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NCTU-GR 2.0: Multithreaded Collision-Aware
Global Routing with Bounded-Length Maze Routing

Wen-Hao Liu, Wei-Chun Kao, Yih-Lang Li, and Kai-Yuan Chao

Abstract—Modern global routers employ various routing
methods to improve routing speed and quality. Maze routing
is the most time-consuming process for existing global routing
algorithms. This paper presents two bounded-length maze rout-
ing (BLMR) algorithms (optimal-BLMR and heuristic-BLMR)
that perform much faster routing than traditional maze routing
algorithms. In addition, a rectilinear Steiner minimum tree
aware routing scheme is proposed to guide heuristic-BLMR and
monotonic routing to build a routing tree with shorter wirelength.
This paper also proposes a parallel multithreaded collision-aware
global router based on a previous sequential global router (SGR).
Unlike the partitioning-based strategy, the proposed parallel
router uses a task-based concurrency strategy. Finally, a 3-D wire-
length optimization technique is proposed to further refine the
3-D routing results. Experimental results reveal that the proposed
SGR uses less wirelength and runs faster than most of other state-
of-the-art global routers with a different set of parameters [12],
[16], [17], [20]. Compared to the proposed SGR, the proposed
parallel router yields almost the same routing quality with
average 2.71 and 3.12-fold speedup on overflow-free and hard-
to-route cases, respectively, when running on a 4-core system.

Index Terms—global routing, maze routing, multithreaded
routing, physical design, rip-up and reroute.

I. Introduction

IN VLSI physical design flow, the large gap between two
estimated wirelengths by placement and routing makes

it harder to achieve design closure. The modern placers
[1]–[4] bring fast global routing into placement stage to offer
accurate wirelength estimation, implying the urgent demand
of fast global routers. By holding global routing contests [5],
[6], ISPD’07 and ISPD’08 have attracted many researchers
to develop several global routers [7]–[13], [16]–[20]. Most of
these routers apply the negotiation-based rip-up and rerouting,
which is first introduced in PathFinder [21]. They focus on
minimizing overflow first, and then wirelength and runtime.
Maze routing is a slow but the most important algorithm
to seek a feasible or better connection after other routing
algorithms fail in each global router. Many global routing pa-
pers design various types of routing cost functions to balance
total wirelength and total overflows (TOs), such as Lagrange
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multipliers in FGR [7], dynamic base cost in NTHU-Route2.0
[12], and two-stage cost functions in NCTU-GR [17], but they
have no specific way to control the increase in wirelength.

As multicore architecture has become the mainstream of
CPU design, the development of EDA algorithms on a mul-
ticore platform can boost performance and quality in solving
EDA problems [23]. In parallel routing, a collision is said
to occur if multiple routing threads simultaneously demand
a routing edge. To avoid collision, the partitioning-based
concurrency strategy partitions a routing graph into several
independent regions, and tries to process them simultaneously.
However, in global routing, the passing routing regions of a
net often overlap with those of other nets, making it hard
to achieve a good independent region partitioning and a quite
balanced loading among all subproblems. Thus, the speedup of
this strategy tends to be limited. A parallel global router (PGR)
GRIP [18], [19] performing on a cluster computing platform is
based on partitioning-based strategy, so the balanced loading
problem of GRIP is a vital issue in GRIP. GRIP obtains the
best wirelength among all open literature, but GRIP requires
prohibitive runtime to complete global routing as compared
to other modern global routers. To avoid the limitations of
the partitioning-based strategy, [22] reduced the global routing
problem into a min–max resource sharing problem and, then,
developed a parallel algorithm to solve this problem.

The first part of this paper addresses the BLMR problem,
which involves identifying a minimal-cost path from a net’s
source to target with a specified length constraint. In addition,
this paper develops a parallel multithreaded global router
adopting the proposed task-based concurrency strategy (TCS)
on a multicore platform based on the proposed sequential
global routing algorithm. This paper makes the following
contributions to global routing research.

1) The proposed heuristic-BLMR algorithm with a new
history-length scheme improves the accuracy of esti-
mated wirelength so that a better runtime speedup and
wirelength decrease is obtained.

2) The proposed rectilinear Steiner minimum tree (RSMT)
aware routing scheme can guide the proposed router to
build a routing tree with shorter wirelength.

3) An efficient collision-aware rip-rip and rerouting scheme
is proposed to resolve the problem of routing quality
degradation caused by thread collision.

4) The proposed 3-D wirelength optimization technique can
yield the 3-D routing result of similar routing quality to
[18] and [19] in a reasonable runtime.

0278-0070/$31.00 c© 2013 IEEE
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The rest of the paper is organized as follows. Section II
briefly describes the preliminary of global routing. Section III
presents a global router that adopts BLMR, RSMT-aware
routing scheme and dynamically adjusted history cost function.
Section IV develops a parallel global routing algorithm based
on the TCS. Section V presents a 3-D wirelength optimization
technique. Section VI summarizes the experimental results.
Finally, Section VII draws conclusions.

II. Background

A. 3-D Global Routing Problem

The 3-D global routing is formulated as the routing problem
on a 3-D grid graph G(V, E). Typically the layout is partitioned
into an array of global cells. Each grid node in the grid graph
refers to a global cell, in which each grid edge corresponds to a
boundary between two abutting global cells in the same layer.
Meanwhile, each via edge connects two abutting global cells
in two adjacent layers. The number of routing tracks that can
be accommodated across the abutting boundary is defined as
the capacity c(e) of a grid edge e, and the number of wires that
pass through e is called grid edge’s demand d(e). The overflow
of e, overflow(e), is defined as max(0, d(e)–c(e)). The TO is the
sum of overflows on all grid edges, and the maximum overflow
(MO) is the MO among all edges. For simplicity, the capacity
of each via edge is not limited, which is also adopted in most
of global routing researches [7]–[20], [30]. A global router
largely focuses on producing a highly routable global path for
every net. The metrics of routability can be measured based
on the congestion of all global edges and wirelength of every
net. Few TOs and short total wirelength imply high routability.

The approach used in this work condenses 3-D grid graph
into 2-D grid graph, and then adopts 2-D global routing to
obtain a 2-D routing result. Finally, layer assignment assigns
each net edge to the corresponding metal layer to obtain final
3-D routing results [7]–[17], [30].

B. Net Decomposition

The RSMT and rectilinear minimum spanning tree (RMST)
construction algorithms are commonly used to decompose
multipin nets into two-pin subnets before routing stages.
FLUTE [24] can quickly construct optimal RSMTs for nets
with nine or fewer pins, and is widely used by many global
routers. However, the RSMT has less routing flexibility than
the RMST as it owns Steiner points and generates more flat
segments than the RMST, and the data structure of RSMTs
is more complex than that of RMSTs [7]. On the contrary,
the RMST can simply complete each subnet’s routing with
pattern or monotonic routing to avoid congestion regions.
Consider wirelength and routing flexibility, in which a RMST
that encourages two two-pin routings to merge together with
two paths that pass through the same grid edges. This ideal
solution avoids passing through congested regions by using a
shorter total wirelength than that of a RMST that does not
encourage finding joint wires. However, identifying a RMST
with joint wires is a challenge.

C. Negotiation-Based Rip-Up and Rerouting (NRR)

Rip-up and re-routing technique is widely used in global
and detailed routing to expel all violations (overflows in global
routing). The negotiation technique in [21] is widely associated
with rip-up and re-routing technique (NRR) in modern global
routers to reduce overflows. The main idea of NRR is to
increase the penalty of a grid edge at current iteration that
overflowed at the previous iteration. Thus, path searching
intends to avoid passing previously overflowed grid edges.
McMurchie and Ebeling [21] formulates the negotiation-based
routing cost of grid edges e as follows:

cost(e) = (be + he) × pe (1)

where cost(e), be, he, and pe denote the routing cost, the
base cost, the history cost, and the congestion penalty of e,
respectively. The history cost he increases as overflow occurs.
The value of he in the (k + 1)th iteration is given by

hk+1
e =

{
hk

e + hinc if e is overflowed
hk

e otherwise
(2)

where h1
e = 1, hinc is a constant, and hk

e is updated in every
iteration. In addition, FGR [7] presents another formula to
preserve the base cost as follows:

cost(e) = be + he × pe. (3)

Several variations of negotiation-based cost functions have
been discussed in [11]–[13], [16], and [17].

III. Proposed Global Router Using BLMR

This section introduces three kernel techniques of the
proposed router, i.e., BLMR, RSMT-aware routing scheme,
and dynamically adjusted history cost. The final subsection
summarizes the detailed design flow of the proposed router.

A. BLMR

Many global routers adopt a bounding box to limit the
searching region of maze routing to accelerate maze routing,
and gradually relax the bounding box if an overflow-free
routing solution cannot be found. However, maze routing may
produce many detours or fail to find a short path within the
bounding box. Thus, this paper develops BLMR to speed up
maze routing by limiting the search region as well as to well
improve routing resource utilization by lessening redundant
wirelength. The BLMR problem is formulated as follows. In
a 4-tuple (s, t, G, L), s and t denote a source and a target,
respectively; G denotes the grid graph, each grid edge in G has
specified congestion cost, and L denotes the bounded-length
constraint (BLC) (L is not less than the Manhattan distance
between s and t). The objective of the BLMR problem is
to identify a minimal-cost path from s to t on G, and the
wirelengh of the path cannot exceed L.

BLMR problem can be regarded as a restricted version
of constrained shortest path (CSP) problem. In general CSP
problem, a delay and a cost for every edge in a graph are
specified. The delay of an edge may be the length of the edge
or the signal latency from a terminal of the edge to another
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terminal. CSP algorithm attempts to identify a minimal-cost
path from s to t, ensuring that the total delay of the identified
path does not exceed an upper bound. The general version of
CSP problem is NP-complete when the delay of each routing
edge is a real number [25]. However, this problem can be
solved in polynomial time if the delay of the each routing edge
is an integer [26]. Several studies [25]–[27] have addressed this
problem for its applications in quality of service area.

Compared to CSP problem, BLMR problem owns some
particular properties that are not in the general CSP problem.
For instance, while CSP algorithm works on a general graph,
BLMR algorithm works on a grid graph of specific 2-D array
structure with each vertex having at most four neighbors,
which makes BLMR algorithm may be faster than CSP
algorithm on solving global routing problem. Also, global
routing problem owns the following particular properties.

1) The graph in global routing is a grid graph, and the
distance from any node to the target can be estimated
by simply Manhattan distance. Thus, a path possibly vi-
olating length constraint can be detected in the constant
time.

2) The region to explore in a grid graph during routing
can be restricted within a specified area; however, the
studies [26] and [27] scan entire routing graph, and thus
consume much time.

3) In global routing, a net may be ripped up and re-routed
several times to identify its final path. The paths of a net
identified in two successive rerouting iterations make
use of most routing edges in common. The proposed
history-based estimated wirelength scheme utilizes this
property.

The definitions of the notations used in following sections
are listed as follows. P(s, v) denotes a path from source s to
node v, wl(P(s, v)) denotes the wirelength of P(s, v), pc(P(s,
v)) denotes the routing cost of P(s, v), and Manh(v, u) is the
Manhattan distance from v to u. Notably, the proposed BLMR
algorithm adopts A∗ search scheme for acceleration of path
search. The search key is pc(P(s, v)) comprising the routed
cost from s to the current node v and the estimated lower bound
cost from the v to target t. Path length in BLMR is a constraint
and all paths that violate this constraint will be pruned.

1) Optimal-BLMR: Optimal-BLMR algorithm adopts two
different policies than traditional maze routing to obtain a
minimum-cost routing solution under BLC. First, we define
the potential wirelength (pwl) for each incomplete routing path
P(s, v) as the sum of wl(P(s, v)) and Manh(v, t) where v is an
currently explored grid node, and a path with pwl exceeding L
is regarded as a path violating BLC. Optimal-BLMR discards
the paths violating BLC, and then restricts the searching re-
gion. Fig. 1(a) shows the searching region of a net on the graph
while L is set to 9. Second, assuming that there are two or more
paths from s to v, traditional maze routing only preserves the
minimum-cost path and discards others. However, in optimal-
BLMR, this scheme does not guarantee to identify a feasible
solution because the length slack of the minimum-cost path
may be less than the wirelength required to detour around
congested regions, where the length slack of P(s, v) is L minus

Fig. 1. (a) Search region of the net while L is set to 9. (b) Two path
candidates P1 and P2 from s to v. (c) ewk(v, t) represents estimating
wirelength from v to t in iteration k..

wl(P(s, v)). For instance, Fig. 1(b) shows two path candidates
P1 and P2 from s to v: the gray regions are congested regions,
the bounded-length is 16, and pc(P1), pc(P2), wl(P1), and
wl(P2) are 80, 90, 11 and 5, respectively. If optimal-BLMR
only preserves the minimum-cost path P1, the length slack of
P1 is 5, which is too small to detour around congested regions
to reach t. Because the wirelength from v to t is uncertain
before the end of routing, optimal-BLMR must preserve both
paths. However, if the following inequalities hold, P1 is
considered to be inferior to P2 and can be discarded.

wl(P1) ≥ wl(P2) and pc(P1) ≥ pc(P2). (4)

S(v) is a list of node v to store the paths from the source
s to node v, any two of which do not conform to (4). For
each v ∈ V, S(v) is initially set as empty. While storing all
currently explored paths, a Fibonacci heap H is initialized to
have only s. At the beginning of each routing iteration, the
minimum-cost path is selected from H for further routing.
The optimal-BLMR algorithm is designed as follows.

1) Extract the minimum-cost path P(s, v) from H. If v is t,
return P(s, t) as the solution and exit.

2) Explore each neighboring node of v, say node u. If the
newly explored path P(s, u) does not conform to BLC,
discard P(s, u); otherwise perform Step 3. Go back to
Step 1 after exploring each neighbor of v.

3) Scan every path candidate in S(u) and remove the
inferior paths to P(s, u) from S(u) and H. If P(s, u)
is not inferior to any path in S(u), P(s, u) is inserted
into S(u) and H.

Notably, if a net lacks adequate length slack to detour
around all congestions to reach the target, optimal-BLMR
would identify a routing path passing through congestions. A
net passing through overflowed grid edges is called overflowed
net, which will be rerouted in the next iteration.

Step 3 of optimal-BLMR takes the time complexity of
O(|S(u)|) to scan every path in S(u), where |S(u)|denotes the
number of path candidates in S(u). The maximum size of S(u)
is derived as follows.

Lemma 1: For an optimal-BLMR subject to the constraint
Manh(s, u)+Manh(u, t)≤ L, where s, t, and u are respectively
the source, the target and an intermediate node, the maximum
size of S(u) is � (L–Manh(s, u)–Manh(u, t) + 1)/ 2�.

Proof: The shortest path candidate in S(u) is the path of
wirelength Manh(s, u), and the longest path candidate in S(u)
must not exceed L–Manh(u, t) due to BLC. Thus, the paths
in S(u) have at most ((L–Manh(u, t))–Manh(s, u)+1) possible
wirelength levels. Moreover, because a detour increases the
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wirelength by two in unit of grid edge, the number of possible
wirelength levels becomes (L–Manh(u, t)–Manh(s, u)+1)/ 2.
When (4) is adopted to prune the inferior paths, S(u) only
reserves the lowest cost path in each wirelength level. Hence,
the maximum size of S(u) is (L–Manh(u, t)–Manh(s, u)
+1)/ 2.

2) Heuristic-BLMR: Although the proposed heuristic-
BLMR approach cannot guarantee the optimal solution, it
is much faster than optimal-BLMR. The difference between
optimal-BLMR and heuristic-BLMR is that heuristic-BLMR
preserves only one path from the source to the current node,
and the other paths are discarded. Accordingly, the major
issue of heuristic-BLMR is determining which path candidate
should be preserved.

Path selection involves examining each path to determine
whether or not the required wirelength to bypass the congested
regions from the current node v to target t does not exceed
the length slack, then heuristic-BLMR preserves the minimal-
cost path with enough length slack. If no path candidates have
enough length slack, the shortest path candidate is preserved
because the shortest path has a greater chance to bypass the
congested regions. However, the congestion information from
v to t is not explored yet, hence the history-based estimated
wirelength of the path from v to t is estimated as follows:

ewk(v, t) = HLk−1(s, t) × Manh(v, t)

Manh(s, t)
(5)

where ewk(v, t) is the history-based estimated wirelength from
v to t in iteration k [Fig. 1(c)], k denotes the iteration number
of the NRR stage, and HLk−1(s, t) is the history length, i.e.,
actual routed wirelength from s to t in iteration k–1. The
concept behind (5) is that the length from v to t is proportional
to the length from s to t at previous iteration. Based on (5),
heuristic-BLMR predicts that P(s, v) has sufficient length slack
to bypass the congested regions from v to t if the following
equation holds

wl(P(s, v)) + ewk(v, t) ≤ L. (6)

If multiple paths conform to (6), the minimum-cost path is
preserved. If no path conforms to (6), the shortest path is
preserved. This policy ensures that a path is only preserved
to greatly reduce the number of explored routing paths during
heuristic-BLMR. If (5) overestimates the wirelength from v to
t in the previous iteration, the long path candidates tend to be
discarded by (6), which selects the short path candidates as
the final routing path. Hence the estimated wirelength from
v to t using (5) at current iteration decreases. Similarly, if
(5) underestimates the wirelength in the previous iteration, the
estimated wirelength will increase in the current iteration. As a
result, as the iteration number increases, (5) gradually becomes
more accurate in estimating the actual wirelength from v to t.

This paper evaluates the accuracy of (5) by the following
experiment. As heuristic-BLMR identifies a routing path at
iteration k, an internal node v is selected randomly in the
identified path and, then, the difference between HLk(v, t)
and ewk(v, t) is computed. According to the experiment on
benchmark adaptec1, the average difference of all nets is 54%
at the first iteration of the NRR stage; the average difference

then gradually decreases to 30% at iteration five. Following
iteration five, the average difference swings between 25% and
30%. However, if only the average difference of the first 20%
long nets is calculated, the average difference ranges from 10%
to 20% after iteration five, implying that (5) more accurately
estimates long nets than short nets.

While closely resembling each other, the heuristic-BLMR
algorithm and optimal-BLMR differ only in that the former
always preserves at most one path in S(v), v∈V. When S(v)
already contains a path and a new path P(s, v) is explored,
the path selection scheme proposed in this subsection chooses
the proper path to be preserved in S(v) and H. Inaccurate
estimation by (5) in heuristic-BLMR may yield unnecessary
overflows, increasing the required iterations to remove unnec-
essary overflows.

3) Bounded-Length Relaxation: In the NRR stage of
this paper, BLC is designed to control the routing resource
utilization. Initially, the routed wirelength is strictly limited
since overusing routing resources in the early stage likely
inhibits subsequent routings from finding overflow-free paths,
and increases runtime as well. While a routing cannot avoid
congested regions under the strict BLC, BLC is gradually
relaxed to encourage heuristic-BLMR to yield fewer overflows
at the expense of a longer wirelength as the process iteration
proceeds. However, overly relaxing BLC in a later stage only
gives rise to a large increase in the wirelength, yet cannot help
to resolve overflows. A bounded-length relaxation scheme is
thus formulated as follows:

Lk
n = Manh(sn, tn) × (1 + arctan(k − α) + β) (7)

where Lk
n is the bounded-length of two-pin net n in the k-

th routing iteration. The first term is the Manhattan distance
between two terminals of n, and the second term is the scaling
factor of the bounded-length; α and β are user-defined positive
constants. As for fundamental discussion about the relation
between the routing iteration number and the scaling factor,
please refer to [30, Section III-C].

The runtime and routing quality of the proposed router are
impacted by the values of α and β. The value of α refers
to the number of iterations in phase 1, while the value of β

refers to the search region of each net. Increasing α encourages
the proposed router using shorter wirelength to eliminate
overflows, thus the proposed router can yield the final result
with less wirelength at the cost of longer convergence period.
Increasing β encourages an increase in the wirelength of the
routing result with the number of routing iterations to be
decreased. For the hard-to-route cases, large α and small β

are effective for the proposed router to avoid producing too
much wirelength and consuming additional routing resources
at early stage, which increases the difficulty of eliminating
overflows. For the easy-to-route cases, small α and large β

are effective for the proposed router to complete the routings.
In this paper, α and β are set to 9 and 1.5, respectively.

B. RSMT-Aware Routing Scheme

Regarding the ability of the proposed scheme to decompose
a net into multiple two-pin subnets, the proposed RSMT-aware
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Fig. 2. (a) FLUTE and Kruskal’s algorithm are employed to yield a RSMT
and a RMST. (b) Grid edges in the shadow regions are the skeleton edges of
this net. (c) RMST is combined with SE. (d) RSMT-aware routing result.

routing scheme is characterized by RSMT and RMST. In the
RMST decomposition stage, each net is first decomposed into
several two-pin nets by RMST. Thereafter, the RSMT-aware
routing scheme first constructs one RSMT for reference and
then encourages the routing of each subnet to pass through the
regions passed by RSMT. The terminals of a RSMT consist of
pins and Steiner points. Two connected terminals are linked
with a straight path or an L-shape path. For a RSMT of net
N, a grid edge e is a skeleton edge associated with N if e is
passed by a straight path of the RSMT. SE(N) denotes the set
of skeleton edges associated with N.

Fig. 2(a)–(d) illustrates the three steps to build RSMT-
aware routing scheme for a four-pin net N. Three steps are
performed at the stages of RMST decomposition and RSMT-
aware scheme construction. Then, during the monotonic rout-
ing stage, the NRR stage and the postrefinement stage, BLMR,
and monotonic routings use this scheme to evaluate the routing
cost of grid edges. The details are listed as follows.

1) FLUTE and Kruskal’s algorithm are first employed to
yield a RSMT as the ideal routing tree and a RMST to
decompose net N into several two-pin nets [Fig. 2(a)].

2) Identify skeleton edge set SE(N) [shadow regions in
Fig. 2(b)] using the identified RSMT in Step 1.

3) Each two-pin net of RMST is associated with SE(N) to
form the RSMT-aware scheme. This association is used
as follows. In Fig. 2(c). Net N’s RMST is split into three
two-pin nets, n1, n2, and n3. The edges in SE(N) will be
assigned with less costs to encourage the routing wires
of net N to pass through the edges in SE(N) [Fig. 2(d)]
when the router performs monotonic or BLMR routing
of n1, n2, and n3.

The proposed RSMT-aware routing scheme differs from
other routers mainly in that, in the proposed scheme, a paragon
RSMT is used for reference; the routing tree can then be
easily amended to approach the paragon one as nearby regions
become un-congested. Other routers normally refine the cost
function to enable the subsequent routing to share the grid
edges used in previous routing. However, for instance, if the
path of n1 in Fig. 2(d) is an upper L-shaped path, the next
routing, e.g., n2, cannot reuse the grid edges in the path of
n1. In addition, RSMT-aware routing scheme can restore the
routing of a net to its RSMT at the postrefinement stage
as congestions are eliminated. For instance, if the overflows
(congested regions in gray color) in Fig. 2(d) are eliminated
and subnets n1 and n2 are rerouted with RSMT-aware routing
scheme, the routing path will pass through the Steiner point
in Fig. 2(a) and look very similar to the RSMT in Fig. 2(a).

C. Dynamically Adjusted History Cost Function

With RSMT-aware cost function, a grid edge is assigned
with different cost values to different nets to encourage a net
to pass the grid edges in its skeleton edge set. For the routings
of two nets, say N1 and N2, if grid edge e is in the skeleton
edge set of N1 but not in that of N2, the cost of edge e for
net N1 is assigned as a less value than that for net N2, which
can better routing resource utilization by supporting each net
to use the edges in its skeleton edge set. In the NRR stage,
the concept of routing cost of grid edge e for net N is based
on that in [12] and re-formulated as follows:

cost(e) =

⎧⎨
⎩

0 if e ∈ GE (N)
(1 + dah(e, k)) × pe + be − w elseif e ∈ SE (N)
(1 + dah(e, k)) × pe + be otherwise

(8)
where cost(e), be, and pe are defined in (1), dah(e, k) de-
notes the dynamically adjusted history cost function [further
discussed in (9)], GE(N) denotes the set of grid edges that
are passed by N, and w is a weighted constant that is set to 1
in this paper. Equation (8) encourages a route to pass through
the grid edges in either GE(N) or SE(N).

Traditionally, the history cost of a grid edge in negotiation-
based cost function scheme (2) continues to increase if the grid
edge keeps congested. The history cost remains unchanged
even after the grid edge becomes un-congested, which results
in overestimated routing cost for the routing passing the
grid edge and then generates unnecessary detours. Hence, we
have to lower the history cost if the grid edge becomes un-
congested. The dah(e, k) is proposed as follows:

dah(e, k) =
hk

e

C1 + C2 × √
k

where hk+1
e = hk

e + of k
e (9)

where hk
e and of k

e , respectively, denote the history cost and
overflow frequency of e at iteration k. h1

e = 1, and hk
e is

updated at the end of every iteration. C1 and C2 are user-
defined constants and set to 7 and 4, respectively. If edge
e keeps un-congested during subsequent iterations, by (9),
dah(e, k) will decrease as iteration number k increases while
hk

e remains unchanged. In addition, the proposed history cost
is updated with overflow frequency instead of a constant value
in traditional scheme (2). The overflow frequency of k

e of grid
edge e is set to zero at the beginning of each iteration k. Once
an overflowed net is rerouted, of k

e increases one if e overflows
and e is passed by the rerouted net. A larger of k

e implies a
greater number of nets demanding the routing resource of e in
iteration k, further implying that e is critical. The idea behind
(9) is that critical routing resources should have large overflow
frequency. Thus, a grid edge with high overflow frequency is
assigned with large history cost. As compared to traditional
history cost updating scheme, the proposed one requires less
iterations to distinguish which grid edges are critical. In this
paper, pe and be are formulated as follows, which are inspired
by [14] and [12], respectively

pe = 1 +
C3

1 + eC4(c(e)−d(e))
and be = C5 + C6/2k (10)
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Fig. 3. Detailed design flow of the proposed global router.

where C3, C4, C5, and C6 are set to 150, 0.3, 30, and 200 in
our implementation, respectively. The constant value setting is
determined by closely examining how their variations impact
routing results in the experiments.

D. Detailed Design Flow

Fig. 3 shows the detailed design flow. At first, the 3-D
routing problem is compacted into a 2-D routing problem.
The algorithm then decomposes each net to two-pin nets based
on the topology of RMST, builds skeleton edge sets for each
net to set up RSMT-aware routing scheme, and generates an
initial congestion graph via monotonic routing that routes
all two-pin nets. Next, the NRR stage iteratively reroutes
the overflowed nets until an overflow-free routing result is
obtained. Upon commencement of each iteration in the NRR
stage, all two-pin nets are first sorted; they are then examined
sequentially to determine whether an overflow occurs. BLC
for the overflowed net, e.g., N, is relaxed by (7) and, then, is
ripped up and rerouted by heuristic-BLMR with the routing
cost function in (8), which requires testing if a grid edge
belongs to GE(N) or SE(N). GE(N) and SE(N) are stored
using hash table, specifically, unordered−multiset in C++ STL.
SE(N) is constructed in the RMST decomposition stage while
GE(N) is dynamically updated during rip-up and rerouting to
record the grid edges in the routing path of net N. The time
complexities of inserting, erasing and identifying a grid edge e
in unordered−multiset remain constant. As NRR enters a new
iteration, the history cost is updated by (9).

The wirelength of each net is then greedily minimized in
the postrefinement stage by ripping up and rerouting each
two-pin net once with the proposed RSMT-aware routing
scheme. The overflow-free two-pin routings without a detour
are rerouted by monotonic routing; meanwhile, the other two-
pin routings are rerouted by heuristic-BLMR with the original
path length as BLC. Rerouting overflow-free nets can reduce
their wirelength and can vacate the routing resource to other
overflowed nets as well. Because most nets are routed by
monotonic routing or heuristic-BLMR with small BLC, this
stage is very efficient. In this stage, the routing cost of a grid
edge, say e, is formulated as follows:

cost(e) = 1 + κ

(
d(e)

1 + c(e)

)
. (11)

TABLE I

Net Ordering Methods Comparison

adaptec1 adaptec3 adaptec5 Average
Order WL CPU WL CPU WL CPU WL CPU

(105) (m) (105) (m) (105) (m) (105) (m)
LenD 36.42 2.17 96.00 1.93 105.18 4.65 70.97 2.18
LenI 36.65 2.26 96.28 1.85 106.73 5.37 71.53 2.31
OFD 36.39 2.13 96.02 1.86 105.39 4.46 70.99 2.10
OFI 36.74 2.51 96.42 1.98 107.02 5.63 71.69 2.46
Equation (12) 36.31 1.78 95.97 1.77 105.14 4.06 70.88 1.90

If c(e) ≤ d(e), κ is set to 105 to avoid increasing overflows;
otherwise, κ is set to 0.1. Finally, the layer assignment in [17]
is employed to transform the 2-D routing result to the 3-D
result.

The routing ordering of all two-pin nets impacts the routing
quality and runtime. We introduce the net routing ordering
adopted in each routing stage as follows. In the monotonic
routing stage, the proposed router sorts the two-pin nets
in the increasing order according to its bounding box size.
Smaller bounding box for a net implies less solution space
for monotonic routing of the net. Routing a net with less
solution space earlier can improve the possibility to complete
its monotonic routing due to fewer previously routed wires.
In the NRR stage, wirelength and congestion control and
overflow reduction are main objectives. We evaluate four net
ordering methods in terms of wirelength and overflow in
the NRR stage. Table I displays the wirelength (WL) and
runtime (CPU) of benchmarks adaptec1, adaptec3, adaptec5,
and average of all overflow-free cases when the NRR stage
adopts four different net ordering in decreasing wirelength
(LenD), increasing wirelength (LenI), decreasing overflows
(OFD), and increasing overflows (OFI). Notably, WL here
does not include vias because layer assignment has not yet
been performed. Table I reveals that routing the long two-
pin nets with more overflows early can identify the results
with less total wirelength in a shorter runtime. Based on this
observation, all two-pin nets are sorted at the beginning of
each iteration in the NRR stage, based on nets’ score (12) in
decreasing order.

scorek(n) = C7 × oek−1(n) + C8 × lenk−1(n) (12)

where scorek(n) denotes the score of two-pin net n in iteration
k, oek−1(n) and lenk−1(n) denote the number of overflowed
grid edges passed by n and the length of n in iteration k–1,
respectively. Notably, oe0(n) and len0(n) depend on the routing
outcome of the monotonic routing stage. Additionally, C7 and
C8 are user-defined constants and set as 30 and 1 in this paper.
The bottom row in Table I displays the routing results as the
NRR stage adopts (12) to sort two-pin nets, which obtains a
shorter wirelength and runtime than other ordering methods.
Finally, the postrefinement stage adopt wirelength-decreasing
net ordering since most overflows have been removed.

IV. TCS on Multicore Platform

This section proposes a parallel multithreaded global router
using TCS on multicore platform to accelerate the NRR stage,
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which consumes most computation time of global routing. The
concept of TCS is to keep all threads working with almost
full load to explore more concurrency than the partitioning-
based concurrency strategy. In TCS, a two-pin net routing is
defined as a task, and a task queue is maintained to contain
all tasks. The task queue is updated at the beginning of each
iteration in the NRR stage, and each thread repeatedly acquires
a task from the task queue when the thread completes its task.
Since all tasks are dynamically committed to available threads,
load variation among threads is minimized. To avoid lowering
parallelism degree, threads are synchronized only at the end of
each iteration. Details of TCS are discussed in Section IV-C.

A. Challenges of TCS

The partitioning-based strategy prevents the simultaneous
usage of the same routing resource by more than one thread in
a region due to subregion restriction. In contrast, the proposed
TCS does not partition the routing region, possibly leading to
a situation in which one thread may simultaneously compete
with other threads for the same routing resource. Conse-
quently, this situation causes the race condition of routing
resources and likely produces additional overflows.

BLMR consists of wave propagation and back-tracing.
During propagation, each thread explores every possible move.
During back-tracing, the new routing path is identified on the
grid graph based on all explored moves, and then the conges-
tion map is updated. If two threads access one routing resource
one right after the other during wave propagation, they think
the usage of the routing resource will only increase by one.
Actually, the final usage of routing resource will increase by
two after back-tracing, which may result in overflows. [30,
Section IV-A] discusses a collision example (Fig. 6) that is
caused by race condition.

The experiments on benchmark newblue1 depict the side
effects of collision. Based on the sequential global router
(SGR) proposed in the previous section, this paper develops
a PGR to simultaneously perform multiple net routings on
multiple threads using TCS. SGR can complete the routing
of newblue1 in the 83th iteration while PGR still produces
several overflows in 200-th iteration. Although one-iteration
routing of PGR is faster than that of SGR, PGR takes more
iterations to yield worse routing results than SGR.

B. Collision-Aware BLMR

Collision often occurs when several nets are close to each
other in a congested region, when the nets are routed simul-
taneously. Our analysis indicates that more than 41% of the
rerouted nets are influenced by collision during the NRR stage.
To avoid collision, threads must recognize when a grid edge is
also used by other routing paths. Two important phenomena
are observed from the analysis of the rip-up and rerouting
process of a net. Firstly, a rerouted net often only contains a
few overflow grid edges, so the rerouted net only needs a few
detours to avoid congested regions. Moreover, the bounded
length of a net is incrementally relaxed such that the search
region and the identified routing path of a net change only
slightly. This implies that the thread may reuse most grid

Fig. 4. Algorithm of collision-aware BLMR.

edges of the original path in the new path. Analysis shows
that each new routing path reuses about 80% grid edges of the
original routing path. Therefore, it is useful to avoid collision
by preventing new routing paths from passing through the
original routing paths of other currently routed nets.

A heuristic collision-prevention approach is developed to
enable each thread to notify other threads if certain grid edges
have been used by some currently routed nets in the previous
iteration. As a result, each thread can estimate the risk of using
these grid edges. For more details, each thread marks the grid
edges used by the currently routed net in the previous iteration
on the congestion map before starting wave propagation of
current iteration, and clears their marks after back-tracing
ends. The marked grid edges are assigned the extra routing
cost. When a thread propagates to a marked grid edge, the
extra routing cost of marked grid edges encourages the thread
to bypass the marked grid edges for preventing collision. Fig. 4
shows the flow of BLMR adopting this collision-prevention
approach. Notably, the race condition may happen when
threads simultaneously update the cost of a grid edge (line 2
and line 5). To avoid this situation, most parallel programming
languages provide specific instructions to protect variables
against multiple writes. This paper updates the congestion map
via OpenMP’s instruction atomic, which can avoid the race
condition at the cost of little decrease in routing speed.

As for an example of collision-aware BLMR, please refer
to [30, Section IV-B (Fig. 10)].

C. Collision-Aware Rip-Up and Rerouting

Fig. 5 shows the design flow of collision-aware rip-up and
rerouting by using TCS and collision-aware BLMR. The task
queue TQ is implemented by d-queue. TQ-related tasks are
sorted by the ordering method in (12), and line 5 iteratively
extracts the task in the front of TQ. Additionally, parallel
routing more than one two-pin net of a net is avoided because
several demands to update the structure of a net from different
threads may incur the race condition. To solve this problem,
this paper adopts a lock and unlock scheme. For instance, a
two-pin net n is a subnet of net N. Initially, N is unlocked.
Notably, N becomes locked when n is launched to commence
the routing. After the routing of n ends, N turns back to an
unlocked condition. If n is extracted and N is in the locked
state, n is pushed back to the end of TQ. Additionally, an
attempt is made to avoid a situation in which multiple threads
modify the lock of N, causing the race condition. Therefore, a
critical section protects lines 6–7 and line 10 in Fig. 5 to avoid
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Fig. 5. Design flow of collision-aware rip-up and rerouting.

modifying the lock of N from multiple threads, subsequently
leading to the race condition.

Although the routing cost formulation of grid edge e in
collision-aware rip-up and rerouting resembles (8), pe is
redefined as follows:

pe = 1 +
C3

1 + eC4(c(e)−d(e)−vdi(e))
where vdi(e)

= C9 × √
mall(e) − mi(e)

(13)

where vdi(e) denotes the virtual demand for thread i; mall(e)
represents the number of marks on e; and mi(e) determines
whether e is marked by thread i. Additionally, C3 and C4

is defined in (10), and C9 is a user defined constant, and
is set to 0.4. The concept underlying (13) is that e with
additional marks should have a higher routing cost since e
with more marks implies that it is much likely to be passed by
other currently routed nets, subsequently incurring a collision.
Correspondingly, the virtual demand (13) enlarges pe when e
is marked. The square root in (13) avoids overestimating the
virtual demand since many threads are available. Additionally,
thread i must disregard the mark labeled by itself, so mi(e) is
subtracted from mall(e) in (13). At line 1 in Fig. 4, thread
i increases both mall(e) and mi(e) by 1, for each edge e in
path(n); at line 6 in Fig. 4, thread i decreases both mall(e) and
mi(e) by 1 with atomic instruction to avoid a race condition
caused by multiple updates on mall(e).

The proposed parallel router adopting collision-aware rip-up
and rerouting in the NRR stage (collision-aware PGR) achieve
good overflow reduction. Experiments show that collision-
aware PGR not only runs faster than SGR in completing one-
iteration routing, but also uses fewer iterations to yield an
overflow-free result. Because, the virtual demand encourages
routing path more actively escaping the congested regions, but
it may slightly increase the total wirelength.

V. 3-D Wirelength Optimization

Current researches address the global routing problem from
three aspects, 2-D global routing, 3-D global routing, and layer
assignment. Most relevant research examines these aspects

Fig. 6. Example of the quality improvement in 3-D wirelength optimization
technique. (a) 2-D routing result obtained by 2-D stage. (b) 3-D result after
layer assignment. (c) 3-D result after the 3-D postrouting. (d) 3-D result after
NVM.

individually without discussing the potential of coordinating
2-D routing, 3-D routing, and layer assignment. This paper
develops a 3-D wirelength optimization technique that com-
bines the 3-D postrouting (discussed later) and a negotiation-
based layer assignment algorithm (NVM) [28] together to
iteratively optimize the wirelength (including vias) of a given
3-D routing result. This technique can append to the end of
global routers to yield better results. The following paragraph
briefly introduces NVM.

Most layer assignment algorithm used in global routers [7],
[12], [16], [17] determined the assignment order of nets first
and, then, assigned each single net sequentially to minimize
vias. However, to avoid increasing overflows, the nets in
the later assigning order have less available layer resources
than those in the early assigning order, so the later assigned
nets may not be assigned to their desired layers, resulting
in vias increasing. In contrast, NVM adopts a history cost
accumulating method to overcome this problem. NVM first
identifies a minimal via count solution without considering
the overflows for each net and then iteratively re-assigns
the nets with overflows until overflows cannot be reduced
anymore. During rip-up and reassigning, the history cost of
each overflowed grid edge gradually increases to encourage
that each net would not be assigned to the overflowed grid
edges. In NVM, every net can fairly compete for their desired
routing resources.

A. Cooperation of 3-D Postrouting and NVM

Given a 3-D routing result, the proposed 3-D wirelength op-
timization technique performs the 3-D postrouting and NVM
iteratively on this result to further minimize the wirelength
without increasing overflows, it iterates until reaching a user-
defined iteration limitation. Although capable of altering rout-
ing topology, the 3-D postrouting must avoid passing through
the exhausted grid edges to prevent increasing overflows,
where a grid edge e is regarded as an exhausted grid edge if
d(e) ≥ c(e). In contrast, although capable of negotiating with
other nets to acquire the routing resource from the exhausted
grid edges in the corresponding layers, each net cannot change
the routing topology during NVM. When the 3-D postrouting
and NVM are used individually to optimize the routing result,
the improved quality is inclined to fall fast into suboptimality.
Through iterative topology change and resource relaxation
by the negotiation scheme, 3-D wire optimization can refine
the routing results well. For example, a 2-D routing result
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[Fig. 6(a)] is mapped to a 4-layer 3-D grid graph [Fig. 6(b)].
Since grid edges e1 and e2 cross obstacles, net n1 uses a z-axis
detour (via) to bypass obstacles. By assuming the length of a
horizontal edge, a vertical edge and a via is one unit and the
capacity of each grid edge is one too; the total wirelength of
two paths in Fig. 6(b) is 15. Feed the result in Fig. 6(b) into the
proposed 3-D wirelength optimization. The 3-D postrouting
finds a shorter path for n1 [Fig. 6(c)] with the reduced total
wirelength to be 13. NVM then relaxes the resource at layer
3 used by n2 for n1 to further reduce the total wirelength to
be 11 [Fig. 6(d)].

B. Inherited History Cost Function

During the 3-D postrouting, every net is ripped-up and re-
routed. The 3-D postrouting adopts an inherited history cost
function to guide the routing of each net, which can improve
total wirelength. In 2-D routing and NVM, a grid edge with
a high history cost implies that this grid edge frequently
overflows and many nets desire to pass this grid edge, so the
routing resource of this grid edge is critical. The history cost
information acquired by 2-D routing and NVM is delivered
to the 3-D postrouting in order to broaden the view of the
routed nets in terms of knowing which grid edge is critical.
The inherited history cost formulation is defined as follows:

cost (ei,z) =

⎧⎪⎨
⎪⎩

A very large constant if d(ei,z) ≥ c(ei,z)

1 + C10 ×
(

d(ei,z)
1+c(ei,z)

)2

otherwise
+ C11 × hisCI(ei,z)

(14)
where hisCI(ei,z) denotes the inherited history cost of the 3-D
grid edge ei,z, and C10 and C11 are user defined constants and
set as 0.1 and 0.05 in this paper, respectively. The hisCI(ei,z)
is formulated as follows:

hisCI(ei,z) = NORM(h2−D(ei)) + NORM(hNVM(ei,z)) (15)

where grid edge ei in the 2-D graph is projected from ei,z

in 3-D graph; hNVM(ei,z) denotes the history cost of ei,z, as
computed in the previous NVM of the 3-D postrouting, and
h2−D(ei) is the history cost from 2-D routing. Since the 3-D
wirelength optimization is designed to follow the execution
of a 2-D global router, h2−D(ei) is the final history cost
of ei, such as that defined in (9) as NRR of 2-D routing
ends. Because NVM follows the 3-D postrouting, the first
round of the 3-D postrouting have no hNVM(ei,z) information.
Thus, NORM(hNVM(ei,z)) is ignored in the first round of the
3-D postrouting. Function NORM normalizes h2−D(ei) and
hNVM(ei,z) between zero to one. Function NORM(h2−D(ei))
derives the normalized values as follows. The grid edges in
the 2-D grid graph with nonzero history costs are sorted in
a nondecreasing order of their history costs. By assuming
that the length of the ordering sequence is n2−D, h2−D(ei)
is normalized to i/n2−D as ei is the i-th element in this sorting
sequence. Similarly, NORM(hNVM(ei,z)) is computed in the
same manner. Fig. 7 shows the design flow of the proposed
3-D wirelength optimization method.

Fig. 7. Design flow of 3-D wirelength optimization.

VI. Experimental Results

The proposed algorithms were implemented in C/C++
language on an 8-core 3.0 GHz Intel Xeon-based server with
32 GB memory. ISPD [5], [6] benchmark circuits were used in
our experiments. We classify the benchmarks into two types,
i.e., overflow-free cases and hard-to-route cases. All state-of-
the-art global routers cannot identify an overflow-free routing
result for each hard-to-route case. As for overflow-free cases,
most state-of-the-art routers can identify an overflow-free
routing result for each one. To overflow-free cases, the routers
in the following experiments perform until an overflow-free
outcome is achieved; to hard-to-route cases, the routers
stop when overflows are not improved in five successive
iterations. Because the overflow improvement on hard-to-
route cases is insignificant in Sections VI-A–C, this paper
shows only the experimental results on overflow-free cases in
Sections VI-A–C. Subsections D-E show the experimental
results of all cases. Notably, the routers in Sections VI-A–F
do not invoke the 3-D wirelength optimization, the 3-D
wirelength optimization is used in Section VI-G to refine the
routing results.

A. Comparing Maze Routings and BLMR

To compare traditional maze routings with and without
bounding box and BLMR, we implement three global routers
with different maze routing approaches in the NRR stage.
MR-GR, MRB-GR, and H-BLMR-GR denote three different
global routers, where MR-GR employs maze routing without
using bounding box; MRB-GR employs bounding box to limit
the search region, and H-BLMR-GR adopts the proposed
heuristic-BLMR and bounded-length relaxation scheme in
the NRR stage. The initial bounding box used by MRB-
GR extends by 10 units of grid edges four boundaries of
the minimum rectangle enclosing all terminals of the routed
net. If an overflow-free path cannot be obtained within the
bounding box, each boundary of the bounding box is extended
by 10 units of grid edges again in the next iteration. This
bounding box expansion scheme is also used in [15]. Notably
these routers adopt the same routing cost function and the
proposed RSMT-aware routing scheme is not used by these
routers. Table II shows the routing results of these routers,
where WL and CPU are total wirelength and CPU time, re-
spectively. Table II indicates that MRB-GR is faster than MR-
GR, but MRB-GR produces more wirelength than MR-GR be-
cause MRB-GR may detour often to avoid congested regions.
H-BLMR-GR produces less wirelength than MR-GR and
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TABLE II

Routing Results of Global Routing With BLMR and Maze

Routing With and Without Bounding Box

ISPD’08 MR-GR MRB-GR H-BLMR-GR
benchmark WL CPU (m) WL CPU (m) WL CPU (m)
adaptec1 53.86 5.90 54.29 3.85 53.55 2.65
adaptec2 52.14 3.36 52.49 0.96 51.97 0.79
adaptec3 131.16 4.47 131.85 3.72 129.88 3.50
adaptec4 120.88 1.32 120.98 1.25 120.76 1.20
adaptec5 155.76 14.66 157.63 9.20 155.52 9.16
newblue1 x x x x 46.26 2.80
newblue2 74.74 0.70 74.77 0.67 74.63 0.63
newblue5 231.33 53.94 233.45 18.73 230.45 7.22
newblue6 178.71 17.66 179.69 6.23 177.23 5.46
bigblue1 57.17 10.69 59.02 6.13 57.61 8.49
bigblue2 90.05 48.40 89.90 29.01 89.42 7.73
bigblue3 129.95 15.79 130.15 2.44 129.68 2.19

Ratio 1 1 1.007 0.575 0.997 0.494

MRB-GR because it has less detours than MR-GR and
MRB-GR. The BLC of H-BLMR-GR restricts the searching
region such that H-BLMR-GR is faster than MR-GR and
MRB-GR. Furthermore, the proposed bounded-length relax-
ation scheme offers more efficient routing resource utilization
than the other two routers. As a result, H-BLMR-GR can
eliminate all overflows of newblue1 but MR-GR and MRB-GR
cannot.

B. Effectiveness of RSMT-Aware Routing

Table III shows the effectiveness of RSMT-aware routing
scheme, in which the second, third and fourth (fifth, sixth,
and seventh) columns show the wirelength, routing iterations,
and runtime of H-BLMR-GR without (with) RSMT-aware
routing scheme, respectively. H-BLMR-GR with RSMT-aware
routing scheme reduces 0.825% wirelength than that without
the scheme. Although RSMT-aware routing scheme spends
additional effort to identify RSMT, less wirelength usage
makes H-BLMR-GR demand less iterations and then converge
faster. The iteration number and runtime of H-BLMR-GR
with RSMT-aware routing scheme are reduced by 18.32% and
19.58%, respectively, than that without the scheme.

C. Comparing Optimal-BLMR and Heuristic-BLMR

Table IV compares the routing results of optimal-BLMR,
heuristic-BLMR, and CSP algorithm in [26]. The BLMR
problem is a restricted version of CSP, so the algorithm of
[26] can be adopted to solve BLMR problem. The algorithm
of [26] can identify the optimal solution of BLMR problem
via dynamic-programming technique. The time complexity of
the CSP algorithm in [26] is O(|E|L) where |E |is the number
of grid edges in the routing graph and L is BLC. O-BLMR-GR
and CSP-GR adopts the optimal-BLMR and the CSP algorithm
[26] in the NRR stage, respectively. Note that the routers in
Table IV all employ RSMT-aware routing scheme. Table IV
shows that H-BLMR-GR runs averagely 269.21 times faster
than O-BLMR-GR, and only increases 0.1% total wirelength.
The experiments indicate that heuristic-BLMR can take much
less runtime to yield similar routing results with optimal-
BLMR. On the other hand, the routing results of CSP-GR and

TABLE III

Comparison of the Results of H-BLMR-GR With and Without

RSMT-Aware Routing Scheme

‘ISPD’08 H-BLMR-GR(w/o RSMT) H-BLMR-GR(w RSMT)
benchmark WL Rounds CPU (m) WL Rounds CPU (m)
adaptec1 53.55 11 2.65 53.04 10 2.52
adaptec2 51.97 12 0.79 51.51 10 0.65
adaptec3 129.88 9 3.50 129.24 9 3.40
adaptec4 120.76 7 1.20 120.53 8 1.23
adaptec5 155.52 16 9.16 154.01 11 6.03
newblue1 46.26 83 2.80 45.76 67 2.37
newblue2 74.63 5 0.63 74.51 5 0.64
newblue5 230.45 21 7.22 228.68 15 5.26
newblue6 177.23 14 5.46 175.49 11 4.44
bigblue1 57.61 18 8.49 56.29 9 4.09
bigblue2 89.42 86 7.73 88.66 48 4.21
bigblue3 129.68 22 2.19 129.35 19 1.91
Improve 0.825% 18.3% 19.58%

TABLE IV

Comparison of the Routing Results of Global Routers with

Heuristic-BLMR, Optimal-BLMR, and [26]

ISPD’08 H-BLMR-GR O-BLMR-GR CSP-GR
(w RSMT) (w RSMT) (w RSMT)

benchmark WL CPU (m) WL CPU (m) WL CPU (m)
adaptec1 53.04 2.52 52.93 615.21 52.93 3586.67
adaptec2 51.51 0.65 51.49 18.75 51.49 61.31
adaptec3 129.24 3.40 129.09 777.14 129.09 7406.14
adaptec4 120.53 1.23 120.52 30.48 120.52 159.11
adaptec5 154.01 6.03 153.66 1607.43 153.66 10126.81
newblue1 45.76 2.37 45.68 1044.53 45.68 7551.95
newblue2 74.51 0.64 74.50 5.68 74.50 33.63
newblue5 228.68 5.26 228.55 1766.12 228.55 12009.62
newblue6 175.49 4.44 175.44 664.18 175.44 5074.34
bigblue1 56.29 4.09 56.04 2537.78 56.04 11952.94
bigblue2 88.66 4.21 88.56 2576.10 88.56 13447.24
bigblue3 129.35 1.91 129.29 516.24 129.29 4315.77
Ratio 1 1 0.999 269.21 0.999 1705.67

O-BLMR-GR are same but the runtime of CSP-GR is much
larger than that of O-BLMR-GR since CSP algorithm [26]
does not take three properties of global routing into account,
as described in Section III.

D. Routing Result Comparison of Sequential Routers

The proposed SGR adopting heuristic-BLMR controls the
wirelength increasing during the NRR stage, and SGR employs
RSMT-aware routing scheme to further reduce wirelength and
runtime. Tables V and VI compare the routing results of
SGR with four state-of-the-art routers. NTHU-Route2.0 [12],
FastRoute4.1 [16], and NCTU-GR [17] are 2-D router with
layer assignment. MGR is a multilevel 3-D router that runs
much faster than traditional 3-D routers [7], [21], [22]. The
results of MGR are quoted from [20] because the binary of
MGR is unavailable, while the other routers are performed on
the same platform. Notably, MGR performs on a 2.6 GHz Intel
CPU with 16 G memory, the runtime of MGR is normalized
by the clock rate ratio 1.154. Various control parameters in
routers affect the routing quality and performance. SGR and
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TABLE V

Comparison Between the Proposed Sequential Router and the Other Routers on Overflow-Free Cases

Benchmark SGR SGRB NTHU-Route2.0[12] FastRoute 4.1 [16] NCTU-GR [17] MGR [20]
WL CPU (m) WL CPU (m) WL CPU (m) WL CPU (m) WL CPU (m) WL CPU (m)

adaptec1 53.04 2.52 52.35 2.30 53.49 4.86 53.73 3.31 53.50 3.90 52.82 4.39
adaptec2 51.51 0.65 51.30 0.64 52.31 1.42 52.17 0.95 51.69 1.45 51.46 1.04
adaptec3 129.24 3.40 128.34 2.96 131.11 6.16 130.82 3.69 130.35 4.88 128.92 4.83
adaptec4 120.53 1.23 120.17 1.18 121.73 2.08 121.24 1.25 120.67 2.28 119.96 1.41
adaptec5 154.01 6.03 151.85 4.97 155.55 11.95 155.81 6.70 154.70 9.07 153.23 7.95
newblue1 45.76 2.37 45.62 1.93 46.53 4.07 46.33 12.01 45.99 3.63 45.58 4.51
newblue2 74.51 0.64 74.51 0.63 75.85 1.17 75.12 0.85 74.88 0.90 74.46 0.80
newblue5 228.68 5.26 225.94 4.62 231.73 10.88 230.94 9.82 230.31 15.03 228.00 6.54
newblue6 175.49 4.44 171.10 4.02 177.01 10.34 177.87 8.78 176.87 9.67 174.86 7.04
bigblue1 56.29 4.09 55.33 3.44 56.35 6.93 56.64 4.22 56.56 6.35 55.82 5.04
bigblue2 88.66 4.21 86.71 3.45 90.59 6.47 91.18 12.12 89.40 11.18 88.92 6.00
bigblue3 129.35 1.91 127.67 1.78 130.76 3.91 130.04 2.06 129.66 4.38 128.75 2.89
Ratio 1 1 0.99 0.89 1.01 1.90 1.01 1.77 1.01 1.92 0.997 1.45

TABLE VI

Comparison Between the Proposed Sequential Router and the Other Routers on Hard-to-Route Cases

SGR SGRB NTHU-Route 2.0 [12]
MO TO WL CPU (m) MO TO WL CPU (m) MO TO WL CPU (m)

newblue3 194 31710 105.36 143.34 194 31526 106.80 63.34 204 31454 106.49 64.97
newblue4 2 144 127.27 17.33 2 132 129.27 17.48 4 138 130.46 52.01
newblue7 2 58 342.90 85.67 2 54 341.90 74.53 2 62 353.35 50.28
bigblue4 2 194 225.00 60.23 2 132 227.10 63.55 2 162 231.04 52.63

Ratio 1 1 1 1 1.00 0.88 1.01 0.84 1.26 0.96 1.02 1.23
FastRoute 4.1 [16] NCTU-GR [17] MGR [20]

MO TO WL CPU (m) MO TO WL CPU (m) MO TO WL CPU (m)
newblue3 736 31276 108.40 15.99 198 31808 104.28 131.43 x 31026 107.22 19.99
newblue4 2 136 130.46 65.23 2 134 126.79 40.92 x 136 128.54 15.64
newblue7 4 54 353.38 868.74 2 114 338.63 71.52 x 56 349.02 110.12
bigblue4 2 130 230.24 93.25 2 164 223.99 65.37 x 134 225.73 21.31

Ratio 1.95 0.88 1.03 3.89 1.01 1.19 0.99 1.30 x 0.90 1.01 0.67

FastRoute4.1 adopt a single set of control parameters to solve
all benchmarks while NCTU-GR, NTHU-Route2.0 use differ-
ent control parameters to identify their best routing result for
each benchmark. MGR automatically adapts parameters based
on the characteristics of each benchmark. For comparison, we
also adopt different sets of control parameters to yield the best
routing result for each benchmark, listed at column SGRB of
Tables V and VI. Table V compares each router by overflow-
free cases, in which the wirelength and runtime are the primary
items for comparison because all routers produce overflow-free
routing results. In table5, SGR identifies 1.1%, 1.1% and 0.6%
less wirelength and averagely runs 1.90×, 1.77×, and 1.92×
faster than NTHU-Route2.0, FastRoute4.1, and NCTU-GR,
respectively. Compared to MGR, SGR identify 0.3% longer
wirelength.

For hard-to-route cases, the routers [12], [13], [16] focus
on minimizing TOs without minimizing the MO, since TO
provides a more global perspective on congestion information
than the MO. However, the inability to address the MO may
lead to very congested hot spots, possibly becoming unroutable
for detailed routing. Therefore, this paper considers both TO
and the MO. SGR regards MO as the first minimization
objective, and TO as the second objective. Table VI reveals
that SGR achieves good performance for MO, wirelength, and

runtime, but the TO still has room for improvement. As for the
best routing result for each benchmark (SGRB), the proposed
router performs very well in the TO and runtime. Notably, the
MO information of MGR is unavailable, so we do not list MO
of MGR in Table VI.

E. Proposed Collision-Aware PGR

Table VII compares the runtime of the NRR stage (NRRT)
between SGR and collision-aware PGR for overflow-free
cases. Because the race condition may cause nondeterministic
routing results of collision-aware PGR, collision-aware PGR
is performed 10 times to display the worst, average, and
best results. Table VII reveals that collision-aware PGR using
4/8 cores offers an average 2.54×/4.11× and 2.71×/4.32×
speedup for the worst case and average case, respectively.
However, collision-aware PGR may produce longer wirelength
because the virtual demand in (13) makes the nets have
additional detours to avoid collisions. Since increasing the
used cores also increases collisions, collision-aware PGR using
eight cores produces more detours to avoid collisions than that
using four cores. Also, the increased collisions may jeopardize
the scalability of collision-aware PGR. Fig. 8 displays the
scalability of collision-aware PGR for some benchmarks, in
which the x-axis and y-axis denote the number of cores and
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TABLE VII

Comparison Between the Proposed Sequential Router and Parallel Router on Overflow-Free Cases

SGR Collision-aware PGR (4-core) Collision-aware PGR (8-core)

NRRT (m)
WL inc % ((Wp4–Ws)/Ws) NRRT imprv. (Ts/Tp4) WL inc. % ((Wp8–Ws)/Ws) NRRT imprv. (Ts/Tp8)

Worst Average Best Worst Average Best Worst Average Best Worst Average Best
adaptec1 1.78 0.45 0.43 0.40 3.36 3.48 3.54 0.76 0.72 0.69 5.60 5.75 5.81
adaptec2 0.20 0.06 0.05 0.04 2.06 2.32 2.57 0.11 0.08 0.07 2.23 2.54 2.68
adaptec3 1.77 0.06 0.05 0.04 3.19 3.28 3.32 0.17 0.14 0.13 5.14 5.32 5.42
adaptec4 0.10 0.01 0.01 0.01 1.92 2.06 2.21 0.03 0.02 0.01 1.69 1.92 2.14
adaptec5 4.06 0.32 0.31 0.29 3.39 3.54 3.60 0.54 0.51 0.46 6.30 6.42 6.52
newblue1 2.00 −0.03 −0.04 −0.05 2.32 2.69 3.03 0.05 0.03 0.01 2.69 3.20 3.50
newblue2 0.04 0.01 0.01 0.00 1.42 1.55 1.72 0.03 0.02 0.02 1.57 1.65 1.70
newblue5 2.92 0.07 0.06 0.06 2.78 2.88 3.06 0.20 0.17 0.13 4.98 5.15 5.30
newblue6 2.52 0.18 0.14 0.06 2.80 2.90 2.99 0.36 0.31 0.25 5.13 5.32 5.44
bigblue1 3.25 0.83 0.78 0.75 2.93 3.10 3.29 1.17 1.12 0.99 5.80 5.92 6.09
bigblue2 3.54 0.18 0.14 0.12 2.02 2.34 2.95 0.22 0.21 0.19 3.51 3.80 4.28
bigblue3 0.61 0.07 0.06 0.05 2.28 2.39 2.56 0.14 0.11 0.09 4.69 4.85 5.00
Average 0.18 0.17 0.15 2.54 2.71 2.90 0.32 0.29 0.25 4.11 4.32 4.49

TABLE VIII

Comparison Between the Proposed Sequential Router and Parallel Router on Hard-to-Route Cases

SGR Collision-aware PGR (4-core) Collision-aware PGR (8-core)
NRRT TO WL inc % NRRT imprv. TO WL inc. % NRRT imprv.

(m) Worst Average Best Worst Average Best Worst Average Best Worst Average Best Worst Average Best Worst Average Best
newblue3 142.70 31810 31776 31710 0.01 −0.03 −0.06 2.13 2.25 2.33 32044 31808 31702 0.04 0.00 −0.02 4.28 4.56 4.89
newblue4 15.76 150 144 138 0.04 0.01 −0.03 2.50 2.58 2.73 158 148 140 0.09 0.05 0.03 4.91 5.02 5.09
newblue7 84.19 74 66 60 −0.10 −0.11 −0.13 3.10 3.20 3.35 82 72 68 0.01 −0.03 −0.04 5.74 5.97 6.19
bigblue4 59.48 200 196 190 −0.02 −0.03 −0.04 4.12 4.47 4.79 212 204 196 0.01 −0.01 −0.02 6.55 7.08 7.23
Average −0.02 −0.04 −0.07 2.96 3.12 3.30 0.04 0.00 −0.01 5.37 5.66 5.85

In Tables VII and VIII, the increasing rate and improving rate are calculated as compared to the results of SGR.

Fig. 8. Scalability of collision-aware PGR.

the runtime speedup, respectively. Collision-aware PGR yields
good acceleration for the large benchmark adaptec1, adaptec3,
and adaptec5, but limited speedup for adaptec2 and adaptec4,
the smallest designs in those benchmarks, since the increased
collisions and the overhead of thread scheduling decreases the
benefit of parallelism in the small designs.

Tables III and VII reveal an interesting phenomenon. The
second last column titled “rounds” in Table III lists the
iteration number of SGR for each benchmark. The benchmarks
that demand additional iterations by SGR to identify an
overflow-free result may have some hard-to-route regions;
most of the rerouted nets are in these regions. When the used
cores increase, the collisions in these regions also increase,
subsequently degrading the speedup of collision-aware PGR.
Thus, collision-aware PGR using eight cores has less speedup
on these benchmarks.

Table VIII shows the routing results of collision-aware PGR
for hard-to-route cases. The MO of collision-aware PGR is not
listed since it is the same as SGR in Table VI. Collision-aware

PGR produces more TO than SGR due to collisions, but it runs
3.12× and 5.66× faster than SGR in the average case on the
4-core and 8-core platforms, respectively. Notably, collision-
aware PGR using four cores achieves a super linear speedup
(4.47×) in bigblue4. With parallel computation, the total size
of used caches by working cores increases as the number
of used cores increases. This in turn leads to more cache
accesses and diminishes time-consuming memory accesses,
which provides the potential for a super linear speedup.

F. Discussion on Collision-Aware Task Ordering

The potential collision between two tasks with an overlap-
ping searching region can be eliminated by avoiding the si-
multaneous routing of these two tasks. With this consideration,
collision minimization can be achieved by properly arranging
the execution order of tasks. However, several works [10],
[12], [13], [16], and [17] indicate that the routing order impacts
the routing quality and runtime as well, implying that collision
minimization based on task ordering may degrade routing
quality and enlarge runtime. To elucidate how task ordering
for collision minimization affects routing, this paper designs
a collision-aware task ordering (CTO) method as follows.

1) Identify the searching region of each task.
2) Build a relation graph of all tasks with a node to

represent a task and an edge to connect two nodes whose
related tasks have an overlapping searching region.

3) Assign each node a color by using the vertex coloring
algorithm [29] on the relation graph. Notably, the colors
of adjacent nodes differ from each other.
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TABLE IX

Comparison Between the Proposed Parallel Router With

Different Task Ordering Methods

ISPD’08 CPGR1 CPGR2 CPGR3

benchmark WL NRRT WL NRRT WL NRRT
(m) (m) (m)

adaptec1 53.27 1.78 55.35 1.94 55.24 2.53
adaptec2 51.53 0.20 52.61 0.21 52.51 0.39
adaptec3 129.30 1.77 135.89 1.94 135.77 2.80
adaptec4 120.54 0.10 124.76 0.11 124.64 0.23
adaptec5 154.48 4.06 163.59 4.18 162.98 5.48
newblue1 45.74 2.00 46.70 2.42 46.65 3.80
newblue2 74.51 0.04 76.60 0.04 76.45 0.08
newblue5 228.82 2.92 232.02 3.14 231.79 5.05
newblue6 175.73 2.52 182.58 2.70 182.23 4.16
bigblue1 56.73 3.25 58.77 3.38 58.66 5.59
bigblue2 88.79 3.54 92.34 4.07 92.16 5.42
bigblue3 129.43 0.61 132.67 0.66 132.15 0.88

Ratio 1 1 1.034 1.084 1.032 1.723

TABLE X

Wirelength Improvement and Runtime of the Proposed 3-D

Wirelength Optimization Technique

ISPD’08 3-D WL Opti. ISPD’08 3-D WL Opti.
benchmark WL (%) CPU (m) benchmark WL (%) CPU (m)
adaptec1 2.66 8.82 newblue4 2.62 14.70
adaptec2 3.03 7.84 newblue5 2.96 28.42
adaptec3 2.47 36.26 newblue6 2.23 10.78
adaptec4 2.98 20.58 newblue7 2.89 41.16
adaptec5 2.44 18.62 bigblue1 2.31 6.86
newblue1 2.99 7.84 bigblue2 2.59 7.84
newblue2 3.49 9.80 bigblue3 3.01 21.56
newblue3 3.04 577.22 bigblue4 2.89 30.38

4) Cluster the nodes with the same color as a group, in
which each node has no overlapping searching region
with the other nodes, allowing for all nodes in a group
to be performed simultaneously without collision.

5) Calculate an ordering score by (11) for each task and,
then, calculate the score of each group by averaging the
scores of all tasks in the group.

6) Sort all groups in decreasing order of the group scores.
Next, sort all tasks in each group in decreasing order of
the task scores.

Table IX compares the results of the proposed parallel router
in which different task ordering schemes are adopted at the
beginning of each iteration during the NRR stage. CPGR1

refers to the original collision-aware PGR, which applies the
ordering method in (11) directly. CPGR2 refers to collision-
aware PGR by applying the CTO method to sort all tasks. The
threads of CPGR2 first acquire tasks from the first group of the
sorted group list. For a situation in which the first nonempty
group in the sorted list turns out to be empty, the threads of
CPGR2 acquire the tasks from the next group, i.e. the new first
nonempty group in the sorted group list. In CPGR2, collisions
occur only when the tasks in different groups are routed
simultaneously, explaining why the probability of a collision
for CPGR2 is less than that of CPGR1. CPGR3 also applies
the CTO method with an additional constraint to acquire a

task from a new nonempty group. This constraint delays the
task dispatching of a new nonempty group in the sorted group
list until all previously dispatched tasks are completed. Via the
task dispatching constraint, CPGR3 never produces collisions.
Table IX reveals that CPGR1 outperforms CPGR2 and CPGR3

in wirelength and runtime, indicating that the CTO method fa-
vors collision avoidance, yet degrades the quality and runtime.
Additionally, CPGR2 and CPGR3 require additional runtime
for the computational effort of CTO. Finally, the additional
constraint to initiate the task dispatching of a new nonempty
group in the sorted group list lowers the parallelism degree
explaining why CPGR3 runs slower than CPGR1 and CPGR2.

G. Effectiveness of the 3-D Wirelength Optimization

Table X shows the wirelength improvement (WL%) and the
runtime of using the proposed 3-D wirelength optimization
to further refine the routing results produced by SGR (Ta-
bles V and VI). The overflow information is not listed here
because it is same as the numbers in Table V and VI. The 3-
D wirelength optimization, which iteratively performs the 3-D
postrouting and NVM twice, can achieve an improved wire-
length of 2.79% on average. Compared to the runtime of SGR
in Table V, runtime of the 3-D wirelength optimization is enor-
mous due to large 3-D searching space. However, compared
to the pure 3-D global routers [7], [18], [19], runtime of the
3-D wirelength optimization is negligible, and SGR with the
proposed 3-D wirelength optimization can achieve a routing
quality similar to the pure 3-D router [18]. Despite the ability
of TCS to accelerate the 3-D postrouting, collisions may incur
overflows. 3-D wirelength optimization attempts to minimize
wirelength and vias without increasing overflows, explaining
why this paper does not parallelize the 3-D postrouting.

VII. Conclusion

This paper presented a novel SGR, characterized by a
heuristic-BLMR algorithm, RSMT-aware routing scheme, and
dynamically adjusted history cost function. Excellent perfor-
mance of NCTU-GR 2.0 on ISPD benchmarks with a single set
of parameters is owing to systematic and effective wirelength
control, flexible tree structure change, and valid update of edge
congestion status with overflow frequency. Additionally, this
paper parallelizes the proposed global router on a multicore
platform. The TCS avoids the side effect of partitioning-based
strategy, yet tends to underestimate the value of d(e), further
exacerbating the overflowing problem. The proposed collision-
aware rip-up and rerouting algorithm resolves this problem.
Finally, this paper presented a 3-D wirelength optimization
technique that performs 3-D postrouting and layer assignment
by turns. Through iterative topology change and resource
relaxation by the negotiation scheme, 3-D wire optimization
can refine the 3-D routing results well. Furthermore, the
proposed method can optimize the wirelength of 3-D routing
results yielded by any global router.
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