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A system identification procedure is developed to identify the physical parameters of

structures with seismic isolation using the friction pendulum systems (FPSs).

The superstructure is assumed to be linear on account of substantial reduction of seismic

forces with the installation of FPS. Hysteretic models of both Coulomb’s and Mokha’s

physical parameters of the FPS and superstructure can be successfully identified by the

proposed scheme. Experimental verification has been conducted further via shaking

table tests using realistic earthquake scenarios. The identified parameters from seismic

response data indicate that the FPSs behave in better agreement with Mokha’s friction

mechanism than Coulomb’s. Feasibility of the proposed scheme in the identification of

FPS-isolated structures using seismic data has been verified. This may facilitate in-situ

performance assessment of structures isolated with sliding-type isolation systems.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

A variety of seismic isolation devices have been developed and adopted for seismic protection of buildings, bridges and
storage tanks in the past two decades [1–9]. Moreover, the seismic isolation device in conjunction with the MR dampers
have also been studied for response mitigation of adjacent buildings [10].

Design guidelines and building codes have been established to facilitate the design and standardize the construction of
structures employing base isolation systems. Among the seismic isolation systems that have been adopted in practice, the
Friction Pendulum System (FPS) has drawn a great deal of attention [11–15]. The FPS utilizes a concaved sliding surface to
generate a restoring force as displaced while changing the fundamental period of the isolated structure in the sliding
mode. Previous research on FPS has been focusing on developing simplified models or constitutive relations to validate the
performance and behavior of the isolation systems [16–22]. In the meantime, applications of FPS on diverse structures
were also prosperously studied. For example, Ates et al. [23] studied the effect of spatially varying earthquake ground
motions on the stochastic response of bridges isolated with FPS. Kunde and Jangid [24] studied the influence of pier and
deck flexibility on seismic response of bridges isolated by both the elastomeric bearings and FPS, and the inelastic force–
displacement relation of the FPS of seismically isolated bridges was approached by a time-dependent equivalent
linearization technique [25]. Marin-Artieda et al. [26] studied the response of structures isolated with XY-friction
. All rights reserved.
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Nomenclature

a bearing pressure
al l-th iteration of the bearing pressure
Cj damping coefficient of the j-th floor
Cn

1 n-th iteration of the damping coefficient of
the first floor

e1 first measure-of-fit of the base
e2 second measure-of-fit of the base
e overall measure-of-fit of the base
eFj measure-of-fit of the j-th floor
fr(�) restoring force of the friction pendulum

systems (FPSs)
Kj stiffness of the j-th floor
Km

1 m-th iteration of the stiffness coefficient of
the first floor

m0 mass of the base
mj mass of the j-th floor
R curvature radius of the FPS
W total weight of the structure
x0 displacement of the base

_x0 velocity of the base
_x0 acceleration of the base
xi

0 displacement of the base at instant i
_xi

0 velocity of the base at instant i
€xi

0 acceleration of the base at instant i

xj displacement of the j-th floor
_xj velocity of the j-th floor
€xj acceleration of the j-th floor
xi

j displacement of the j-th floor at instant i
_xi

j velocity of the j-th floor at instant i
€xi

j acceleration of the j-th floor at instant i
€xg ground acceleration
Da increment of the bearing pressure coefficient
DCðsÞ1 increment of the damping coefficient of the

first floor set for the sth cycle
DK ðsÞ1 increment of the stiffness coefficient of the

first floor set for the sth cycle
m friction coefficient of the FPS
mmax maximum friction coefficient of the FPS
mmin minimum friction coefficient of the FPS
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pendulum (XY-FP) systems under tri-axial excitations. The XY-FP bearings were demonstrated to be resistant of tensile
loads. Kim et al. [27] studied the feasibility of using FPS bearings for seismic isolation of spatial lattice shell structures.

As more and more seismic isolation systems have been implemented for practical use, the in-situ identification of the
bearing parameters and monitoring of the isolation performance has become a critical issue. The seismic structural
response data recorded during earthquake episodes indeed provide valuable information on the dynamic characteristics of
the structures if accurately identified. As most of the isolation systems are nonlinear in nature, time-domain and physical-
parameter identification approach is preferred. For example, Nagarajaiah and Xiaohong studied the responses of a base-
isolated hospital building in the University of Southern California (USC) and the Fire Command and Control (FCC) building
by using a bilinear model for the base isolation system and a three-dimensional analytical models that accounted for the
effects of eccentric impact loading with respect to the center of mass to estimate the lateral-torsional response of the base-
isolated building, respectively [28,29]. The simulation results based on the identified parameters and the proposed
analytical model were in good agreement with the recorded data, and the seismic performance of the buildings was proved
satisfactory. A base-isolated structure with bi-axial seismic response data was identified by Furukawa et al. [30] using a
prediction error method (PEM) with a nonlinear state-space model of several inelastic restoring force–displacement
models representing the base isolation system. Results indicated that the tri-linear hysteretic multiple shear spring (MSS)
model best fitted the actual hysteretic restoring force profile and the recorded time histories. Recently, a procedure in time
domain and frequency domain for the identification of structural systems with combined viscous and friction damping
devices was proposed and applied on a base-isolated building using acceleration data recorded during free-vibration tests.
In spite of the complexity of the isolation systems with coupled sliding and rubber bearings, the identified parameters
compared favorably with those obtained by other methods [31]. A time-domain procedure for the identification of base
isolation systems of both the high damping rubber bearing (HDRB) and low-friction sliding bearing (LFSB), where a
constant Coulomb friction device was considered for the LFSB system was further developed [32]. The proposed procedure
was applied to a hybrid isolation system, and the identified results from static and dynamic tests were in good agreement
with those obtained from laboratory tests.

Up to date, most researches regarding the system identification of based-isolated structures are directed towards those
using elastomeric type bearings such as lead-rubber bearing (LRB) or HDRB. The existing methodologies, which are
commonly composed of simplified linear models, however, cannot be applied directly for identification of structures
isolated with FPSs, as the system becomes highly nonlinear due to the essence of friction mechanism. In this study, a
system identification procedure is therefore developed to identify the physical parameters of base-isolated buildings
equipped with FPSs. Hysteretic models of both Coulomb’s and Mokha’s friction mechanism have been considered for the
FPS. Simulation results indicate that the physical parameters of the FPS and superstructure can be successfully identified
by the proposed scheme. Experimental verification has been conducted further via shaking table tests using realistic
earthquake scenarios. The identified parameters from seismic response data indicate that the FPSs behave in better
agreement with Mokha’s friction mechanism than Coulomb’s. Feasibility of the proposed scheme in the identification of
FPS-isolated structures using seismic data has been verified. This may facilitate in-situ performance assessment of



Fig. 1. FPS-Isolated building.
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structures isolated with sliding-type isolation systems. This nonlinear parameter identification technique, in addition, may
provide a possible means for the physical parameter identification of vehicle suspension systems of a nonlinear nature
[33,34].

2. Motion equation

Consider a linear N-storey shear type structure mounted on a base-isolated foundation with FPSs, as shown in Fig. 1.
Due to the hysteretic and energy-absorbing effects of FPSs, the dynamic behavior of the superstructure is presumed to be
linear. The equation of motion of the superstructure can be expressed as

mN €xNþCNð _xN� _xN�1ÞþKNðxN�xN�1Þ ¼ �mNð €xgþ €x0Þ (1)

mj�1 €xj�1þCj�1ð _xj�1� _xj�2ÞþKj�1ðxj�1�xj�2Þ

�Cjð _xj� _xj�1Þ�Kjðxj�xj�1Þ ¼�mj�1ð €xgþ €x0Þ j¼ 3�N (2)

m1 €x1þC1 _x1þK1x1�C2ð _x2� _x1Þ�K2ðx2�x1Þ ¼ �m1ð €xgþ €x0Þ (3)

and for the base

m0 €x0�C1 _x1�K1x1 ¼�m0 €xgþ f rðx0, _x0Þ (4)

where xj is the displacement of the j-th floor of the structure in relation to the base; x0 is the displacement of the base in
relation to the ground; mj and m0 are the mass of the j-th floor and the base, respectively; Cj and Kj are the damping
coefficient and stiffness of the j-th floor; €xg is the ground acceleration; f rðx0, _x0Þ is the restoring force provided by the FPSs.

3. Friction mechanisms

The restoring force, f rðx0, _x0Þ, in the sliding state of the FPS can be represented as

f r x0, _x0ð Þ ¼�sgn _x0ð ÞmW�
W

R
x0 (5)

where x0 is the displacement of the base relative to the ground; W is the total weight of the structure; m and R are
respectively the friction coefficient and curvature radius of the FPS.



Fig. 2. (a) Hysteretic loop of FPS (Coulomb’s mechanism) and (b) hysteretic loop of FPS (Mokha’s mechanism).
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The friction mechanism is commonly assumed to be of Coulomb’s type with a constant friction coefficient, referred to as
Coulomb’s mechanism herein. Mokha et al. [35,36] proposed that the friction coefficient was dependent on the sliding
velocity of the bearings ( _x0) as well as the bearing pressure. It was expressed in an empirical form of

m¼ mmax�ðmmax�mminÞe
�a9 _x09 (6)

where mmax and mmin are the maximum and minimum friction coefficients; a is bearing pressure related coefficient; _x0 is
the relative velocity between the slipping interfaces. This is referred to as ‘‘Mokha’s mechanism’’ in this paper.
The hysteretic models of the two different mechanisms are shown in Fig. 2(a) and (b).

Substituting Eq. (5) for f rðx0, _x0Þ into Eq. (4), the equilibrium equation of the base at instant i becomes

€xi
0þsgn _xi

0

� �
mW
m0
þ W

Rm0
xi

0 ¼ €ui
g (7)

where

€ui
g ¼� €x

i
gþ

C1

m0

_xi
1þ

K1

m0
xi

1 (8)

4. Solution algorithms for physical parameter identification

The output-error technique that determines the system parameters by minimizing the discrepancies between the
output and predictive values will be adopted [37,38]. When the responses of all the floors (including the base) are
measured, the physical parameters of the FPS-isolated structure can be identified provided that the masses for all the
floors are known.
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4.1. Output-error functions for the FPS

Eq. (7) is the key equation for identifying the physical parameters of the FPS system. Prior to the identification process,
all the available dynamic response data are classified into two groups in accordance with the direction of the sliding
velocity, that is sgn ð _x0Þ. To avoid complication in dealing with highly nonlinearity around the reversals of motion
direction, for those 9 _xi

09o0:01 m=s are abandoned in the analysis.

4.1.1. Coulomb’s mechanism

For the set of data with _xi
0Z0:01 m=s, the first measure-of-fit, e1, is defined by the sum of square errors using Eq. (7)

with €ui
g determined from Eq. (8) for a specified set of C1 and K1 as

e1 ¼
X

i

€xi
0þ

mW

m0
þ

W

Rm0
xi

0� €u
i
g

� �2

(9)

Similarly, for the data set with _xj
0r�0:01 m=s, the second measure-of-fit, e2, is defined by the sum of square errors as

e2 ¼
X

j

€xj
0�

mW

m0
þ

W

Rm0
xj

0�
€uj

g

� �2

(10)

Provided that the total weight of the structure, W, and the mass of the base, m0, are known, m and R are then obtained
by simultaneously solving for the system equation from minimization of the overall measure-of-fit

e¼ e1þe2 (11)

as

@e

@ðmW=m0Þ
¼ 0;

@e

@ðW=Rm0Þ
¼ 0 (12)

A two-layered nested structure is considered for the solution algorithm. The identification procedure starts by
assuming an arbitrary initial value of C1 with K1 incrementally changed in Eq. (8). The local optimal K1 corresponds to that
giving the minimum of e. Then, K1 is fixed at this local optimal value and the process is proceeded by incrementally
changing C1 in Eq. (8) to find the local optimal C1. Meanwhile, the corresponding system parameters m and R are
alternately determined for each set of K1 and C1 from Eq. (12). This is termed as one complete ‘‘cycle’’ of sweeping analysis.
The procedure may be continued using smaller resolutions of the parameters within a reduced scope until convergence
has been achieved. The number of cycles needed in the analysis depends on the desired resolution of the parameters.

4.1.2. Mokha’s mechanism

For the set of data with _xi
0Z0:01 m=s, the first measure-of-fit, e1, is defined by the sum of square errors using Eq. (7)

with a specified a and €ui
g determined from Eq. (8) for a specified set of C1 and K1 as

e1 ¼
X

i

€xi
0þ mmax� mmax�mmin

� �
e�a9 _xi

09
� � W

m0
þ

W

Rm0
xi

0� €u
i
g

� �2

(13)

Similarly, for the data set with _xj
0r�0:01 m=s, the second measure-of-fit, e2, is defined by the sum of square errors as

e2 ¼
X

j

€xj
0� mmax� mmax�mmin

� �
e�a9 _xj

0
9

� � W

m0
þ

W

Rm0
xj

0�
€uj

g

� �2

(14)

mmax, mmin and R are then obtained by simultaneously solving for the system equation from minimization of the overall
measure-of-fit e defined in Eq. (11) as

@e

@ðmmaxW=m0Þ
¼ 0;

@e

@ðmminW=m0Þ
¼ 0;

@e

@ðW=Rm0Þ
¼ 0: (15)

A three-layered nested structure is adopted for the solution algorithm. The identification procedure starts by assuming
an arbitrary initial value of C1 with K1 incrementally changed in Eq. (8). The local optimal K1 corresponds to that giving the
minimum of e at a given a. Then, K1 is fixed at this local optimal value and the process is proceeded by incrementally
changing C1 in Eq. (8) to find the local optimal C1. Meanwhile, the corresponding system parameters mmax, mmin and R are
alternately determined for each set of K1 and C1 from Eq. (15) at a given a value. In the outermost sweeping level, a is
further incrementally changed for Eqs. (13) and (14) to find the local optimal a that minimizes e. Again, the procedure may
be continued using smaller resolutions of the parameters within a reduced scope until convergence has been achieved.

4.2. Output-error functions for the superstructure

The parameters of the superstructure are consecutively identified level by level in a bottom-up fashion. For floor 2, the
error function eF2 is defined by the sum of square errors using Eq. (3) with the optimal K1 and C1 obtained previously
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determined as

eF2 ¼
X

i

€xi
1þ

C1

m1

_xi
1þ

K1

m1
xi

1�
C2

m1

_xi
2� _x

i
1

� ��

�
K2

m1
xi

2�xi
1

� �
þ €xi

gþ €x
i
0

�2

(16)

Provided that the mass of Floor 1, m1, is known, K2 and C2 are then obtained by simultaneously solving for the system
equation from minimization of the measure-of-fit, eF2, defined in Eq. (16) as

@eF2

@ðC2=m1Þ
¼ 0;

@eF2

@ðK2=m1Þ
¼ 0 (17)

For floor jZ3, the error function eFj is defined by the sum of square errors using Eq. (2) with the optimal Kj�1 and Cj�1

obtained previously as

eFj ¼
X

i

€xi
j�1þ

Cj�1

mj�1

_xi
j�1� _x

i
j�2

� �
þ

Kj�1

mj�1
xi

j�1�xi
j�2

� ��

�
Cj

mj�1

_xi
j� _x

i
j�1

� �
�

Kj

mj�1
xi

j�xi
j�1

� �
þ €xi

gþ €x
i
0

�2

j¼ 3�N (18)

By the same token, Kj and Cj are then obtained by simultaneously solving for the system equation from minimization of
the measure-of-fit, eFj, defined in Eq. (18) as

@eFj

@ðCj=mj�1Þ
¼ 0;

@eFj

@ðKj=mj�1Þ
¼ 0; j¼ 3�N (19)

Thus all the physical parameters of the FPS and the structure are derived. The procedure of the identification process is
summarized below:

Step 1: If Mokha’s model is considered, the bearing pressure related coefficient a of the FPS is updated with
al
¼al�1

þDa, where Da¼9.81. Skip this step if Coulomb’s model is considered.
Step 2: Assume an initial value of C1 with K1 incrementally changed in Eq. (8) as Km

1 ¼ Km�1
1 þDK ðsÞ1 for the m-th

iteration, DK ðsÞ1 is the increment of the stiffness coefficient set for the s-th cycle.
Step 3(a): If Coulomb’s mechanism is considered, solving for m, R and K1 by Eq. (12) based on the overall measure-of-fit
e of Eq. (11). Go to Step 2 until run out a specified number of iterations. The local minima of m, R and K1 corresponds to
the set giving the minimum e for all m.
(b): If Mokha’s mechanism is considered, solving for mmin, mmax, R and K1 by Eq. (15) based on the overall measure-of-fit
e at a given a of Eq. (11). Go to Step 2 until run out of a specified number of iterations. Go to Step 1 until run out of a
specified number of iterations for the outermost loop. The local minima of mmin, mmax, R and K1 corresponds to the set
giving the minimum e for all (m,l).
Step 4: With K1 determined from Step 3, incrementally change C1 in Eq. (8) as Cn

1 ¼ Cn�1
1 þDCðsÞ1 for the n-th iteration,

DCðsÞ1 is the increment of the damping coefficient set for the s-th cycle.
Step 5(a): If Coulomb’s mechanism is considered, solving for m, R and C1 by Eq. (12) based on the overall measure-of-fit
e of Eq. (11). Go to Step 4 until run out of a specified number of iterations. The local minima of m, R and C1 corresponds
to the set giving the minimum e for all n.
(b): If Mokha’s mechanism is considered, solving for mmin, mmax, R and C1 by Eq. (15) based on the overall measure-of-fit
e of Eq. (11) at a given a. Go to Step 4 until run out of a specified number of iterations. Go to Step 1 until run out of a
specified number of iterations for the outermost loop. The local minima of mmin, mmax, R and C1 corresponds to the set
giving the minimum e for all (n,l).
Step 6: Repeat Steps 1–5 with updated initial values of C1 and K1 and the resolution DCðsÞ1 ¼DCðs�1Þ

1 =10 and
DK ðsÞ1 ¼DK ðs�1Þ

1 =10 for s¼2,3,yuntil the error converges. The optimal set of parameters K1, C1 , m (or a, mmin and mmax)
and R corresponds to the minimum e for all s.
Step 7: Determine Cj and Kj for j¼2�N of the superstructure by minimizing Eq. (16) or Eq. (18) based on the previously
determined Kj�1 and Cj�1 of one storey below.

5. Numerical example

A 5-storey structure is considered for numerical simulation. The structure is modeled as a shear-type building with FPSs
underneath its base as the isolation system. The physical parameters of the superstructure and base are as follows:
m1¼m2¼m3¼m4¼m5¼2000 kg, and m0¼1559 kg; C1¼7507.49 kN.s/m, C2¼7115.09 kN.s/m, C3¼7016.99 kN.s/m, C4¼

6918.89 kN.s/m, C5¼6918.89 kN.s/m; K1¼29783.16 MN/m, K2¼27821.16 MN/m, K3¼23897.16 MN/m, K4¼22916.16 MN/m,
K5¼19973.16 MN/m. The parameters consider for the FPS are R¼2 m and m¼0.1 for Coulomb’s mechanism and mmax¼0.1,
mmin¼0.5 and a¼98.1 for Mokha’s mechanism. Dynamic responses of the base-isolated structure under the N–S component of
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Fig. 3. (a) Measure-of-fit w.r.t. K1 in the 1st cycle of iteration (numerical) and (b) measure-of-fit w.r.t. C1 in the 1st cycle of iteration(Numerical).
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the 1940 El Centro earthquake are determined using a state-space procedure with a time-step of 0.01 s. The velocity and
displacement time histories were numerically integrated from the acceleration responses with a baseline correction.

5.1. Coulomb’s mechanism

The first cycle (s¼1) of the identification starts with C1¼0. The value of K1 is increased by an increment of
DK ð1Þ1 ¼ 981 MN=m from 0 to 39240 MN/m. The relationship between the overall measure-of-fit e and K1 is shown in
Fig. 3(a). The optimal estimate of K1 is found to be 29430.00 MN/m. Next, K1 is fixed at this value and C1 is increased by an
increment of DCð1Þ1 ¼ 981 kN:s=m from 0 to 39240 kN.s/m. The relationship between the overall measure-of-fit e and C1 is
shown in Fig. 3(b). The optimal estimate of C1 is found to be 7848.00 kN.s/m. Meanwhile, the parameters for FPSs are found
to be m¼0.0989 and R¼2.0053 m.

The second cycle (s¼2) of identification is then proceeded with C1¼7848.00 kN.s/m determined in the first cycle. The value

of K1 is increased by an increment of DK ð2Þ1 ¼DK ð1Þ1 =10¼ 98:1 MN=m from 26487 to 32373 MN/m. The relationship between

the overall measure-of-fit e and K1 is shown in Fig. 4(a), and the optimal estimate of K1 is found to be 29822.40 MN/m. Then, K1

is fixed at29822.40 MN/m, and C1 is increased by an increment of DCð2Þ1 ¼DCð1Þ1 =10¼ 98:1 kN:s=m from 4905 to 8829 kN.s/m.

The relationship between the overall measure-of-fit e and C1 is shown in Fig. 4(b). The optimal estimate of C1 is found to be
7455.60 kN.s/m. Meanwhile, the parameters for FPSs are found to be m¼0.1001 and R¼1.9994 m.

The identification results converge to the true values in five cycles as summarized in Table 1. The parameters for floor
2–5 of the superstructure are then calculated with an excellent accuracy as summarized in Table 2.

5.2. Mokha’s mechanism

The iterative procedures in the inner cycles are similar to those for Coulomb’s mechanism except for an additional loop
of parameter a. To begin with, Da¼9.81 and a0

¼0 are considered in al
¼al�1

þDa where l is set to be 20 in this example.
Again, the first cycle (s¼1) starts with C1¼0. The value of K1 is increased by an increment of DK ð1Þ1 ¼ 981 MN=m. The least
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Table 1
Parameters of FPS and floor 1 in numerical example (Coulomb’s mechanism).

Iterative cycle (s) m R (m) C1 (kN.s/m) K1 (MN/m)

1 0.0989 2.0053 7848.00 29430.00

2 0.1001 1.9994 7455.60 29822.40

3 0.1000 2.0000 7504.65 29783.16

4 0.1000 2.0000 7507.59 29783.16

5 0.1000 2.0000 7507.49 29783.16

True value 0.1000 2.0000 7507.49 29783.16

Table 2
Parameters of floor 2–5 in numerical example (Coulomb’s mechanism).

Storey (j) Cj (kN.s/m) Kj (MN/m)

True Identified True Identified

5 6918.89 6918.60 19973.16 19973.16

4 6918.89 6918.50 22916.16 22916.16

3 7016.99 7016.70 23897.16 23897.16

2 7115.09 7114.80 27821.16 27821.16
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measure-of-fit occurs at K1¼29430.00 MN/m. Then, K1 is fixed at this value with C1 increased by an increment of
DCð1Þ1 ¼ 981 kN:s=m in the iteration. The optimal estimate of C1 is found to be 8829.00 kN.s/m at a¼98.1. Meanwhile, the
other parameters of the FPS are found to be mmax¼0.0989, mmin¼0.0494, and R¼2.0141 m.



Table 3
Parameters of FPS and floor 1 in numerical example (Mokha’s mechanism).

Iterative cycle (s) a mmax mmin R (m) C1 (kN.s/m) K1 (MN/m)

1 98.1 0.0989 0.0494 2.0141 8829.00 29430.00

2 98.1 0.0998 0.0499 2.0025 7848.00 29724.30

3 98.1 0.1000 0.0500 2.0000 7504.65 29783.16

4 98.1 0.1000 0.0500 2.0000 7507.59 29783.16

5 98.1 0.1000 0.0500 2.0000 7507.49 29783.16

True value 98.1 0.1000 0.0500 2.0000 7507.49 29783.16

Table 4
Parameters of floor 2–5 in numerical example (Mokha’s mechanism).

Storey (j) Cj (kN.s/m) Kj (MN/m)

True Identified True Identified

5 6918.89 6918.60 19973.16 19973.16

4 6918.89 6918.50 22916.16 22916.16

3 7016.99 7016.60 23897.16 23897.16

2 7115.09 7114.80 27821.16 27821.16

Fig. 5. (a) Test model of single-storey with FPS isolation system and (b) friction pendulum system used in the test.
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The second cycle (s¼2) is then proceeded with C1¼8829.00 kN.s/m determined in the first cycle, and the value of K1 is
increased by an increment of DK ð2Þ1 ¼DK ð1Þ1 =10¼ 98:1 MN=m. The optimal estimate of K1 is found to be 29724.30 MN/m.
With K1 fixed at 29724.30 MN/m and C1 increased by an increment of DCð2Þ1 ¼DCð1Þ1 =10¼ 98:1 kN:s=m, the optimal estimate
of C1 is found to be 7848.00 kN.s/m also at a¼98.1. Meanwhile, the other parameters of the FPSs are found to be
mmax¼0.0998, mmin¼0.0499, and R¼2.0025 m.

The identification results converge to the true values again in five cycles as summarized in Table 3. The parameters
for floor 2–5 of the superstructure are then calculated with an excellent accuracy as summarized in Table 4.

6. Experimental verification

As a further step in verifying the feasibility of the proposed scheme for identification of FPS-isolated structures utilizing
seismic data, a shaking table test has been conducted using a single-story steel frame (Fig. 5(a)) with its base isolated by
four FPS bearings (Fig. 5(b)). The structure is 2.6 m in height and approximately 17658 kN in weight. The 1940 El Centro
earthquake is considered as the input excitation. Acceleration responses of the base and roof have been recorded during
the test. The corresponding velocity and displacement responses are obtained through numerical integrations of the
accelerations with baseline corrections. Both the Coulomb’s and Mokha’s mechanism have been considered in the
identification of the friction mechanism for the FPS.

6.1. Coulomb’s mechanism

The first cycle (s¼1) of the identification starts again with C1¼0. The value of K1 is increased by an increment of
DK ð1Þ1 ¼ 98:1 MN=m from 0 to 3924 MN/m. The relationship between the overall measure-of-fit e and K1 is shown in
Fig. 6(a). The optimal estimate of K1 is found to be 882.90 MN/m. With K1 fixed at this value and C1 increased by an
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Table 5
Parameters of FPS and floor 1 in the test (Coulomb’s mechanism).

Iterative cycle (s) FPS Floor 1

m R (m) C1 (kN.s/m) K1 (MN/m)

1 0.0965 1.3015 1667.70 882.90

2 0.0966 1.3030 1657.89 892.71

3 0.0965 1.3025 1661.81 889.77
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increment of DCð1Þ1 ¼ 98:1 kN:s=m from 0 to 3924 kN.s/m. The relationship between the overall measure-of-fit e and C1 is
plotted in Fig. 6(b). The optimal estimate of C1 is found to be 1667.70 kN.s/m. Meanwhile, the parameters for the FPS are
estimated to be m¼0.0965 and R¼1.3015 m.

The second cycle (s¼2) is then proceeded with C1¼1667.70 kN.s/m determined in the first cycle. With K1 increased by
an increment of DK ð2Þ1 ¼DK ð1Þ1 =10¼ 9:81 MN=m from 588.6 to 1177.2 MN/m, the relationship between the overall measure-
of-fit e and K1 is illustrated in Fig. 7(a). The optimal estimate of K1 is found to be 892.71 MN/m. With K1 fixed at
892.71 MN/m and C1 increased by an increment of DCð2Þ1 ¼DCð1Þ1 =10¼ 9:81 kN:s=m from 1373.4 to 1765.8 kN.s/m. The
relationship between the overall measure-of-fit e and C1 is plotted in Fig. 7(b). The optimal estimate of C1 is found to be
1657.89 kN.s/m. Meanwhile, the parameters for FPSs are estimated to be m¼0.0966 and R¼1.3030 m.

The identification process converges in three cycles as summarized in Table 5. Fig. 8(a) and (b) shows the comparisons
of the recorded with the predicted base acceleration and displacement using the identified system parameters.
The responses are well correlated with each other in trends but differ in amplitudes. The predicted base displacement
is overestimated with a larger residual off-set after 15 s when the excitation starts to quiet down. The largest discrepancy
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Fig. 8. (a) Comparison between identified and measured base acceleration (Test; Coulomb’s mechanism) and (b) comparison between identified

and measured base displacements (Test; Coulomb’s mechanism).

Table 6
Parameters of FPS and floor 1 in the test (Mokha’s mechanism).

Iterative cycle (s) FPS Floor 1

a mmax mmin R (m) C1 (kN.s/m) K1 (MN/m)

1 382.59 0.1167 0.0552 1.4906 981.00 882.90

2 382.59 0.1167 0.0549 1.4885 882.90 873.09

3 382.59 0.1167 0.0550 1.4894 853.47 875.05

4 382.59 0.1167 0.0550 1.4892 856.41 874.56
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occurs during the course of 3.5–7 s when the ground motion strikes most violently. This indicates that the Coulomb’s
mechanism of a constant friction is insufficient and the overall friction force is underestimated.
6.2. Mokha’s mechanism

To begin with, Da¼9.81 and a0
¼0 are considered in al

¼al�1
þDa where l is set to be 50 in this case. The first cycle

(s¼1) starts with C1¼0. The value of K1 is increased by an increment of DK ð1Þ1 ¼ 98:1 MN=m. The optimal estimate of K1 is
found to be K1¼882.90 MN/m. Next, with K1 fixed at this value and C1 increased by an increment of DCð1Þ1 ¼ 981 kN:s=m,
the optimal estimate of C1 is found to be 981.0 kN.s/m at a¼382.59. Meanwhile, the other parameters for the FPS are found
to be mmax¼0.1167, mmin¼0.0552, and R¼1.4906 m.

The second cycle (s¼2) is then proceeded with C1¼981.0 kN.s/m determined in the first cycle. With K1 increased by an
increment of DK ð2Þ1 ¼DK ð1Þ1 =10¼ 9:81 MN=m, the optimal estimate of K1 is found to be 873.09 MN/m. Next, withK1 fixed at
this value and C1 increased by an increment of DCð2Þ1 ¼DCð1Þ1 =10¼ 98:1 kN:s=m, the optimal estimate of C1 is found to be
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Fig. 9. (a) Comparison between identified and measured base acceleration (Test; Mokha’s mechanism) and (b) comparison between identified

and measured base displacements (Test; Mokha’s mechanism).
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882.9 kN.s/m at a¼382.59. Meanwhile, the other parameters for the FPSs are found to be mmax¼0.1167, mmin¼0.0549, and
R¼1.4885 m.

The identification process converges in four cycles as summarized in Table 6. Fig. 9(a) and (b) shows the comparisons of
base acceleration and displacement. With Mokha’s mechanism considered for the friction, the responses are well
correlated with each other in both trends and amplitudes with nearly no residual off-set. The result suggests that
Mokha’s friction mechanism describe the friction behavior better than Coulomb’s mechanism does as it takes into account
the variation of the friction coefficient due to sliding velocity and pressure.

7. Conclusion

A physical parameter identification scheme has been proposed for structures isolated with FPS using seismic response
data. Both Coulomb’s and Mokha’s mechanism have been considered for the friction behavior of the FPS. Numerical and
experimental studies have been conducted on shear-type structures to verify the proposed scheme. It has been verified
that the system parameters of the superstructure and FPS can be effectively identified, regardless of Coulomb’s or Mokha’s
mechanism considered. The predicted results based on the identified parameters from the test are in good agreement with
the recorded data. They are, in particular, well correlated with each other in both trends and amplitudes when Mokha’s
mechanism is considered. This suggests that Mokha’s mechanism is sufficient in describing the friction behavior of the
isolation bearings, while Coulomb’s mechanism might be overly simplified. The proposed scheme with Mokha’s
mechanism may facilitate in-situ performance assessment of structures isolated with sliding-type isolation systems.
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