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Abstract Location prediction is a crucial need for location-aware services and ap-
plications. Given an object’s recent movement and a future time, the goal of location
prediction is to predict the location of the object at the future time specified. Differ-
ent from traditional location prediction using motion function, some research works
have elaborated on mining movement behavior from historical trajectories for loca-
tion prediction. Without loss of generality, given a set of trajectories of an object,
prior works on mining movement behaviors will first extract regions of popularity,
in which the object frequently appears, and then discover the sequential relationships
among regions. However, the quality of the frequent regions extracted affects the ac-
curacy of the location prediction. Furthermore, trajectory data has both spatial and
temporal information. To further enhance the accuracy of location prediction, one
could utilize not only spatial information but also temporal information to predict
the locations of objects. In this paper, we propose a framework QS-STT (standing
for QuadSection clustering and Spatial-Temporal Trajectory model) to capture the
movement behaviors of objects for location prediction. Specifically, we have devel-
oped QuadSection clustering to extract a reasonable and near-optimal set of frequent
regions. Then, based on the set of frequent regions, we propose a spatial-temporal
trajectory model to explore the object’s movement behavior as a probabilistic suf-
fix tree with both spatial and temporal information of movements. Note that STT is
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not only able to discover sequential relationships among regions but also derives the
corresponding probabilities of time, indicating when the object appears in each re-
gion. Based on STT, we further propose an algorithm to traverse STT for location
prediction. By enhancing the quality of the frequent region extracted and exploring
both the spatial and temporal information of STT, the accuracy of location predic-
tion in QS-STT is improved. QS-STT is designed for individual location prediction.
For verifying the effectiveness of QS-STT for location prediction under the differ-
ent spatial density, we have conducted experiments on four types of real trajectory
datasets with different speed. The experimental results show that our proposed QS-
STT is able to capture both spatial and temporal patterns of movement behaviors
and by exploring QS-STT, our proposed prediction algorithm outperforms existing
works.

Keywords Trajectory pattern · Movement behavior mining · Location prediction ·
Frequent region · Spatial-temporal data

1 Introduction

With the growth of location aware technologies such as mobile devices and GPS
applications, it has become possible to track and collect an increasing amount of tra-
jectory data from moving objects. A trajectory is generally considered as the path left
behind by a moving object in space and time, i.e, a sequence of location points where
each point is a spatial-temporal data corresponding a position in space at a certain
timestamp. As a huge amount of trajectories accumulated, there may be some trajec-
tories frequently reappear in the data. Such trajectories are called trajectory patterns.
Due to the trajectory data records an object’s real movements, the trajectory patterns
are supposed to reflect the object’s movement behaviors. The trajectory patterns play
a fundamental role in helping to analyze the popularity of regions and traveling routes
[3, 13, 16, 17, 19], the movement flows of users and location-based social networks
[2, 6, 18, 23, 29–31]. In this paper, we target on utilizing trajectory patterns to predict
a moving object’s location. The problem of location prediction can be generally for-
mulated as: given an object’s recent movements and one query time in the future, the
location of this object at the future time can be estimated. The location prediction is
useful in many applications, such as prefetching for the location-based services, in-
ferring the crowd of a region for tourism recommendations, and estimating the traffic
status for transportation management.

The traditional method for location prediction is based on motion function. Given
an object’s recent movements, one could predict future location by recent movement
speed and direction. However, the motion function may provide assistance to pre-
dict location in near future time and give an predicted location with large error in
far future time. For example, if we know a user was at classroom at 10:00 and he
is passing a post office at 10:10 currently, motion function could provide a reason-
able predicted location at 10:20. For the location at query time 12:00, the motion
function may give an incorrect location. To enhance the prediction accuracy, several
works proposed that utilizing trajectory patterns to predict a moving object’s future
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Fig. 1 An example of trajectory patterns

location [10, 18, 20, 31]. An object’s movements are supposed to follow some trajec-
tory patterns and then those patterns can be utilized as a movement model to predict
the future location and improve the prediction accuracy. For example, users usually
have their habitual routes from their home to workplace and animals have the annual
migration. Without loss of generality, prior works on mining movement behaviors
will first extract regions of popularity, in which the object frequently appears, and
then discover the movement relationships among regions. It is shown in [10] that
by exploring trajectory patterns in form of association rules, the accuracy of loca-
tion prediction with a far future time is improved compared to the traditional method
(i.e., motion function approaches). However, most of the existing works only focus
on trajectory pattern discovery in spatial domain. Prediction with spatial based trajec-
tory pattern may result in biased prediction. Consider an example in Fig. 1(a), where
a user has two trajectory patterns (i.e., T1 and T2 without considering temporal in-
formation). In T1, the user usually has the routine path from his home (i.e., region
A) to his study place (i.e., region C) along the main street (i.e., region B) in week-
days. In T2, the user often goes to shopping center (i,e., region E) along the main
street from his home in weekends. The sequential patterns compute their support to
indicate the number of times they appear in a trajectory dataset. In this example, T1
(i.e., A → B → C) has higher support than T2. Assume that the user’s recent move-
ments are regions A and B, and this user’s current location is region B around 10:00
am. By these two sequential patterns, the next location of this user is always predicted
as region C since T1 has higher support in spatial domain. However, if the trajectory
patterns are discovered by considering both spatial and temporal information. As an
example shown in Fig. 1(b), one could imply that if a user moves to C, the time will
be 11:00 (i.e., the sum of the current time and the time interval between B and C).
The appearing probability at region C at 11:00 via the routing path A → B is zero.
On the other hand, one could infer that this user may appear in region E at 12:00
with the probability larger than zero. we can predict the user has the higher oppor-
tunity of moving to region E. Therefore, to further enhance the accuracy of location
prediction, we address that one could utilize not only spatial information but also
temporal information to estimate the object’s future location. Based on above obser-
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vations, there are two major issues for our pattern-based location prediction problem
as follows:

(1) We suppose that an object’s movement behavior follows some patterns and these
patterns can be used as predictor to estimate the future location. The represen-
tative and effectiveness of the trajectory patterns are critical for prediction accu-
racy. For accuracy enhancement, the trajectory patterns should be designed and
explored by considered in both spatial and temporal domain.

(2) Given the object’s recent movements and one query time in the future, how to
utilize these discovered spatial-temporal trajectory patterns to predict the user’s
location at specified future time is a considerable issue.

In this paper, we propose a framework QS-STT (QuadSection clustering and
Spatial-Temporal Trajectory model) to explore the movement behavior in form of
spatial and temporal model for location prediction. Prior to STT model exploring, the
frequent regions where the user often passed by are first discovered by the QuadSec-
tion clustering. Then, the algorithm of spatial-temporal trajectory model construction
is developed, in which both sequential relationships among regions and the corre-
sponding appearance time information of objects are captured. In light of QS cluster-
ing based STT, we further propose an STT prediction algorithm to traverse STT for
location prediction.

In frequent region discovery, grid-based clustering is a conventional approach.
A cell is identified as a frequent region if the cell contains a sufficient number of
trajectories which passed through it. However, determining a proper cell size is the
challenging issue of grid-based clustering. The cell size affects the number of patterns
and the accuracy of the location prediction [14]. In order to discover the possible
number of movement patterns, as many frequent regions as possible are expected to
be extracted. Given a minimum number of trajectories, clustering by setting a bigger
cell size may easily detect the frequent region but lose the granularity of movement
behavior modeling. On the contrary, a smaller cell size may earn granularity but be
difficult in frequent region detection and result in fewer regions being discovered.
To approach the reasonable and near-optimal set of frequent regions, we propose
QuadSection clustering (abbreviated as QS clustering). QS clustering is based on the
concept of divisive clustering [25] to detect the maximum number of regions within
the optimal cell size in order to improve the completeness of the movement behavior
modeling. Based on the frequent regions discovered by QS clustering, The spatial-
temporal trajectory model (abbreviated as STT) is designed to discover the sequential
relationships among regions in the spatial domain and derives the corresponding time
probabilities of the objects which appear in the temporal domain.

The spatial-temporal trajectory model is represented as a variant of the probabilis-
tic suffix tree with both spatial and temporal information of movements. Furthermore,
the nature of the probabilistic suffix tree can convert a large number of sequential pat-
terns into a compact model and generate a probability of next movement occurring
in the recent sequences. Consequently, STT can reflect the moving behavior of an
object in both spatial and temporal features, and its structure associated probability
can be a predictor for the future location estimation. To evaluate the performance of
the proposed QS-STT and location prediction algorithm, we conduct comprehensive
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experiments on real data. Specifically, for verifying the effectiveness of QS-STT for
location prediction under the different spatial density, we use four types of real tra-
jectory datasets with different speed, including Walk, Run, Bike, and Car. The exper-
imental results show that the proposed QS-STT is able to reflect an object’s moving
behavior and can predict future movements at a specified time slot efficiently and
accurately. The main contributions of this paper are summarized as follows:

1. We propose a location prediction framework QS-STT, which extracts the frequent
region using QuadSection clustering and explores the movement behavior in the
form of Spatial-Temporal Trajectory model.

2. For frequent region discovery, we propose QuadSection clustering to approximate
the reasonable and optimal solution for cell size determining in grid-based cluster-
ing and to earn the maximum number of discovered frequent regions to improve
the movement behavior modeling.

3. We propose Spatial-Temporal Trajectory model (STT) to capture movement be-
havior in both spatial and temporal domains for location prediction.

4. The STT is an efficient compression scheme that converts a large trajectory data
into a compact but representative model which reduces the storage size of the
trajectory patterns compared to the association rules proposed.

5. We propose an STT Prediction Algorithm that provides accurate predictions.
6. The effectiveness and accuracy of our proposed framework QS-STT for location

prediction has been demonstrated via extensive experiments on real trajectory
datasets.

The rest of the paper is organized as follows. Section 2 discusses related works. An
overview of the proposed framework QS-STT is given in Sect. 3. Section 4 describes
the STT construction and the algorithm of location prediction using STT model is
shown in Sect. 5. Section 6 discusses comprehensive experimental evaluations and
Sect. 7 concludes the paper.

2 Related works

Traditional location prediction that uses motion functions to predict next locations of
users only has good accuracy if the future time specified in a predictive query is close
to the current time [10]. To achieve a better accuracy of location prediction for query
time far away from the current time, prior works in [10] have elaborated on min-
ing trajectory pattern for location prediction. The experimental results in [10] show
that by exploring trajectory patterns, the accuracy of location prediction for both near
time or distant future time is significantly improved. Many researches have put much
effort on movement behavior analysis and proposed some algorithms to mine move-
ment patterns. Movement behaviors are represented as different kinds of trajectory
patterns in prior works. For example, movement behaviors are defined as sequential
patterns [5, 7, 12, 17, 18] and association rules [10, 20]. Without loss of generality,
given a set of trajectories, algorithms of mining trajectory pattern will first extract
some regions with a certain degree of popularity, which are referred to as frequent re-
gions. Then, original trajectories are transformed into sequences of frequent regions.
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With given sequences of frequent regions, movement behaviors are thus defined as
trajectory patterns that frequently appear among sequences of frequent regions. Those
trajectory patterns can imply that objects usually follow similar movement behaviors.
Specifically, the trajectory pattern discovery is a key role of the pattern-based location
prediction.

Most research works for trajectory pattern mining use sequential pattern mining
techniques [5, 7, 17]. From a set of trajectories, a set of frequent regions are extracted.
Then, based on frequent regions, raw trajectories are represented as sequences of fre-
quent regions. Thus, sequential pattern mining techniques are able to discover se-
quential relationships among frequent regions. Different from most of the existing
literature in sequential pattern mining that focuses on the dependent order of fre-
quent regions in the sequence without temporal information, the authors in [4, 5]
proposed Temporally-Annotated Sequences (abbreviated as TAS) as trajectory pat-
terns. As such, the results of sequential patterns contain a transition time between
consecutive frequent regions along with TAS. Based on the above concept, the au-
thors in [18] utilize TAS for location prediction. The input of location prediction in
[18] is the set of recent movements without any query time, which is different from
our prediction query. As such, the proposed method in [18] cannot deal with our
prediction query.

In [10], the authors proposed a hybrid prediction model. The association rules
among frequent regions are explored to represent trajectory patterns. Then, a hybrid
prediction model is developed that combines trajectory patterns with motion function
to forecast future location of a moving object. If the query time is close to the current
time, one could predict the next location by the recent movement speed and direction,
i.e, motion function. On the other hand, when the future time is far away from the
current time, the authors discovered trajectory patterns in the form of association
rules to predict the locations of objects. Hence, mining movement behaviors could
provide a powerful way to enhance the accuracy of location predictions. However,
the number of ruled patterns are significantly increased with a increasing number of
trajectory data.

In the previous works on location prediction, the Markov chain models also have
been used to predict the next movement of moving objects [9, 11, 26, 27]. The whole
space is divided into cells and the Markov transition probability among cells is de-
rived from a set of trajectories. Given a current location within a certain cell, the next
cell is predicted by the transition probability of the Markov chain model that cap-
tures movement behaviors. Furthermore, the authors in [11] address the granularity
problem of the space partitioning scheme. In particular, the authors utilize density-
based clustering techniques to derive frequent regions. Then, the movements could
be referred from cells and frequent regions. Thus, a prediction model is based on the
hidden Markov process among the frequent regions and cells. However, the above
works do not deal with predictive queries in which both the spatial and the temporal
predicates are given.

To sum up the related works, there are some deficiencies. First, trajectory pattern
is a key role in pattern-based location prediction. Most of the existing works only
focus on trajectory pattern discovery in spatial domain. Prediction with spatial based
trajectory pattern may result in biased prediction. In order to enhance the prediction
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accuracy, both spatial and temporal information should be take into consideration
on trajectory pattern discovery. Second, with a huge number of trajectory data, the
number of trajectory patterns are significantly increased. To develop a representative
compact model is a considerable issue on pattern-based location prediction.

3 The framework of QS-STT for location prediction

In this section, the overview of our proposed framework QS-STT for location-
prediction is presented. Given an object’s trajectories, our objective is to derive a
spatial-temporal trajectory model to capture the movement behaviors of the object.
In light of our trajectory model, given recent movements and a future time query,
we intend to predict its locations at the specified future time. Thus, our proposed
framework is shown in Fig. 2. As can be seen in Fig. 2, the proposed framework con-
sists two modules: STT model construction and STT-location prediction. In the STT
model construction module, given a set of raw trajectories, there are three steps as
follows:

Step 1. Frequent Region Discovery: In this step, we extract frequent regions from a set
of trajectories. Since locations of raw trajectories are GPS data points with uncertain
properties in terms of both spatial and time domains, to capture movement behaviors,
we need to extract frequent regions. A frequent region contains a sufficient number
of trajectories whose data points are within the corresponding region. QuadSection
Clustering is proposed to extract good quality frequent regions for movement behav-
ior modeling.

Fig. 2 The framework QS-STT
for location prediction
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Step 2. Trajectory Transformation: According to the set of frequent regions deter-
mined by Step 1, each raw trajectory is transformed into a region-based moving se-
quence. Location points that are not in frequent regions will be regarded as noise. As
such, our STT could capture movement behaviors among frequent regions.

Step 3. STT Model Construction: In this step, we adopt a probabilistic suffix tree with
spatial and temporal information to discover movement behaviors. Our proposed STT
model contains not only transition probabilities among frequent regions (referred to
as the spacial feature of the STT model) but also appearance probabilities within
frequent regions (referred to as the temporal feature of the STT model).

In the STT-location prediction module, given the current movements of an object
and a future time query, we use the STT model as a location predictor and propose
an STT-location prediction algorithm to traverse the model and estimate the future
location at the query time.

4 Spatial-temporal trajectory model construction

In this section, we detail the procedure for the discovery of frequent regions and
the transformation of the raw trajectories to region-based moving sequences. Finally,
we describe the process that how to construct an STT model to capture the moving
behavior.

4.1 Frequent region discovery and trajectory transformation

An object’s trajectory is generally represented as a sequence of spatial-temporal
points sampled by a positioning sensor or device. Let a trajectory of a moving object
be represented as T = {p1,p2, . . . , pn}, where n is the total number of points and a
point pi = (li , ti) is denoted as a location li = (xi, yi) at a timestamp ti (0 ≤ i ≤ 1).
We cannot directly use such trajectory data for spatial-temporal trajectory model con-
struction. The reason is that the object will not repeat exactly the same location in ev-
ery timestamp of each trajectory even if such a set of trajectories has a similar spatial
route. Thus, we consider a trajectory to be a sequence of frequent regions. A frequent
region is a region which an object often visits. For the discovery of frequent regions
from an object’s trajectories, density based clustering is adopted by many previous
works [5, 10, 11, 17]. In the density based approach, a cluster is viewed as a frequent
region if the number of trajectories visited is larger than a predefined threshold. For
example, we can apply DBSCAN [8] to discover the clusters, i.e. frequent regions.
For each point of a cluster, the neighborhood of a given radius (i.e., Eps) has to con-
tain at least a minimum number of points (i.e., MinPts), that is, the density in the
neighborhood has to exceed a predefined threshold.

However, the clusters that are detected by DBSCAN cannot be applicable to our
STT because the clustering parameters are universal. In reality, the density of clusters
extracted from trajectories varies widely because the speed of a moving object is not
always constant. For example, the location point density of a trajectory for highway
driving is lower than that for local city driving. The parameter setting is the con-
straint of DBSCAN for various density clustering. As an example in Fig. 3(a), if the
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Fig. 3 An example of DBSCAN results with various Eps

Eps value is set to a smaller value, some points are classified as “noise” and some
information would be missed. Using a larger value for Eps causes the granularity
problem to represent the trajectory, which is shown in Fig. 3(b).

The key concept of this research is to establish an STT model to capture the mov-
ing behavior by describing the relations between frequent regions. The granularity of
clusters can affect the explanation of STT considerably. Therefore, we use grid based
clustering to discover the frequent regions. The trajectory moving space C is parti-
tioned into k grid cells of the same size. Thus, each region can be represented as a cell
ci with a universal size. The density of a cell is computed by taking the number of tra-
jectory segments which pass through the cell. A trajectory segment Ts = {pi,pi+1},
where pi is the ith location and 1 ≤ i < i +1 ≤ n, is a contiguous sub-trajectory of T .
We formally define the frequent region as follows:

Definition 1 A Frequent Region is a grid cell that contains at least MinTs number of
trajectory segments passing by the grid cell.

An example of frequent region discovery is provided in Fig. 4(a), where Trajec-
tory1, Trajectory2 and Trajectory3 are trajectories of a moving object passing through
a certain space. Given MinTs = 2, the frequent regions are regions with gray color.
Note that we use the number of segments passing through the cell instead of the num-
ber of points enclosed in a cell to decide if the cell is a frequent region. The reason is
that the density of points varies with an object’s moving speed meaning that it may
miss some trajectory information. For example, the frequent regions c43, c41, c30 are
not detected if the minimum point is set to 2 in a cell as shown in Fig. 4(b).

Furthermore, in order to construct a good STT model to capture the movement
behavior precisely, as many frequent regions as possible have to be explored. Intu-
itively, a proper grid cell size can generate many frequent regions and potentially
achieve good prediction precision. However, a large number of patterns may improve
the prediction precision but increase the storage requirements. Therefore, it is neces-
sary to find a good balance between the accuracy of the prediction and the storage
requirements.
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Fig. 4 An example of frequent region detection by grid-based clustering

Fig. 5 The experimental result
of frequent region discovery by
greedy testing under various
MinTs

4.2 QuadSection clustering

One main challenging issue of grid file management for frequent region discovery is
to determine the cell size. The cell size affects the number of patterns and prediction
accuracy. Obviously, a large number of explored movement patterns may capture
the movement behavior precisely and improve the prediction precision. In order to
discover the possible number of movement patterns, as many frequent regions as
possible are expected to be extracted. The naive approach is the greedy testing of the
grid file with different cell sizes and selecting the one that results in the maximum
number of frequent regions. Figure 5 shows the experimental results of greedy testing
for frequent region discovery with various cell sizes. Given a MinTs, the cell size with
the maximum number of discovered frequent regions is selected to be the optimal cell
size.

However, greedy testing is an inefficient method to find the optimal cell size. Given
a user-defined MinTs, the optimal cell size is defined as the cell size can result in max-
imal number of frequent regions. The greedy method for frequent region discovery
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detects the number of frequent regions under the various cell size by greedy test-
ing and bottom-up clustering. For each cell size, the greedy method will compute all
the data point and then extract the number of frequent regions. In this paper, we de-
velop a simplified method, called QuadSection clustering, to approach the optimum
solution of determining the cell size and detecting the frequent region under a given
MinTs. QuadSection clustering (abbreviated as QS clustering) is based on divisive
hierarchical clustering [25]. A top-down cluster hierarchy is generated using the di-
visive clustering method. For frequent region detection, STT with QS clustering has
advantages over STT with greedy-based grid clustering, including: the hierarchical
approach can reduce and speed up the computation; the top-down clustering is more
efficient than bottom-up clustering because we may not have to generate a complete
hierarchy all the way down to individual data points.

Given a trajectory dataset, QS Clustering starts at the top rectangular space with
all data points as one cluster. The cluster is then split by subdividing it into four
cells. A cell is identified as a frequent region and becomes a leaf node if the cell has a
maximum capacity, i.e., equal or greater than a user defined MinTs. This procedure is
applied recursively to leaf nodes of each level until the number of discovered frequent
region reaches the maximum value. The level with the maximum number of nodes is
determined as the optimal grid file and the nodes of selected level are retrieved as the
frequent regions. The cut-cost is proposed to measure the stopping criterion for divi-
sive clustering if the cut-cost value is equal to or greater than zero. For QuadSection
clustering, the cut-cost for level Li in a divisive hierarchy Hd is defined as follows:

Cut-cost(Li) = log

(
Ni

Ni+1

)
(1)

In (1), the Ni is the total number of cells that become frequent regions for level Li .
The QuadSection Clustering algorithm is shown in Algorithm 1. Given a set of his-
torical trajectory data D and user defined MinTs, we first bound the data space in
rectangular space as the root cluster C0. C0 is initialized as level L0. The algorithm
then executes the splitting operation to divide the cluster into four equal rectangular
sub-cells. A sub-cell is identified as a frequent region if the number of trajectories
contained in the region is equal or greater than MinTs and becomes a leaf node of
the next level in the hierarchy Hd . The function cut-cost(Li ) computes the stopping
criterion for the splitting operation in each iteration. If the cut-cost(Li ) is equal to or
greater than zero, the nodes belonging to Li are retrieved and outputted as frequent
regions.

Figure 6 is an example of QuadSection clustering for MinTs = 2. The data space
is first bounded as a rectangular region as root cluster C0. The algorithm then splits
C0 into four equal sub-cells. C2, C3 and C4 are identified as frequent regions and
become leaf nodes of L1. Cut-cost(L0) = log( 1

3 ) = −0.477 and repeats the split-
ting operation for L1. L2 only has two frequent regions C42 and C13 and meets the
stopping criterion due to cut-cost(L1) = log( 3

2 ) = 0.176. The nodes (C2, C3 and C4)
belonging to Level 1 are outputted as frequent regions under the optimal cell size.
An Effectiveness comparison of QuadSection clustering and the naive approach (grid
clustering by greedy approach)is conducted as shown in Table 1. The effectiveness
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Algorithm 1: QuadSection Clustering

Input : a set of trajectory data D, MinTs
Output: a set of frequent regions Rf

C0 ← {C|C contains points ∈ D and count(D) ≥ MinTs};1

Let a Hd has a single root C0 and C0 ∈ L0;2

foreach node n ∈ Li do3

Sc ← Split(n);4

foreach sub cell s in Sc do5

if count(s) ≥ MinTs then6

Add node s to Li+1;7

end8

end9

end10

if cost-cut(Li ) < 0 then11

Repeat line 3;12

else13

Rf ← {n|n ∈ Li};14

end15

Fig. 6 QuadSection clustering example for MinTs = 2

Table 1 Comparison of
QuadSection clustering and grid
clustering by greedy approach

QuadSection Greedy approach

MinTs = 2 3240 3299

MinTs = 3 1707 1833

MinTs = 4 1215 1240

MinTs = 5 934 950
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Fig. 7 An example of frequent region detection and trajectory transformation

is measured by the average approaching rate. The average approaching rate is de-
fined as the average ratio between the number of frequent regions discovered by QS
clustering and naive approach. The average approaching rate of Table 1 is 96.8 %.
The experimental result shows that QS clustering is able to effectively discover the
frequent regions with the approaching optimal cell size.

After extracting the frequent regions, each raw trajectory is transformed into a
sequence of frequent regions. Such a sequence is called a region-based moving se-
quence and is defined as follows:

Definition 2 A Region-based Moving Sequence (moving sequence) is a sequence of
frequent regions Sr = {(r1, t1), (r2, t2), . . . , (rn, tm)} with time constraint t1 < t2 <

· · · < tm, where (ri , tj ) indicates that object visits the frequent region ri at times-
tamp tj .

As can be seen in Fig. 4(a), three trajectories are transformed into region-based
moving sequences {(c16, t1), (c26, t2), (c25, t3), (c35, t4), (c45, t5), (c44, t6), (c43, t7),
(c42, t8), (c41, t9), (c31, t10), (c30, t11)}.

Figure 7 shows a running example of frequent region discovery and trajectory
transformation. There are six trajectories of a data set. The whole space is partitioned
into cells. Given a MinTs, a frequent region is extracted if a cell is passed by MinTs
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Fig. 8 An example of the STT model

trajectories. Finally, the raw trajectories are transformed into region-based moving
sequences.

4.3 Spatial-temporal trajectory model construction

After trajectories are transformed into region-based moving sequences, we construct
a spatial-temporal trajectory model to capture the moving behavior of an object. STT
model is a variant of the probabilistic suffix tree. PST is a compact representation of
a variable-order MarKov chain which draws the probability distribution for discrete
events occurring in sequences. PST can be used to predict the next event by given the
preceding sub-sequence [1, 22, 24, 28]. The original PST only considers the order
of the sequence in the spatial domain but disregards the temporal information. For
dealing with our location prediction at a specific future time, we propose the spatial-
temporal trajectory model, which is an extension of PST.

Figure 8 shows an example of the STT model, which builds an STT over a symbol
set � = {r1, r2, . . . , rn}, where symbol ri is represented as a frequent region and n is
the total number of frequent regions. Each edge in the tree is labeled by a frequent
region that indicates one movement from one frequent region to the other. Each tree
node is labeled by a sequence which represents a path from the node to the root. For
example, a tree node which is labeled as rk · · · r2r1 can be located by traversing from
the root along the path root → r1 → r2 → ·· · → rk . A predictive table is associated
with each node to maintain both spatial and temporal correlation between the region
and the next movement: the spatial probability Prospatial and the temporal probability
Protemporal. Prospatial is denoted as the conditional probability P(rk+1 | r1r2 · · · rk)
of the next frequent region rk+1 that follows the label of the tree node r1r2 · · · rk .
Protemporal is represented as transition interval ik+1 and representative timestamps
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tk+1. The transition interval is defined as vector ik+1 = (mean, sd), where mean is
the average transition interval from rk to rk+1 and sd is the standard deviation of
the transition interval. Representative timestamp tk+1 is donated as the representative
time when the moving object often passes by rk+1. For example, the predictive table
of node ab in Fig. 8 shows that the next movement region is region c, P(c | ab) =
1, ic = (60,5.8) and tc = 9:30,18:00, i.e., the conditional probability in the spatial
domain that from ab moving to c is 0.6, the object often spends 60 minutes from ab

moving to c and the standard deviation is 5.8 minutes, and the time to pass by c is
usually 9:30 and 18:00.

Now, we will present how to construct the STT model. STT construction includes
two steps: (1) for spatial domain, construct a PST to discover the frequent sequential
patterns over frequent regions. (2) for the temporal domain, extract the transition in-
terval vector and representative time of the next movement region for each tree node.
Before the construction of STT, minimal support, denoted as MinSup, is specified
to decide whether a frequent region rk should generate a tree node as a child of a
parent node or not. At the beginning of the first step, we hold an STT consisting of
a single root node with the counts of each frequent region appearing in the trajec-
tories. If the count of frequent region rk is larger than the predefined MinSup, one
tree node labeled as rk will be created as a child node of the root. Then, tree node
rk will maintain the conditional probability of the frequent region rk+1 with the pre-
fix segment of node rk in the predictive table. For each sequence of frequent regions
r1r2 · · · rk , if a frequent region rk+1 appears behind it, the statistical information of
all nodes labeled with the suffix of r1r2 · · · rk should be updated accordingly. Af-
ter constructing the relationship between the frequent regions in the spatial feature
from the historical trajectory dataset, the STT construction enters the second step to
retrieve the temporal information of moving behavior. Each predictive table of tree
nodes of STT is extended by aggregating the relevant temporal information. In this
paper, the time distribution of a region for a moving object frequently visited is ap-
proximately either a single Gaussian distribution or mixture Gaussian distribution.
Therefore, we assume that the time distribution of a frequent region can be approx-
imated as a Gaussian mixture model (GMM), where each component of the GMM
represents a temporal feature of the frequent cluster. The determination of the transi-
tion interval and representative timestamp of each frequent region can be approached
by the GMM parameter estimation. In general, the parameters of the GMM model
can be extracted by an Expectation-Maximization (EM) algorithm. However, using
the EM algorithm for analysis of the GMM model may result in some drawbacks: it
does not guarantee completeness due to unfortunate initialization; some smaller dense
regions may be absorbed by larger and denser regions if they are too close to them.
In order to extract the temporal feature, we build a histogram of the frequency distri-
bution to approach the time distribution of each frequent region. Finally, we estimate
the parameters of each component as a transition interval vector and representative
timestamp. The whole process of STT construction is described in Algorithm 2. The
algorithm of STT construction extracts significant sequential patterns and prunes in-
frequent patterns during tree construction, and then generates a STT. The input of the
algorithm includes the STT parameter MinSup and a set of region-based sequence tp .
MinSup is the minimal occurrence of a pattern, i.e, the criteria for creating a child
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Algorithm 2: STT Construction
Input : a set of region-based sequence tp, MinSup
Output: a STT model T̄

Initialization: Let a T̄ has a single root and k = 1;1

Sk ← {σ |σ ∈ tp and count(σ ) ≥ MinSup};2

while Sk is not empty do3

foreach element s in Sk do4

Add node s to T̄ ;5

// Build the predictive table of node s

SpatialPrability (σ |s);6

TransitionInterval(σ , s);7

RepretativeTimes(σ , s);8

if there exists a σ ′ ∈ tp such that count(σ ′s) ≥ MinSup then9

Add σ ′s to Sk+1;10

end11

end12

node of a subsequence s. The algorithm starts by initializing T̄ and then extracts
the set Sk of candidate patterns with length 1 (Lines 1–2). As shown in Lines 3–12,
the algorithm checks whether each candidate is qualified to be a node in the tree.
If a candidate s is qualified, the functions SpatialPrability, TransitionInterval, and
RepretativeTimes (Lines 6–8) return the spatial-temporal information and update the
corresponding data in predictive table. Next, the algorithm extends the candidates, as
shown in Lines 9–10, and iterates the procedure until the candidate set is empty.

Although the execution efficiency for QS-STT is dependent on the size of trajec-
tory data, QS-STT has some advantages to improve the execution efficiency. In QS
clustering, the top-down hierarchical clustering approach can reduce and speed up
the computation. Furthermore, STT model is a variant of PST, which is a successful
and efficient model to capture the significant sequential patterns and organize those
patterns into a tree structure.

5 Location prediction using STT model

In this section, we present how to predict future location using the trajectory mov-
ing profile for a given moving object’s recent movements and query time. The STT
represents a keyword dictionary of frequent trajectory patterns which are associating
with conditional probability entries for each possible next movement. The concept of
our prediction is to find the best next movement literally. We first encode the recent
movements into a query sequence. Specifically, the query sequence sq is a sequence
of frequent regions which the object has visited. The tree node of STT will be lo-
cated by the best movement similarity of its labeled pattern and sq . The predictive
table associated with the node will decide moving potential of each candidate for
next movement in the table. The candidate with the highest moving potential will be
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the next movement region and added into sq . Such prediction procedure will be re-
peated literally until the query time is reached. The last movement is selected as the
possible location at query time.

5.1 Movement similarity

The movement similarity is used to measure the similarity of a labeled sequence of a
tree node nk of STT and the moving sequence sq . The objective is to search a node of
STT model whose labeled sequence is the most similar to the moving sequence. In-
tuitively, the more recent movements have greater effect on future movements. Thus,
we assign more weight to the frequent region where it is closer to the query time. The
movement similarity of a tree node labeled nk and the query sequence sq is defined
follows:

MS(nk, sq) =
Size(nk&sq )∑

i=1

i2

∑Size(sq )

j=1 j2
(2)

where 0 ≤ MS ≤ 1 and (nk&sq) is the longest common suffix of nk and sq .
For example, assume sq = abc and there are the patterns a, b, c, bc and ab in the

tree. Considering the similarity between abc and those nodes, the similarity values
are 0.07, 0.28, 0.64, 0.93, and 0.36 respectively. The node labeled bc has the best
movement similarity with the query sequence abc.

5.2 Moving potential

After the best similar node is located, the moving potential of each next movement
candidate is calculated to decide the next movement. The region with larger spatial
probability in the predictive table has a greater chance of an object moving to it. How-
ever, such prediction would not be an effective prediction for a moving object because
it only considers the sequential relationship in the spatial domain and ignores the ef-
fect of the temporal domain. For example, the probability that a user starting from
home to school around 7:00 am is 0.7 and the probability of going from home to the
park around 4:00 pm is 0.3. If the user’s recent movement is home at 3:50 pm, the
answer of location prediction is always school when we consider the spatial domain
only. However, the correct location prediction should be the park. Thus, by consider-
ing both spatial and temporal information, the accuracy of location prediction could
be enhanced. To reflect this idea, we propose a moving potential that takes both spa-
tial and temporal information into consideration for location prediction.

For a next movement rk+1 of node nk , the moving potential ProST , is measured as
follows:

ProST = Prospatial × Protemporal (3)

Prospatial is computed according to the conditional probabilities of seeing the sym-
bol rk+1 right after the node nk labeled string r1r2 · · · rk in the dataset.

To take the time feature into account for location prediction, we have to mea-
sure Protemporal. We use Chebyshev’s inequality [21] to compute the upper bound
of probability of time error as a temporal similarity measurement. For a candidate
of next movement rk+1 of node nk , we estimate the arrival time of next movement
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te which is the sum of the current time tc and the average transition interval mean.
The minimum difference of te and the representative time tk+1 of the next movement
candidates is defined as temporal error.

Protemporal = sd2

|min{te − tk+1}|2 (4)

For example, assume that temporal features of the next movement with node nk

are ik+1 = (5,2) and tk+1 = {12:00,15:00,17:00}. If the current time is 11:52, we
evaluate that arrival time of region rk+1 of the moving object is 11:57 because the
mean of the transition interval is 5. Minimum error among tk+1 is |11:57−12:00| = 3
minutes because 12:00 is the closest time to the arrival time. Therefore, Protemporal
is bound by 0.44. To ensure the sum of probability is 1, we normalize the estimation
value to reassign the adjusted value as its temporal probability after estimating the
upper bound of probability of time.

5.3 Location prediction

Given a recent movement and query time, the algorithm initializes the query sequence
by encoding the recent movements into a sequence of frequent regions. The tree node
of STT with the best movement similarity of its labeled pattern and sq will be lo-
cated. The predictive table associated with the node will decide the moving potential
of each candidate for next movement in the table. The candidate with the highest
moving potential will be the next movement region and added into sq . Such predic-
tion procedure will be repeated literally until the query time is reached. Therefore, we
design a prediction algorithm which is a dynamic programming with time complexity
of O(nd) where n is the number of tree nodes and d is the number of time intervals.
Let F(c, t) be the highest probability to reach the next region among the candidates
of next node. The recursive solution and initial condition are defined as follows:

F(c, t) =
{

1, for t ≤ 0 (5)

maxc′(F (cc′, t − mc′) × Proc′), for t > 0, (6)

where c is denoted as a query sequence, t is traveling time, c′ is one candidate of the
next nodes of c, and mc′ is the mean of the transition time between them.

The sub-problem, F(cc′, t − mc′), is calculated recursively. The initial condition
is set F(c, t) to 1 for t is too short to go continuously. An example is shown in
Fig. 9. If we want to find the answer of F(c1,10), we have to calculate F(c2,5) and
F(c3,5) first. The value of F(c1,10) will be set to the maximum probability between
F(c2,5) and F(c3,5), the value of F(c3,5) is decided by F(c7,0), and so on. As a
result, F(c1,10) is 0.4.

The STT prediction processing algorithm follows a general backward recursion
procedure of a tabular method and is shown in Algorithm 3. In the beginning, we
initialize the query sequence with recent movements and locate the node c with best
movement similarity with sq . Then, we run the procedure STT-prediction(c, tq ) to lo-
cate the predicted node c′. For each problem STT-prediction(c, time) with time larger
than 0, we first check whether it has computed or not. If it has not been computed
yet, we scan all of the candidate next node c′ of c to find the answer to the problem
and return the computed result.
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Fig. 9 An example of recursive solution for STT prediction

Algorithm 3: STT Location Prediction
Input : query pattern sq , query time tq
Output: predicted location
Set the best match node c by searching STT corresponding to sq ;1

Get predicted node c′ by calculating STT-Prediction(c, tq );2

Return Location(c′);3

// A backward recursion function
function STT-Prediction(c, time)4

if time ≤ 0 then5

Return pattern c;6

else7

if STT-Prediction(c, time) hasn’t compute then8

Return Max(STT-Prediction(cc′, time-meanc′ ), Proc’), where9

c′ ∈ nextc;
else10

Return the computed result;11

end12

end13

end function14

6 Experiments

In this section, extensive experiments are performed to evaluate the effectiveness and
efficiency of our proposed location prediction method.

6.1 Experimental setting

In our experiments, we use real trajectory datasets from CarWeb [15], which is a
traffic data collection platform, in which users record their own location every five
seconds and upload their trajectories to the CarWeb server. We extract the data of



250 Distrib Parallel Databases (2013) 31:231–258

Fig. 10 Number of discovered patterns comparison by different clustering methods

one car of which the moving behavior has more than one similar path data as our
major dataset for the experiments. The movements of a vehicle were obtained by a
GPS equipped car while it followed the traffic network in Hsinchu city, Taiwan, over
a period of two months. Since CarWeb is our own platform, the ground truth is easy
to verify. Moreover, in order to evaluate the effectiveness and efficiency of our pro-
posed method under various conditions, we use three trajectory data sets in different
kinds of moving behaviors from RunSaturday http://www.runsaturday.com, which is
a website server to collect training paths of sports hobbyists and the uploading rate
is around tens of seconds to several minutes. The three data sets are summarized as
follows:

– Walk: A walker’s movements were collected over a period of seven months and
24 trajectories were extracted. The man has two types of walking behavior: walk-
ing in the street near his home and going hiking in Pohjois-Savo, Ita-Suomi, Fin-
land.

– Run: A runner’s movements were collected over a period of two months and 35
trajectories were extracted. The man has three types of running behavior: running
in the playground near his home, running along an urban outer road, and running
along the coastline.

– Bike: A bike’s movements were collected over a period of two months and
16 trajectories were extracted. The data was recorded while the bike went

http://www.runsaturday.com
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Fig. 11 Number of discovered regions comparison by different clustering methods

from a start position, cruising, and back to the start position. The moving be-
haviors on weekdays are different from on weekends such that the time pe-
riods on weekends were longer than on weekdays, so the trajectories around
a larger circle. Those movements were recorded over a period of almost two
hour.

The larger datasets are generated by perturbing the original datasets: every trajec-
tory is duplicated with a small (≤ ±5 %) random value added to the original value.
The number of trajectories (points) is 100 (20000). The test dataset was randomly
selected from 20 % of the original trajectories.

6.2 Performance comparison of clustering algorithm

In this section, in order to verify that the prediction accuracy of STT can be im-
proved by using QuadSection clustering (QS-STT), the performance of the proposed
QS-STT, STT prediction model with density-based clustering (DBSCAN-STT), and
grid-based clustering (Grid-STT) [14] is compared. Under various MinpTs, the best
experimental Eps is set for DBSCAN-STT and the greedy testing is conducted to
find the optimal cell size with maximum discovered regions for Grid-STT while the
near-optimal cell size of QS-STT is able to be auto-decided. Given MinSup = 2 for
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Fig. 12 Prediction error with different clustering methods

STT construction, we compare the number of regions and patterns discovered and the
prediction error of different clustering methods. The number of regions discovered by
the different clustering methods is compared in Fig. 10. The number of discovered
regions decreases as the value of MinpTs grows. The more frequent regions that are
extracted, the more trajectory patterns may be generated. As shown in Fig. 11, the ex-
perimental result indicates that the QuadSection clustering is able to detect the more
patterns than STT-DBSCAN and Grid-STT.

Prediction accuracy is measured by the prediction errors, which is defined as the
distance between a prediction location and its true location at a given query time. We
tested 150 queries by giving different query times and averaging their errors. The pre-
diction accuracy comparison with varied MinTs is shown in Fig. 12. For each MinTs,
the prediction errors under different query time are averaged. The experimental result
shows that QS-STT is more precise than other methods. QS-STT has very low errors
regardless of prediction length while the errors of DBSCAN-STT rise significantly as
the prediction length changes and this is because that region (cluster) discovered by
DBSCAN-STT results in various sizes, which may cause granularity problems and
lose accuracy when the predictive location falls in a big region. QS-STT is able to
detect the frequent region with reasonable and near-optimal cell size compared with
Grid-STT. This implies that QS-STT has more precise and complete information than
DBSCAN-STT does in capturing moving behavior. Thus, the QuadSection clustering
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Fig. 13 Prediction model comparison

Fig. 14 Effect of MinTs on number of patterns

method preserves the moving behaviors well for the STT location prediction model.
Note that the average errors of bike is higher than those of car is because the bike has
smaller number of patterns. The smaller number of patterns will reduce the prediction
accuracy.
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Fig. 15 Effect of MinTs on prediction error

6.3 Performance comparison of location prediction

We compare the location prediction accuracy and storage requirements of our method
(QS-STT) with that of the hybrid prediction model (HPM) [10], which uses the as-
sociation rule-based pattern prediction approach. The parameters are set for best per-
formance in terms of accuracy based on the experimental results. The QS-STT model
is constructed by the near-optimal cell size under MinTs = 13. The HPM for our
dataset: the frequent regions are decided by DBSCAN Eps = 0.0055, MinPts = 4,
and minimum confidence = 0.3 for association rule discovery. The prediction com-
parison is under the various prediction temporal lengths. As expected, Fig. 13(a) indi-
cates that QS-STT has lower errors than HPM in location prediction. HPM has higher
errors caused by the fact that the frequent regions discovered by DBSCAN cluster-
ing may result in clusters of arbitrary shapes and sizes while the error of QS-STT is
restricted by the fixed cell size.

We next study the storage requirements comparison under various MinSup. As ex-
pected, Fig. 13(b) demonstrates that our method has smaller storage size than HPM.
While the storage size of HPM dramatically grows as the number of frequent re-
gions increases, our method QS-STT still maintains a small storage size with tiny
changes. The reason is because HPM using association rule based patterns generates
an exponential number of rules as the number of frequent regions increases. On the
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Fig. 16 Effect of MinSup on number of patterns

other hand, QS-STT using uses the suffix tree data structure which can compress the
number of sequential patterns into a compact model.

6.4 Sensitivity analysis of parameters

In this section, we examine the effect of MinTs and MinSup to our model and predic-
tion. MinTs is the parameter of QuadSection clustering and MinSup is the parameter
of STT construction. We first study the effect of MinTs on frequent region discovery
and the accuracy of the location prediction. In our definition, a frequent region is de-
cided by MinTs number of trajectories which pass the region in a cell size. Therefore,
a high value of MinTs may cause a small number of frequent regions and trajectory
patterns. Prediction based on trajectory patterns could be affected by MinTs. Accord-
ing to the experimental results shown in Fig. 14, the number of trajectory patterns
is reduced as the number of MinTs increases. The prediction error increases signif-
icantly due to the small number of trajectory patterns as shown in Fig. 15. We also
investigate the effect of MinSup. For STT construction, a movement sequence is de-
fined as a trajectory pattern if the sequence has MinSup number of same movement
sequences appearing in a trajectory data set. Figure 16 presents the experimental re-
sults with MinSup varied. The number of trajectory patterns decreases dramatically
as the value of MinSup grows. Furthermore, the prediction error affected by MinSup
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Fig. 17 Effect of MinSup on prediction error

is provided in Fig. 17. The prediction error will potentially rise as the value of MinTs
grows.

In general, MinTs and MinSup are two parameters which mainly determine the
number of frequent regions and trajectory patterns which can be discovered. The
more frequent regions that are extracted, the more trajectory patterns may be gen-
erated. From the experimental results above we can observe that the model can po-
tentially achieve good prediction precision as many frequent regions and trajectory
patterns which are discovered.

7 Conclusion

In this paper, we presented a pattern-based approach to predicting an object’s future
locations. We not only focus on how to discover frequent movement patterns and
manage these patterns to answer predictive queries but also aim to propose a model
that can reduce the pattern storage size. To achieve this goal, we proposed Quad-
Section clustering to extract the maximum number of frequent regions with the rea-
sonable and near-optimal cell size, and develop a spatial-temporal trajectory model
to capture the movement behaviors of objects. QS-STT model could be a predictor
for location prediction and enhance the prediction accuracy. The experimental results
show that the QS-STT model is able to reflect an object’s moving behavior with a
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smaller storage size compared to existing patten-based approaches, while still guar-
anteeing the accuracy of location prediction.
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