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We propose a theoretical framework for evaluation of magnetoelectroelastic potentials in a
fibrous composite with piezoelectric and piezomagnetic phases, motivated by the techno-
logical desire for materials with large magnetoelectric coupling. We show that the problem
with transversely isotropic phases can be decomposed into two independent problems,
plane strain with transverse electromagnetic fields and anti-plane shear with in-plane
electromagnetic fields. We then consider the second problem in detail, and generalize
the classic work of Lord Rayleigh (1892) to obtain the electrostatic potential in an ordered
conductive composite and its extension to a disordered system by Kuo and Chen (2008) to
the current coupled magnetoelectroelastic problem. We use this method to study BaTiO3–
CoFe2O4 composites and provide insights into obtaining large effective magnetoelectric
coefficient.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A variety of technological applications including mag-
netic field sensors, electrically controlled microwave de-
vices and magneto-electric memory cells have motivated
the study of magneto-electric coupling in materials and
composites (Eerenstein et al., 2006; Nan et al., 2008). The
magneto-electric coupling was predicted by Landau and
Lifshitz (1984) and observed by Astrov (1960) and by Rado
and Folen (1961) over fifty years ago. The coupling is weak
in monolithic materials, and this has motivated the study
of composites of piezoelectric and piezomagnetic media.
The idea is that the applied electric field causes a deforma-
tion of the piezoelectric material which in turn induces a
deformation in the piezomagnetic material thereby induc-
ing a magnetic field.

The performance of a piezomagnetic/piezoeletric com-
posite depends on the micro-geometry of the phases since
one has to provide effective strain coupling and avoid elec-
tromagnetic shielding. This has motivated a number of
micromechanical models to predict the effective moduli
of multiferroic composites. For example, Nan (1994) and
Huang and Kuo (1997) used the Green’s function method
to study a fibrous composite consisting of BaTiO3 and
CoFe2O4. For such transversely isotropic fibrous compos-
ites, Benveniste (1995) derived exact connections among
effective magnetoelectroelastic moduli based on a formal-
ism discovered by Milgrom and Shtrikman (1989). Particu-
late composites were investigated by Harshé et al. (1993)
using a cubic model and by Lee et al. (2005) using finite
element method. Eshelby’s approach and the mean field
Mori–Tanaka model have been generalized to multiferroic
composites by Li and Dunn (1998a,b), Huang (1998), Li
(2000), Wu and Huang (2000), Huang and Zhou (2004)
and Srinivas et al. (2006). Frequency dependence of mag-
netoelectric coefficients of multiferroic laminates was
studied by Bichurin et al. (2003, 2005). Nan et al. (2008)
provide an extensive review of the literature and the state
of the art.

However, much of this work uses approximate methods
and models based on single inclusions, and focus on the
effective properties of composites with somewhat uncon-
trolled microstructure. There is a need for exact methods
that can be used to evaluate these approximate methods.
Further, a method that provides the detailed fields is useful
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Fig. 1. The cross-section of the fiber composite.

1 Later we shall specialize to a two-phase situation where all the
cylinders belong to one phase and the matrix to another.
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to provide insights for developing better microstructures
and more complex processes like dielectric breakdown
and failure (Li and Duxbury, 1989). Similarly, detailed sta-
tistical methods require the fields associated with multiple
particles (Fassi-Fehri et al., 1989). Furthermore, recent ad-
vances in synthesis allows the fabrication of composites
with highly controlled microstructure. For example, Ren
et al. (2008) have recently used a diblock copolymer pre-
cursors to produce a self-assembled hexagonal array of
CFO nanofibers in a PZT matrix. Therefore, there is a need
for obtaining the fields and properties of composites with
controlled microstructure. All of these motivate the cur-
rent work.

In a classic work, Lord Rayleigh (1892) computed the
electric potential for a conducting composite consisting
of a periodic array of inclusions (cylinders and spheres).
This was extended to arbitrary arrangements by Kuo and
Chen (2007, 2008). These works concern single fields. In
this paper, we generalize this methodology to multiple
coupled fields, specifically electrostatic, magnetostatic
and mechanical.

We consider a composite medium made of piezoelectric
and piezomagnetic phases arranged in a microstructure
consisting of parallel cylinders in a matrix in Section 2.
We follow the work of Chen (1993) (also Benveniste,
1995; Zheng and Chen, 1999 Camacho-Montes et al.,
2009) and observe in Section 2.1 that if the phases are
transversely isotropic, then the general problem can be
decomposed into two independent problems, plane strain
with transverse electromagnetic fields and anti-plane
shear with in-plane electromagnetic fields. We then focus
on the latter problem for much of paper. We notice in Sec-
tion 2.2 that the coupling between the fields occurs only
through the interface conditions. We exploit this in Sec-
tion 2.3 to obtain a representation of the solution. The ba-
sic idea is to follow Kuo and Chen (2008) and expand each
field in each medium in a series.

While we have developed a direct strategy to solve the
coupled problem, we note that there is an alternate strat-
egy. Milgrom and Shtrikman (1989) (also, Benveniste,
1997; Chen, 1997; Milgrom, 1997; Milton., 2001) show
that it is possible to transform the coupled problem to
the uncoupled problem for a two-phase composite. The
transformed problem could then be solved by the approach
of Kuo and Chen (2007, 2008). However, this transform
approach can not be generalized to N-phase composites for
N > 2. Furthermore the solution is in the transformed do-
main, and therefore it is difficult to develop insights into
the field. The direct approach we develop here overcomes
these difficulties.

We specialize to periodic arrays in Section 3. We obtain
effective properties in Section 4, and significantly show
that the macroscopic properties depend solely on a single
expansion coefficient (amongst the infinite).

This methodology is illustrated in Section 5 using com-
posites of BaTiO3 (BTO) and CoFe2O4 (CFO). We choose this
material pair for its practical potential and also because it
enables comparison with previous work. We observe that
the composite medium has a nontrivial magnetoelectric
coupling even though the individual components do not.
Further, we observe significant difference between com-
posites with BTO fibers in a CFO matrix and its
complement.

We briefly comment on the first problem – the plane
elasticity with transverse electromagnetic fields – in Sec-
tion 6 and show the opportunity for extremely large mag-
netoelectric coupling.

2. Arbitrary arrangement of circular cylinders

2.1. General setting

Let us consider an infinite medium R3containing N arbi-
trarily distributed, parallel and separated circular cylinders
(Fig. 1). The domain of the pth circular cylinder is denoted
Vp; p ¼ 1;2; . . . ;N, and the remaining matrix is denoted Xm.
We assume that the cylinders and the matrix are made of
distinct phases.1 Further, we assume that each phase is
either piezoelectric or piezomagnetic. The constitutive laws
for the rth phase is given by (see Alshits et al., 1992, for
example)

rðrÞ ¼ CðrÞeðrÞ � eTðrÞEðrÞ � qTðrÞHðrÞ;

DðrÞ ¼ eðrÞeðrÞ þ jðrÞEðrÞ þ kTðrÞHðrÞ; ð1Þ
BðrÞ ¼ qðrÞeðrÞ þ k ðrÞEðrÞ þ lðrÞHðrÞ;

where r, D, B, e, E and H are the stress, electric displace-
ment, magnetic flux, strain, electric field, and the magnetic
field respectively. C is the fourth-order tensor of elastic
moduli, and j , l and k are the second order tensors of
dielectric permittivity, magnetic permeability and magne-
toelectric coefficients. e and q are piezoelectric and piezo-
magnetic constants.

Now assume that each phase is transversely isotropic
(i.e., has 6 mm symmetry) with the symmetry axes ori-
ented with the cylinders. We introduce a Cartesian coordi-
nate system with the x- and y-axes in the plane of the
cross-section and z-along the axes of the cylinders. In the
Voigt notation the properties C, e, q, j, l, and k are given
by Nye (1985):
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CðrÞ ¼

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

0
BBBBBBBB@

1
CCCCCCCCA

ðrÞ

;

eðrÞ ¼
0 0 0 0 e15 0
0 0 0 e15 0 0

e31 e31 e33 0 0 0

0
B@

1
CA
ðrÞ

;

qðrÞ ¼
0 0 0 0 q15 0
0 0 0 q15 0 0

q31 q31 q33 0 0 0

0
B@

1
CA
ðrÞ

;

jðrÞ ¼
j11 0 0
0 j11 0
0 0 j33

0
B@

1
CA
ðrÞ

; lðrÞ ¼
l11 0 0
0 l11 0
0 0 l33

0
B@

1
CA
ðrÞ

; kðrÞ ¼
k11 0 0
0 k11 0
0 0 k33

0
B@

1
CA
ðrÞ

:

ð2Þ

Consistent with known material properties, the magneto-
electric coupling coefficients kðrÞ is negligible though we
do not explicitly use this fact here.

To obtain the effective properties of this medium, we
need to solve for equilibrium equations

r � r ¼ 0; r � D ¼ 0; r � B ¼ 0; ð3Þ

along with the analogous interfacial conditions and appro-
priate boundary conditions.

We follow Chen (1993) (also Benveniste, 1995; Zheng
and Chen, 1999; Camacho-Montes et al., 2009) and show
in the appendix that for this cylindrical geometry and
transversely isotropic material symmetry, the problem
splits naturally into two independent problems:

� Plane strain and transverse electromagnetic fields
u ¼
ux x; yð Þ
uy x; yð Þ

0

0
B@

1
CA; E ¼

0
0

Ez x; yð Þ

0
B@

1
CA; H ¼

0
0

Hz x; yð Þ

0
B@

1
CA;
ð4Þ
� Anti-plane shear and in-plane electromagnetic fields
u ¼
0
0

uz x; yð Þ

0
B@

1
CA; E ¼

Ex x; yð Þ
Ey x; yð Þ

0

0
B@

1
CA; H ¼

Hx x; yð Þ
Hy x; yð Þ

0

0
B@

1
CA:
ð5Þ
Therefore, it is sufficient to treat each of these problems. In
this work, we largely focus on the second, i.e., anti-plane
shear with in-plane electromagnetic fields with brief com-
ments on the first in Section 6.
2.2. Anti-plane shear with in-plane electromagnetic fields

We consider

ux ¼ uy ¼ 0;uz ¼ w x; yð Þ;
u ¼ u x; yð Þ;
w ¼ w x; yð Þ; ð6Þ

where ux, uy, uz are the mechanical displacements along
the x-, y-, and z-axes, and u and w are the electric and mag-
netic potentials, respectively. The constitutive laws of the
constituents and of the composite for the non-vanishing
fields can be recast in the form

rzj

Dj

Bj

0
B@

1
CA ¼

C44 e15 q15

e15 �j11 �k11

q15 �k11 �l11

0
B@

1
CA

ezj

�Ej

�Hj

0
B@

1
CA ð7Þ

where j denotes the component x; y. We can write this
compactly as

Rj
U ¼ LUWZj

W; U;W ¼ w;u;w; j ¼ x; y; ð8Þ

where

Rj ¼
rzj

Dj

Bj

0
B@

1
CA; L ¼

C44 e15 q15

e15 �j11 �k11

q15 �k11 �l11

0
B@

1
CA;Zj ¼

ezj

�Ej

�Hj

0
B@

1
CA:
ð9Þ

The shear strains ezx and ezy, in-plane electric fields Ex and
Ey, and in-plane magnetic fields Hx and Hy can be derived
from the gradient of elastic displacement, electric poten-
tial, and magnetic potential as follows:

ezx ¼
@w
@x

; ezy ¼
@w
@y

;

Ex ¼ �
@u
@x

; Ey ¼ �
@u
@y

;

Hx ¼ �
@w
@x

;Hy ¼ �
@w
@y

: ð10Þ

In the absence of body force, electric charge density and
electric current density, the equilibrium equations are gi-
ven by
@rzx

@x
þ @rzy

@y
¼ 0;

@Dx

@x
þ @Dy

@y
¼ 0;

@Bx

@x
þ @By

@y
¼ 0: ð11Þ

Substitution of Eq. (8) into Eq. (11) yields,

C44r2wþ e15r2uþ q1552w ¼ 0;

e15r2w� j11r2u� k1152w ¼ 0;

q15r2w� k11r2u� l1152w ¼ 0; ð12Þ

where r2 ¼ @2=@x2 þ @2=@y2 represents the two-dimen-
sional Laplace operator for the variable x and y. Since L is
a nonsingular matrix, generically we can decouple (12)
into three independent Laplace equations,

r2w ¼ 0; r2u ¼ 0; and r2w ¼ 0 ð13Þ

in the interior of each phase. In other words, the three
fields – displacement, electrostatic potential and magneto-
static potential – are completely decoupled in the interior
of each phase.

In addition to these differential equations, we have to use
interface and boundary conditions. We assume that the inter-
faces are perfectly bonded, and therefore the fields satisfy

½½Rjnj�� ¼ ½½ðLZjÞnj�� ¼ 0; ½½Zjtj�� ¼ 0 ð14Þ

where ½½��� denotes the jump in some quantity across the
interface, n is the unit normal to the interface and t is
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the unit tangent to the interface, and the repeated index j
denotes summing over the components x; y. Since L is dif-
ferent in the two phases, the fields w;u and w are generally
coupled by the interface equations.

2.3. Representation of the solution

In the anti-plane shear problem, we showed above that
the fields are decoupled in the interior of every phase, but
are coupled at the interfaces. Therefore, we may follow Kuo
and Chen (2008) and use a series expansion for each field
in the interior of each phases and then obtain the coeffi-
cients by enforcing the interface and boundary conditions.

We consider a situation where the composite is sub-
jected to a macroscopically uniaxial loading

wext ¼ ezxx; uext ¼ �Exx; wext ¼ �Hxx; ð15Þ

for constants ezx, Ex and Hx. We may rewrite this in short as

Uext ¼ Zx
Ux; ð16Þ

where U represents the appropriate field – the anti-plane
deformation w, electric potential u, or magnetic potential
w– and Zx

U the corresponding applied field – ezx;�Ex, or
�Hx.

We rewrite the governing equation, Eq. (13) in polar
coordinates r; hð Þ,

52U ¼ @
2U
@r2 þ

1
r
@U
@r
þ 1

r2

@2U

@h2 ¼ 0; ð17Þ

where U can be w, u or w. The potential field for the pth
circular cylinder and its surrounding matrix can be ex-
panded with respect to its center Op as

UðpÞi ¼ CUðpÞ
0 þ

X1
n¼1

CUðpÞ
n rn

p cos nhp þ FUðpÞ
n rn

p sin nhp

� �
ð18Þ

for the inclusion, and

UðpÞm ¼ AUðpÞ
0 þ

X1
n¼1

AUðpÞ
n rn

p þ BUðpÞ
n r�n

p

� �
cos nhp

h

þ DUðpÞ
n rn

p þ EUðpÞ
n r�n

p

� �
sin nhp

i
ð19Þ

for the matrix. Here ðrp; hpÞ is the local polar coordinate cen-
tered at the origin of the pth circle, the subscripts i and m de-
note the inclusion and matrix, respectively. The coefficients
AUðpÞ

n ;BUðpÞ
n ; . . . ; FUðpÞ

n are some unknowns to be determined.
The superscripts p in (18) and (19) indicate that the fields
that are expanded with respect to the pth cylinder center.

We recall the interface conditions (14) which we re-
write as

UðpÞm

���
@Vp

¼ UðpÞi

���
@Vp

; RUð ÞðpÞm � np

���
@Vp

¼ RUð ÞðpÞi � np

���
@Vp

ð20Þ

where

Rw ¼ rzx;rzy
� �

;Ru ¼ Dx;Dy
� �

;Rw ¼ Bx; By
� �

; ð21Þ

@Vp : rp ¼ ap denotes the interface between the matrix and
the pth circular cylinder, and np is the unit outward normal
of the interface @Vp.

Using the orthogonality properties of trigonometric
functions, the conditions (20) provide
aðpÞn ¼ a�2n
p TðpÞbðpÞn ; cðpÞn ¼ a�2n

p TðpÞ þ I
� �

bðpÞn ; ð22Þ

dðpÞn ¼ a�2n
p TðpÞeðpÞn ; fðpÞn ¼ a�2n

p TðpÞ þ I
� �

eðpÞn ; ð23Þ

and AUðpÞ
0 ¼ CUðpÞ

0 , where

aðpÞn ¼
AwðpÞ

n

AuðpÞ
n

AwðpÞ
n

0
BB@

1
CCA;bðpÞn ¼

BwðpÞ
n

BuðpÞ
n

BwðpÞ
n

0
BB@

1
CCA; cðpÞn ¼

CwðpÞ
n

CuðpÞ
n

CwðpÞ
n

0
BB@

1
CCA; ð24Þ

dðpÞn ¼
DwðpÞ

n

DuðpÞ
n

DwðpÞ
n

0
BB@

1
CCA; eðpÞn ¼

EwðpÞ
n

EuðpÞ
n

EwðpÞ
n

0
BB@

1
CCA; fðpÞn ¼

FwðpÞ
n

FuðpÞ
n

FwðpÞ
n

0
BB@

1
CCA; ð25Þ

TðpÞ ¼ L mð Þ � LðpÞ
� ��1

L mð Þ þ LðpÞ
� �

; ð26Þ

and I is the 3� 3 identity tensor.
We now need to relate the solutions to the applied

boundary conditions. We do so by applying the Green’s
second identity (Arfken and Weber, 2001) to the matrix
domain Xm. This gives

Z
Xm

G x; x0ð Þr02Um x0ð Þ �Um x0ð Þr02G x; x0ð Þ
h i

dA0

¼
Z
@Xm

G x; x0ð Þr0Um x0ð Þ �Um x0ð Þr0G x; x0ð Þ
� �

� n0ds0; ð27Þ

where the prime 0 denotes the operation in reference to the
x0 coordinate, n0 is the outward unit normal to the matrix’s
boundary @Xm; dA0 represents the area element for the x0

coordinate, ds0 is the differential arc length. Here G x; x0ð Þ
is the free-space Green’s function for Laplace operator sat-
isfying r2G x; x0ð Þ ¼ �d x� x0ð Þ, where d x� x0ð Þ is the Dir-
ac-delta distribution. Following the procedure in Kuo and
Chen (2008), it can be shown that Eq. (27) yields

Um xð Þ ¼ Uext xð Þ þ
XN

l¼1

X1
m¼1

BU lð Þ
m r�m

l cos mhl þ EU lð Þ
m r�m

l sin mhl

� �
:

ð28Þ

This is the consistency equation which relates the external
applied fields to the local potential expansions.

For convenience, we introduce the complex variable
notation z ¼ xþ iy for x ¼ ðx; yÞ with respect to the matrix
and zp for the cylinder centered at Op. Now, Eq. (28) can be
rewritten as

Um xð Þ ¼ Zx
Uzþ

XN

l¼1

X1
m¼1

BU lð Þ
m Re z� zlð Þ�m � EU lð Þ

m Im z� zlð Þ�m
h i

;

ð29Þ

where Zx
U represents the corresponding applied field

ezx;�Ex, or �Hx. Note that the field identity (29) is written
based on different coordinates. To proceed, we shift the
origin of the expansions (29) to a fixed point, say zp. For
point z satisfying the inequality z� zp

�� �� < zp � zl

�� ��, we can
then expand the term z� zlð Þ�m using the binomial theo-
rem as Arfken and Weber (2001)
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z� zlð Þ�m ¼
X1
s¼0

�1ð Þs
mþ s� 1

s

	 

z� zp
� �s

zp � zl

� �mþs : ð30Þ

Introducing (30) into (29), we have the expansion

UðpÞm;near xð Þ ¼ Zx
URezp þ Zx

URe z� zp
� �

þ
X1
m¼1

BUðpÞ
m Re z� zp

� ��m � EUðpÞ
m Im z� zp

� ��m
h i

þ
X
l–p

X1
s¼0

X1
m¼1

�1ð Þs
mþ s� 1

s

	 


� BU lð Þ
m Re

z� zp
� �s

zp � zl

� �mþs � EU lð Þ
m Im

z� zp
� �s

zp � zl

� �mþs

" #
ð31Þ

valid for the domain

z� zp

�� �� < min zp � zl

�� ��� �
; for l ¼ 1;2; . . . ;N; p – l: ð32Þ

Since the expansion (31) are valid for points satisfying the
condition (32), which generally applies to points near the
pth inclusion, this expansion will be referred to as a
near-field expansion, denoted as UðpÞm;near xð Þ. Further, since
x lies in the matrix domain, Eqs. (31) and (19) should be
identical. This provides the condition

AUðpÞ
0 þ

X1
n¼1

AUðpÞ
n Re z� zp

� �n þ DUðpÞ
n Im z� zp

� �n
h i

¼ Zx
URezp þ Zx

URe z� zp
� �

þ
X
l–p

X1
s¼0

X1
m¼1

�1ð Þs
mþ s� 1

s

	 


� BU lð Þ
m Re

z� zp
� �s

zp � zl

� �mþs � EU lð Þ
m Im

z� zp
� �s

zp � zl

� �mþs

" #
: ð33Þ

Taking the real part and the imaginary part of (33), we find
the two conditions

AUðpÞ
n �

X
l–p

X1
m¼1

�1ð Þn
mþ n� 1

n

	 


� BU lð Þ
m Re zp � zl

� ��m�n � EU lð Þ
m Im zp � zl

� ��m�n
h i
¼ Zx

URezpdn;0 þ Zx
Udn;1; ð34Þ

and

DUðpÞ
n þ

X
l–p

X1
m¼1

�1ð Þn
mþ n� 1

n

	 


� BU lð Þ
m Im zp � zl

� ��m�n þ EU lð Þ
m Re zp � zl

� ��m�n
h i

¼ 0: ð35Þ

Eqs. (34), (35), (22)1, and (23)1 constitute an infinite set of
linear algebraic equations. Upon appropriate truncations of
the expansion terms, we can determine the expansion
coefficients AUðpÞ

n ;BUðpÞ
n ; . . . ; FUðpÞ

n .

3. Periodic arrays

The analysis carried out in the previous section for the
arbitrary system with a finite number of cylinders may also
be adapted for the case of a periodic array of cylinders. Rel-
evant works in magnetoelectric composites with periodic
configurations include, for example, Aboudi (2001), who
developed a homogenization method for the prediction of
the effective properties of magneto-electro-thermo-elastic
composites and the results are in good agreement with
those of the Mori–Tanaka model. Lee et al. (2005) proposed
a finite element analysis based micromechanics approach
to determine the effective material properties of three-
phase electromagnetoelastic composites. A variational
asymptotic method has been used by Tang and Yu (2008,
2009) to construct a fully coupled micromechanics model
for prediction of effective behaviours and local fields of
smart composites. Camacho-Montes et al. (2009) adopted
a two-scale asypmtotic homogenization method to deter-
mine the overall behaviour of magnetoelectric coupling
and cross-property connections in a square array of a bin-
ary composite.

There are five possible ways of packing cylinders in reg-
ular arrays in two dimensions (see Kittel, 1986, for in-
stance). Here we concentrate on the two lattices,
rectangular and hexagonal. It is known that in the case of
elasticity, a hexagonal arrangement of circular fibers re-
sults in effective transverse isotropy; on the other hand a
square arrangement results in general in square symmetry
(Li., 2000). It turns out however that in the case of conduc-
tion square symmetry and transverse isotropy become
identical, and both kinds of arrangements give therefore
rise to the same overall symmetry (Perrins et al., 1979).
This statement is also correct for piezomagnetoelectricity
under anti-plane shear with in-plane electromagnetic
fields which is the case of our study. We sketch the outline
of the derivation focussing on the differences from the pre-
vious situation. Finally, we limit ourselves to the case of
anti-plane shear with in-plane electromagnetic fields.

Let us first introduce a Cartesian coordinate system
x; yð Þ positioned at the center O of one of the cylinders in

a square or a hexagonal array, as shown in Fig. 2. The ra-
dius of the cylinders is a and we may assume unit distance
between the centers of neighboring cylinders without loss
of generality. Uniform intensities Ex and Hx are applied
along the positive x axis, and an anti-plane shear deforma-
tion ezx is applied out of the xy plane. In terms of polar
coordinates, the general solution has the admissible form

Ui ¼ CU
0 þ

X1
n¼1

CU
n rn cos nh ð36Þ

for r < a, and

Um ¼ AU
0 þ

X1
n¼1

AU
n rn þ BU

n r�n
� �

cos nh ð37Þ

for r > a. The coefficients AU
n ;B

U
n , and CU

n are unknown con-
stants to be determined from the interface and boundary
conditions. Note that the sine terms that would be present
in a general expansion are missing since we impose a uni-
axial loading along the x� direction. Further, U r; hð Þ has to
be antisymmetric with respect to the y� axis, and thus
only terms with an odd number are included. Finally, for
a hexagonal lattice, all terms in which n is a multiple of
three are disallowed (Perrins et al., 1979).

Analogous to (22), the continuity conditions at the inter-
face will give constraints (22) between the coefficients.

Next, imposing the periodicity conditions analogous to
imposing the boundary condition we did to derive (34),
leads to a generalized Rayleigh’s identity



Fig. 2. A schematic representation of a unit cell: (a) a square array, (b) a hexagonal array.
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AU
n þ

X1
m¼1

mþ n� 1
n

	 

SmþnBU

m ¼ Zx
Udn;1: ð38Þ

Here the quantities

Sm ¼
X
l–o

Rez�m
l ð39Þ

are the lattice sums characterizing the geometry of the
periodic structure, and zl is the center of the lth cylinder
when measured at the central point O. The index l runs
over all cylinders’ centers underlying the periodic array ex-
cept the central one. A list of non-zero normalized lattice
sums for square and hexagonal arrays can be found in Ber-
man and Greengard (1994).

Eqs. (38) and (22)1 constitute an infinite set of linear
algebraic equations. Upon appropriate truncations of the
expansion terms, we can determine the expansion coeffi-
cients AU

n , BU
n , and CU

n .

4. Effective moduli

We are interested in the effective behavior for a situation
where we have a large number of cylinders. The effective
material properties are defined in terms averaged fields,

Rj
� �

� L� Zj
D E

; ð40Þ

where the angular brackets denote the average over the
representative volume element (unit cell in the case of
periodic composites)

Rj
� �

¼ 1
V

Z
V

Rjdx; Zj
D E

¼ 1
V

Z
V

Zjdx; ð41Þ

and L� denotes the effective magnetoelectroelastic param-
eters of the composite.

We can compute the average Zj by noting that each
component is a gradient and applying the divergence the-
orem. We obtain

Zx
U

� �
¼ Zx

U: ð42Þ

Next, to find Rx
U

� �
, we again use the divergence theorem

and the equilibrium condition (including the interface con-
ditions) to obtain:
Rx
U

� �
¼ 1

V

Z
V
Rx

Udx ¼ 1
V

Z
V
r � xRUð Þdx

¼ 1
V

Z
@V

x RUð Þm � nds; ð43Þ

where RU is defined in (21). We then use the expansions
(19) for the fields to obtain

1
V

Z
@V

x ZUð Þm � nds ¼ Zx
U � 2

XN

l¼1

a�2
l flB

U lð Þ
1 ; ð44Þ

where

Zw ¼ ezx; ezy
� �

;Zu ¼ � Ex; Ey
� �

;Zw ¼ � Hx;Hy
� �

; ð45Þ

and fl is the volume fraction of phase l defined as fl ¼ pa2
l =V

for square arrays and is 2pffiffi
3
p a2

l =V for hexagonal arrays. Putt-
ing (43) and (44) together, and recalling the constitutive
relation (7) for the matrix, we obtain

rzxh i
Dxh i
Bxh i

0
B@

1
CA ¼

C44 e15 q15

e15 �j11 �k11

q15 �k11 �l11

0
B@

1
CA

mð Þ

ezx � 2
XN

l¼1

a�2
l flB

w lð Þ
1

�Ex � 2
XN

l¼1

a�2
l flB

u lð Þ
1

�Hx � 2
XN

l¼1

a�2
l flB

w lð Þ
1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

ð46Þ

Putting together (40) and (46) and noting that the coeffi-
cients BU

1 depend linearly on the applied field Zx
U, we obtain

set of equations for the effective property L�. We can deter-
mine this by applying different loading combinations be-
tween ezx; Ex and Hx.

5. Numerical results and discussion

In order to have a better understanding for the theoret-
ical results above, we perform a numerical computation for
a two-phase transversely isotropic piezoelectric-piezo-
magnetic composite with 6mm material symmetry about
the fiber axis. Specifically we consider a composite of
BaTiO3 and CoFe2O4 which has been studied by other
researchers. We consider square and hexagonal arrays,



Table 1
Material parameters of BaTiO3 and CoFe2O4 (Li and Dunn, 1998b).

Property BaTiO3 CoFe2O4

C44 (N/m2) 43� 109 45:3� 109

e15 (C/m2) 11.6 0
q15 (N/A m) 0 550
j11 (C2/N m2) 11:2� 10�9 0:08� 10�9

l11 (N s2/C2) 5� 10�6 �590� 10�6

k11 (N s/VC) 0 0
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and both cases, i.e., both BTO fibers in a CFO matrix and
CFO fibers in a BTO matrix. The independent material con-
stants of these constituents are given in Table 1, where the
xy plane is isotropic and the unique axis is along the z�
direction. Note that in both materials magnetoelectric
coefficients are zero, i.e. k11 ¼ 0.

We begin with a composite of BTO fibers in a CFO ma-
trix. Fig. 3 shows the effective elastic, dielectric, magnetic,
piezoelectric, piezomagnetic and magnetoelectric moduli
for this composite. They vary nonlinearly with volume
fraction, and the curves stop at f ¼ p=4 and f ¼ p=2

ffiffiffi
3
p

for the square and hexagonal arrays respectively, when
the inclusions touch. The magnetoelectric coefficient is
non-zero for every (non-zero) volume fraction even though
this coefficient is zero for each component. This reflects the
coupling of the various fields across the boundary. Further,
it initially increases with increasing volume fraction, then
reaches a maximum before dropping just as the fibers are
close to touching. To gain insight into this behavior, we
plot the the contours of displacement, electric potential
and magnetic potential for a square array in Fig. 5(a)–(c)
with an applied magnetic field. The magnetic field induces
a mechanical stress in the CFO which in turn results in an
electric displacement in the BTO fiber. The effective electric
displacement in the horizontal direction depends on the
average along the vertical direction. Thus, the effective
electric displacement depends on the span of the fiber in
the vertical direction. This is why the ME coefficient starts
at zero and increases with volume fraction. The magnetic
field is attracted by the BTO (since it has a smaller mag-
netic permeability) and thus the scaling deviates from
being proportional to the span and is close to linear ini-
tially. Further, as the particles come close to touching,
there is very little CFO to induce stress and thus the ME
coefficient drops dramatically.

Finally, Fig. 3 also compares the effective moduli with
those predicted by Benveniste (1995) who used the com-
posite cylinder assemblage (CCA) model. In CCA, there is
no upper limit on the volume fraction since one can have
fibers with various sizes. Still, the overall magnitudes and
trends agree well between our periodic and his CCA. Fur-
thermore, the results of our analysis fulfil the compatibility
conditions given in Eq. (21) of Benveniste (1995).

We now turn to the composite of CFO fibers in a BTO
matrix. Fig. 4 shows the effective moduli for this compos-
ite. Again, magnetoelectric coefficient is non-zero for every
(non-zero) volume fraction even though this coefficient is
zero for each component. However, in this case it is mono-
tone increasing with a sharp rise as the particles are close
to touching. Further, we verify our results with the com-
patibility relation (21) proposed in Benveniste (1995).
Again, they are in good agreement. Fig. 5(d)–(f) show
the potential contours for an applied magnetic field.
Now, the magnetic field is expelled by the fibers giving
rise to a displacement which deforms the matrix to in-
duce an electric displacement. The amount of deformation
it can cause in the matrix increases with volume
fraction, and this is reflected in the magnetoelectric coef-
fecient. Further, it increases dramatically as the particles
touch.

We finally turn to the magnetoelectric voltage coeffi-
cient, which is the important figure of merit for magnetic
field sensors. It relates the overall electric field that is gen-
erated in the composite when it is subjected to a magnetic
field. It combines the coupling and dielectric coefficients,
and is defined by

a�E11 ¼ k�11=j
�
11: ð47Þ

Fig. 6 shows how this coefficient depends on the vol-
ume fraction for the various cases. Note that there is a
qualitative difference between the case of BTO fibers in
CFO and its complement. In the former, the maximum
coefficient is for an intermediate volume fraction of
f ¼ 0:35 where a�E11 ¼ 0:0306 V/cm Oe independent of the
square or hexagonal geometry. In contrast, in the case of
CFO fibers in the BTO matrix, the maximum is attained as
the fibers begin to touch. These trends are similar to those
of the magnetoelectric coefficient described before, and
follow from the same reasons.

6. Plane strain with transverse electromagnetic fields

We briefly discuss the other problem described in (4),
and the potential for using it for large effective magneto-
electric coefficient. Consider a situation where the average
normal stress as well as the average electric displacement
along the fibers are zero

rzzh i ¼ 0; Dzh i ¼ 0: ð48Þ

The constitutive Eqs. (2) specialized to the current setting
(see (A.1) and (A.2)) then implies that

C33h iezz ¼ � C13 exx þ eyy
� �� �

þ e33h iEz þ q33h iHz; ð49Þ
e33h iezz ¼ � e31 exx þ eyy

� �� �
� j33h iEz � k33h iHz: ð50Þ

Eliminating ezz between the two equations above, we
obtain

e33h i
C33h i � C13 exx þ eyy

� �� �
þ e33h iEz þ q33h iHz

� �
¼ � e31 exx þ eyy

� �� �
� j33h iEz � k33h iHz; ð51Þ

or

e33h i2

C33h i þ j33h i
 !

Ez ¼
e33h i C13 exx þ eyy

� �� �
C33h i

� e31 exx þ eyy
� �� �

� e33h i q33h i
C33h i þ k33h i

	 

Hz: ð52Þ



Fig. 3. Effective moduli of a composite of BTO fibers in a CFO matrix versus BTO fiber volume fractions: (a) effective elastic modulus, (b) effective dielectric
permittivity, (c) effective magnetic permeability, (d) effective piezoelectric modulus, (e) effective piezomagnetic modulus, and (f) effective magnetoelectric
coefficient.
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Fig. 4. Effective moduli of a composite of CFO fibers in a BTO matrix versus CFO fiber volume fractions: (a) effective elastic modulus, (b) effective dielectric
permittivity, (c) effective magnetic permeability, (d) effective piezoelectric modulus, (e) effective piezomagnetic modulus, (f) effective magnetoelectric
coefficient.
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Fig. 5. Potential contours for a square array composite (f ¼ 0:2, ezx ¼ 0, Ex ¼ 0, Hx ¼ 1C=ms) (a–c) BTO fibers embedded in a CFO matrix, (d–f) CFO fibers
embedded in a BTO matrix, (a, d) Vertical displacement (m), (b, e) Electric potential (V), (c, f) Magnetic potential (C=s).
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We now assume further that the average planar strain is
zero (alternately, we can proceed exactly the same if the
effective planar stress is zero). Then, strain depends line-
arly on Ez and Hz, and thus, we can write

e33h i C13 exx þ eyy
� �� �
C33h i � e31 exx þ eyy

� �� �
¼ AEz þ BHz: ð53Þ
A and B depend on the solution of the plane strain homog-
enization problem. Substituting (53) into (52), we obtain

e33h i2

C33h i � Aþ j33h i
 !

Ez ¼ B� e33h i q33h i
C33h i � k33h i

	 

Hz:

ð54Þ
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Fig. 6. Effective magnetoelectric voltage coefficient of the composite versus the fiber volume fraction: (a) BTO fibers in a CFO matrix, (b) CFO fibers in a BTO
matrix.
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The magnetoelectric voltage coefficient is the ratio of the
two terms in parenthesis,

a�E33 ¼
B� e33h i q33h i

C33h i � k33h i
e33h i2
C33h i � Aþ j33h i

: ð55Þ

In particular, we concentrate on the denominator. Notice
that only A depends on the microgeometry and the planar
moduli where as the rest of the terms do not. Thus, it is
possible to tune the microgeometry to reduce the denom-
inator to get extremely large coupling.

We may use the methodology described in this paper to
compute A and B. However, in contrast to anti-plane shear,
plane strain elasticity is a vectorial problem and thus the
method is significantly more difficult to implement. This
is the topic of current work and will be presented
elsewhere.
;

7. Concluding remarks

In summary, we have extended Rayleigh’s formulation
on periodic conductive composites to a magnetoelectro-
elastic composite consisting of arbitrarily distributed or
periodic arrays of cylinders under anti-plane shear defor-
mation, in-plane electric and in-plane magnetic intensities.
Expressions for the elastic, electric and magnetic potentials
for the cylinders and the matrix are derived, and used to
compute the effective moduli. It is shown that the effective
properties solely depend on one particular constant BU

1

among the infinite number of expansion coefficients. Final-
ly, as a practical example, explicit numerical calculations
for field distributions and the magnetoelectric effects in
BaTiO3–CoFe2O4 composites are presented and discussed.
This example shows the important difference between
the case of BTO fibers in a CFO matrix from its comple-
ment. The present theoretical framework provides a
general guideline for the selection of the best combination
with an efficient coupling of piezoelectric and piezomag-
netic properties. It can also provide a rigorous basis against
which several approximate micromechanical models can
be compared.
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Appendix A

We substitute Eq. (2) into Eq. (1) and obtain

rxx

ryy

rzz

rzy

rzx

rxy

2
666666664

3
777777775
¼

C11exx þ C12eyy þ C13ezz

C12exx þ C11eyy þ C13ezz

C13exx þ C13eyy þ C33ezz

2C44ezy

2C44ezx

2C66exy

2
666666664

3
777777775
�

e31Ez

e31Ez

e33Ez

e15Ey

e15Ex

0

2
666666664

3
777777775
�

q31Hz

q31Hz

q33Hz

q15Hy

q15Hx

0

2
666666664

3
777777775

ðA:1Þ

Dx

Dy

Dz

2
64

3
75 ¼

2e31ezx

2e31ezy

e31exx þ e31eyy þ e33ezz

2
64

3
75þ

j11Ex

j11Ey

j33Ez

2
64

3
75þ

k11Hx

k11Hy

k33Hz

2
64

3
75;

ðA:2Þ
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Bx

By

Bz

2
64

3
75 ¼

2q31ezx

2q31ezy

q31exx þ q31eyy þ q33ezz

2
64

3
75þ

k11Ex

k11Ey

k33Ez

2
64

3
75þ

l11Hx

l11Hy

l33Hz

2
64

3
75:

ðA:3Þ

Let us consider the displacement, electric and magnetic
fields are independent of fiber axis, z� axis. That is,

uj ¼ ujðx; yÞ; Ej ¼ Ejðx; yÞ; Hj ¼ Hjðx; yÞ; j ¼ x; y; z: ðA:4Þ

We have

ezz ¼ 0; ezy ¼ uz;y; ezx ¼ uz;x: ðA:5Þ

With the above and the equilibrium equations (3), the
problem splits naturally into the two problems

� Plane elasticity and transverse electromagnetic fields
Constitutive laws:
:

rxx

ryy

rxy

Dz

Bz

2
6666664

3
7777775
¼

C11exx þ C12eyy

C12exx þ C11eyy

2C66exy

e31exx þ e31eyy

q31exx þ q31eyy

2
6666664

3
7777775
þ

�e31Ez

�e31Ez

0
j33Ez

k33Ez

2
6666664

3
7777775
þ

�q31Hz

�q31Hz

0
k33Hz

l33Hz

2
6666664

3
7777775

ðA:6Þ
Equilibrium:
rxx;x þ rxy;y ¼ 0;
rxy;x þ ryy;y ¼ 0: ðA:7Þ
� Anti-plane shear and in-plane electromagnetic fields
Constitutive laws:
rzx

rzy

Dx

Dy

Bx

By

2
666666664

3
777777775
¼

2C44ezx

2C44ezy

e15ezx

e15ezy

q15ezx

q15ezy

2
666666664

3
777777775
þ

�e15Ex

�e15Ey

j11Ex

j11Ey

k11Hx

k11Hy

2
666666664

3
777777775
þ

�q15Hx

�q15Hy

k11Hx

k11Hy

l11Ex

l11Ey

2
666666664

3
777777775
:

ðA:8Þ
Equilibrium:
rzx;x þ rzy;y ¼ 0;
Dx;x þ Dy;y ¼ 0;
Bx;x þ By;y ¼ 0: ðA:9Þ
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