − An−3) det(λIn−3 − D2).

Proof. Since the aj ’s are nonzero, W(A[n]) properly contains W(A[j + 1, . . . , n]) for any j, 1 � j �
n − 2, by Lemma 5 (3). Hence λ, being the radius of the circular disc W(A[n]), does not belong to

W(A[j + 1, . . . , n]). In particular, λ is not an eigenvalue of Aj =Re A[j + 1, . . . , n] and therefore

λIj − Aj is invertible for all j, 1 � j � n − 2. Similarly, the same is true for λIn−j−1 − Dj . Thus

0 = det(λIn−1 − B)

= det(λIj − Aj) det((λIn−j−1 − Dj)− (−Cj)(λIj − Aj)
−1(−Bj))
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= det(λIj − Aj) det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
(λIn−j−1 − Dj)− 1

4
a2j

det(λIj−1 − Aj−1)

det(λIj − Aj)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

0 0
...

...
. . .

...

0 · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= det(λIj − Aj)(det(λIn−j−1 − Dj)− 1

4
a2j

det(λIj−1 − Aj−1)

det(λIj − Aj)
det(λIn−j−2 − Dj+1)),

from which we obtain

a2j = 4
det(λIj − Aj) det(λIn−j−1 − Dj)

det(λIj−1 − Aj−1) det(λIn−j−2 − Dj+1)

for 2 � j � n − 3. Taking the product of the a2j ’s yields

a22, . . . , a
2
n−3λ

2 = 4n−4 det(λIn−3 − An−3) det(λIn−3 − D2)

det(λI1 − A1) det(λI1 − Dn−2)
λ2

= 4n−4 det(λIn−3 − An−3) det(λIn−3 − D2)

since A1 and Dn−2 are both the 1-by-1 zero matrix. �

Proof of Proposition 8. (1) We may assume, by Lemma 2 (1), that W(A[n − 1]) = W(A[n]) =
W(A[1]) = B(0; r). Also, by Lemma 2 (2), A is unitarily equivalent to eiθC, where C is the n-by-n

weighted shift matrix with weights |a1|, . . . , |an−1|,−|an|. Then w0(A) = w0(C) is in ∂W(C) by
Proposition 3 (4) andW(A[j]) = W(C[j]) for all j. Thusw0(C) is the maximum eigenvalue of Re C and

r is the maximum eigenvalue of Re C[j] for j = 1, n − 1 and n. We now expand the determinant of

rIn−Re C by minors along its nth row to obtain

det(rIn − Re C)

= 1

2
|an|(−1)n+1dn1 − 1

2
|an−1|(−1)2n−1dn,n−1 + r det(rIn−1 − Re C[n])

= 1

2
|an|(−1)n+1dn1 − 1

2
|an−1|(−1)2n−1dn,n−1,

where (−1)n+jdnj denotes the cofactor of the (n, j)-entry of Re C in Re C, j = 1, n − 1. The expansion

of the determinant dn1 (resp., dn,n−1) along its first row (resp., its last row) yields

dn1 = (−1)n−1

2n−1
|a1, . . . , an−1| + (−1)n

2
|an| det C1

(
resp., dn,n−1 = 1

2n−1
|a1, . . . , an−2an| − 1

2
|an−1| det C2

)
,

where

C1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r −|a2|/2
−|a2|/2 r

. . .

. . .
. . . −|an−2|/2

−|an−2|/2 r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
resp., C2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r −|a1|/2
−|a1|/2 r

. . .

. . .
. . . −|an−3|/2

−|an−3|/2 r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence

det(rIn − Re C) = 1

2n
|a1, . . . , an| − 1

4
|an|2 det C1 + 1

2n
|a1, . . . , an| − 1

4
|an−1|2 det C2

= 1

2n−1
|a1, . . . , an| − 1

4
|an|2 det C1 − 1

4
|an−1|2 det C2. (i)

On the other hand, let

Dj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r −|aj|/2
−|aj|/2 r

. . .

. . .
. . . −|an+j−5|/2

−|an+j−5|/2 r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

for j = 1, 2 and 3. Since det(rIn−1−Re C[n]) = 0, expanding this determinant along its first row (resp.,

its last row) yields r det C1 = (|a1|2/4) det D3 (resp., r det C2 = (|an−2|2/4) det D1). Similarly, from

det(rIn−1−ReC[1]) = 0 (resp., det(rIn−1−ReC[n−1]) = 0),weobtain r det C1 = (|an−1|2/4) det D2

(resp., r det C2 = (|an|2/4) det D2). Since r is the maximum eigenvalue of Re C[j] for j = 1, n − 1 and

n, we have det Cj � 0 for j = 1 and 2, and det Dj � 0 for j = 1, 2 and 3. Thus (i) becomes

det(rIn − Re C) = 1

2n−1
|a1, . . . , an| − 1

4
|an|2 |an−1|2

4r
det D2 − 1

4
|an−1|2 |an|2

4r
det D2

= 1

2n−1
|a1, . . . , an| − 1

8r
|an−1an|2 |an−2|

|an| (det D1)
1/2 |a1|

|an−1| (det D3)
1/2

= 1

2n−1
|a1, . . . , an| − 1

8r
|a1an−2an−1an|(det D1 · det D3)

1/2 = 0

by Lemma 9. Hence det(rIn−Re (e−iθA)) = 0. Since r is the maximum eigenvalue of Re (e−iθA)[1],
this shows that it is either the largest or the second largest eigenvalue of Re (e−iθA).

(2) From our assumption and the proof of (1), we have det(rIn−1 − Re C[j]) = det(rIn − Re C) = 0

for all j, 1 � j � n. Thus if p(z) = det(zIn − Re C), then p′(r) = ∑n
j=1 det(rIn−1 − Re C[j]) = 0 (cf.

[6, p. 43, Problem 4]). This shows that the eigenvalue r of Re C has (algebraic) multiplicity at least two

or, equivalently, dim ker(rIn−Re C) � 2. Since B(0; r) = W(C[n]) ⊆ W(C), we have r � w0(C). If
r < w0(C), then we deduce from the facts that w0(C) is the maximum eigenvalue of Re C and dim

ker(rIn−Re C) � 2 that B(0; r) = W(C[n]) = W(C[n − 1, n]). This contradicts Lemma 5 (3) since

the aj ’s are nonzero. Hence we must have r = w0(C) = w0(A), which is the largest eigenvalue of Re

(e−iθA)with multiplicity at least two.

To prove the sufficiency of Theorem 1, we need the following condition for the line segment on the

boundary of a numerical range. It is from [4, Lemma 1.4]. �

Lemma 10. Let A be an n-by-n (n � 2) matrix. Then ∂W(A) has a line segment on the line x cos θ +
y sin θ = d if and only if d is the maximum eigenvalue of Re (e−iθA), which has unit eigenvectors x1 and

x2 such that Im 〈e−iθAx1, x1〉 �= Im 〈e−iθAx2, x2〉.



M.C. Tsai, P.Y. Wu / Linear Algebra and its Applications 435 (2011) 243–254 251

Lemma 11. Let A be an n-by-n (n � 2)weighted shift matrix with nonzero real weights a1, . . . , an. Then
∂W(A) has a line segment on the line x = d if and only if d is the maximum eigenvalue of Re A with

multiplicity at least two.

Proof. In view of Lemma 10, we need only prove the sufficiency part. Since dim ker(dIn−Re A) � 2,

there are real vectors b = [0 b2 . . . bn]T and c = [c1 0 c3 . . . cn]T in ker(dIn−Re A) with b2, c1 �= 0.

Then we obtain a1b2 + anbn = 0, 2db2 = a2b3, 2dbj = aj−1bj−1 + ajbj+1 for 3 � j � n − 1, and

an−1bn−1 = 2dbn (resp., 2dc1 = ancn, a1c1 + a2c3 = 0, 2dc3 = a3c4, 2dcj = aj−1cj−1 + ajcj+1 for

4 � j � n − 1, and anc1 + an−1cn−1 = 2dcn). Simple computations show that

anbnc1 = −a1b2c1 = a2b2c3 = (2db3 − a3b4)c3

= a3(b3c4 − b4c3) = a3b3c4 − (2dc4 − a4c5)b4

= a4(b4c5 − b5c4)

= · · ·
= an−1(bn−1cn − bncn−1).

Letting x1 = (b + ic)/‖b + ic‖ and x2 = b/‖b‖, we have

Im〈Ax1, x1〉 = 1

‖b + ic‖2

⎛
⎝−a1b2c1 + a2b2c3 +

n−1∑
j=3

aj(bjcj+1 − bj+1cj)+ anbnc1

⎞
⎠

= − na1b2c1

‖b + ic‖2
�= 0 = Im〈Ax2, x2〉.

Our assertion follows from Lemma 10. �

We are now ready to prove the sufficiency part of Theorem 1.

Proof of Theorem 1. Assume that aj �= 0 and W(A[j]) = B(0; r) for all j, 1 � j � n. By Lemma

2 (2), A is unitarily equivalent to eiψC, where C is the n-by-n weighted shift matrix with weights

|a1|, . . . , |an−1|,−|an| and ψ = (π + ∑n
j=1 arg aj)/n. By Proposition 8 (2), r = w0(C) = w0(A) is

the largest eigenvalue of Re C with multiplicity at least two. Lemma 11 then implies that ∂W(C) has
a line segment on the line x = r. Thus∂W(A)has a line segment on x cosψ+y sinψ = r = w0(A). �

The next proposition characterizes those 4-by-4 weighted shift matrices Awith ∂W(A) containing
a line segment in terms of the weights of A. It was worked out by Gau and the second author some

years ago.

Proposition 12. Let A be a 4-by-4 weighted shift matrix with weights a1, . . . , a4. Then the following

conditions are equivalent:

(1) ∂W(A) has a line segment,

(2) |a1| = |a3| �= 0 and |a2| = |a4| �= 0,

(3) A is unitarily equivalent to

⎡
⎣ 0 b1

b2 0

⎤
⎦ ⊕

⎡
⎣ 0 c1

c2 0

⎤
⎦,where b1b2 = −c1c2 �= 0 and |b1|2 + |b2|2 =

|c1|2 + |c2|2, and
(4) A is unitarily equivalent to

⎡
⎣ 0 b1

b2 0

⎤
⎦ ⊕ i

⎡
⎣ 0 b1

b2 0

⎤
⎦ with b1, b2 �= 0.
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In this case, W(A) is the convex hull of the two (orthogonal) ellipses E1 and E2 (may degenerate to line

segments if |b1| = |b2|)with E1 having foci±(b1b2)1/2 andminor axis of length ||b1|−|b2|| and E2 = iE1.

In particular, ∂W(A) has four line segments.

Proof. (1) ⇔ (2). Since the characteristic polynomial of Re A[1] is
det(zI3 − Re A[1]) = z3 − 1

4

(
|a2|2 + |a3|2

)
z,

we have w(A[1]) = ‖Re A[1]‖ = (|a2|2 + |a3|2)1/2/2. Similarly, we obtain values of w(A[j]) for
2 � j � 4. Thus the equivalence of (1) and (2) follows from Theorem 1 and Proposition 3 (3).

(2)⇒ (3). Since det(zI4 −A) = z4 −a1a2a3a4, the eigenvalues of A are αj ≡ (a1a2a3a4)
1/4ω

j
4, 0 �

j < 4. Their respectiveeigenvectors canbecomputed tobe (multiplesof) xj ≡[1 αj/a1 αj2/(a1a2) αj3/
(a1a2a3)]T , 0 � j < 4. Note that

〈xj, xk〉 = 1 + 1

|a1|2αjαk + 1

|a1a2|2 (αjαk)
2 + 1

|a1a2a3|2 (αjαk)
3

for any j and k. From this, it is easy to verify that

〈x1, x2〉 = 〈x1, x4〉 = 〈x3, x2〉 = 〈x3, x4〉 = 0.

Let y1 = x1 − x3 = [0 2α0/a1 0 2α0
3/(a1a2a3)]T , y2 = x1 + x3 = [2 0 2α0

2/(a1a2) 0]T ,
y3 = x2 − x4 = [0 2iα0/a1 0 −2iα0

3/(a1a2a3)]T and y4 = x2 + x4 = [2 0 −2α0
2/(a1a2) 0]T , and

letM be the subspace of C4 spanned by y1 and y2. Since Ay1 = Ax1 − Ax3 = α1x1 − α3x3 and Ay2 =
Ax1+Ax3 = α1x1+α3x3, andM is also spanned by x1 and x3, we have AM ⊆ M. A simple computation

shows that A∗y1 = (a4α0
3/(a1a2a3))y2 and A∗y2 = (|a1|2/α0)y1, where the assumptions that |a1| =

|a3| and |a2| = |a4| are used. This shows that A∗M ⊆ M. ThusM is a reducing subspace of A. Moreover,

it is easily seen that M⊥ is spanned by y3 and y4, and 〈y1, y2〉 = 〈y3, y4〉 = 〈Ayj, yj〉 = 0 for all j.

Therefore, A is unitarily equivalent to amatrix of the form

⎡
⎣ 0 b1

b2 0

⎤
⎦⊕

⎡
⎣ 0 c1

c2 0

⎤
⎦ ≡ B⊕C onM⊕M⊥.

Since x1 and x3 are inM, α1 and α3 are eigenvalues of B. Hence

−b1b2 = det B = α1α3 = α
1/2
0 ω2

4 = −α1/2
0 .

A similar argument with C yields −c1c2 = α
1/2
0 . It follows that b1b2 = −c1c2.

To prove |b1|2 + |b2|2 = |c1|2 + |c2|2, note that simple computations give

b1 =
〈
A

y2

‖y2‖ ,
y1

‖y1‖
〉

= α0
‖y1‖
‖y2‖ ,

b2 =
〈
A

y1

‖y1‖ ,
y2

‖y2‖
〉

= α0
‖y2‖
‖y1‖ ,

c1 =
〈
A

y4

‖y4‖ ,
y3

‖y3‖
〉

= iα0
‖y3‖
‖y4‖ ,

and

c2 =
〈
A

y3

‖y3‖ ,
y4

‖y4‖
〉

= iα0
‖y4‖
‖y3‖ ,

and ‖y1‖ = ‖y3‖ and ‖y2‖ = ‖y4‖. Thus
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|b1|2 + |b2|2 = |α0|2
(‖y1‖2

‖y2‖2
+ ‖y2‖2

‖y1‖2

)

= |α0|2
(‖y3‖2

‖y4‖2
+ ‖y4‖2

‖y3‖2

)
= |c1|2 + |c2|2

as asserted.

(3) ⇒ (4). Note that

⎡
⎣ 0 b1

b2 0

⎤
⎦

⎛
⎝resp.,

⎡
⎣ 0 c1

c2 0

⎤
⎦

⎞
⎠ is unitarily equivalent to

⎡
⎣ (b1b2)1/2 ||b1| − |b2||

0 −(b1b2)1/2
⎤
⎦

⎛
⎝resp.,

⎡
⎣ (c1c2)1/2 ||c1| − |c2||

0 −(c1c2)1/2
⎤
⎦

⎞
⎠. From the assumption in (3), we have

(b1b2)
1/2 = ±i(c1c2)

1/2 and ||b1| − |b2|| = ||c1| − |c2||. Thus
⎡
⎣ 0 c1

c2 0

⎤
⎦ is unitarily equivalent to

i

⎡
⎣ 0 b1

b2 0

⎤
⎦, and (4) follows.

(4) ⇒ (1). Since W

⎛
⎝

⎡
⎣ 0 b1

b2 0

⎤
⎦

⎞
⎠ is the elliptic disc with foci ±(b1b2)1/2 and minor axis of length

||b1| − |b2||, that is,W
⎛
⎝

⎡
⎣ 0 b1

b2 0

⎤
⎦

⎞
⎠ = E1

∧ andW

⎛
⎝i

⎡
⎣ 0 b1

b2 0

⎤
⎦

⎞
⎠ = (iE1)

∧, it is obvious that ∂W(A)

contains four line segments. This also proves our assertion on W(A), completing the proof. �

For n > 4, we can use the same arguments as in the proof of (1) ⇔ (2) above to obtain conditions

in terms of the weights. They turn out to be too complicated to be useful.

In a forthcoming paper [14] by the first author, more specific information is obtained for the nu-

merical ranges of weighted shift matrices with periodic weights.

We conclude this paper by stating a theoremon the numerical ranges ofmatriceswith an analogous

structure, namely, the nilpotent matrices of the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a1 0 · · · 0 an

0 a2
. . . 0

. . .
. . .

. . .
...

. . .
. . . 0

0 an−1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(ii)

with weights a1, . . . , an. Note that A and the weighted shift matrix with weights a1, . . . , an (an real)

have the same real parts, which explains why (almost) all results in this paper for the latter have their

analogs for the former. The only difference is that in the present case A is unitarily equivalent toωn−2A

and henceW(A) has the (n − 2)-symmetry property. The full details can be found in the first author’s

Ph.D. dissertation [15].

Theorem13. Let A be an n-by-n (n � 3)matrix of the form (ii). Then ∂W(A) has a line segment if and only

if the aj ’s are nonzero andW(A[1]) = · · · = W(A[n]). In this case,W(A[j]) is the circular disc centered at

the origin with radius w0(A), the line segment lies on one of the lines x cos θk + y sin θk = w0(A), where
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θk = ((2k + 1)π−arg an + ∑n−1
j=1 arg aj)/(n − 2), 0 � k < n − 2, and there are exactly n − 2 line

segments on ∂W(A).

The following is an easy corollary.

Corollary 14. Let A (resp., B) be the n-by-n (n � 3) weighted shift matrix (resp., nilpotent matrix of the

form (ii)) with weights a1, . . . , an. Then

(1) w(A) = w(B),
(2) w0(A) = w0(B), and
(3) ∂W(A) has a line segment if and only if ∂W(B) has.

A study of the matrix of the form (ii) with a1 = · · · = an = 1 was made in [3, Proposition 3.2].
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