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Abstract For a graph G, let 7(G) be the decycling number of G and ¢(G) be the
number of vertex-disjoint cycles of G. It has been proved that ¢(G) < 7(G) < 2¢(G)
for an outerplanar graph G. An outerplanar graph G is called lower-extremal if
7(G) = ¢(G) and upper-extremal if T(G) = 2¢(G). In this paper, we provide a nec-
essary and sufficient condition for an outerplanar graph being upper-extremal. On the
other hand, we find a class S of outerplanar graphs none of which is lower-extremal
and show that if G has no subdivision of S for all S € S, then G is lower-extremal.

Keywords Decycling number - Feedback vertex number - Cycle packing number -
Outerplanar graph

1 Introduction

The problem of destroying all cycles in a graph by deleting a set of vertices origi-
nated from applications in combinatorial circuit design (Johnson 1974). Also, it has
found applications in deadlock prevention in operating systems (Wang et al. 1985;
Silberschatz et al. 2003), the constraint satisfaction problem and Bayesian inference
in artificial intelligence (Bar-Yehuda et al. 1998), monopolies in synchronous dis-
tributed systems (Peleg 1998, 2002), the converters’ placement problem in optical
networks (Kleinberg and Kumar 1999), and VLSI chip design (Festa et al. 2000).
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In the literature, a set of vertices of a graph whose removal leaves an acyclic graph
is referred to as a decycling set (Beineke and Vandell 1997), or a feedback vertex
set (Wang et al. 1985), of the graph. The minimum cardinality of a decycling set of
G, denoted by 7(G), is referred to as the decycling number of G. Determining the
decycling number is equivalent to finding the greatest order of an induced forest of
G proposed first by Erdos et al. (1986). The problem of determining the decycling
number has been proved to be NP-complete for general graphs (Karp et al. 1975),
which also shows that even for planar graphs, bipartite graphs and perfect graphs, the
computation complexity of finding their decycling numbers is not reduced.

Besides searching for the value (or an upper bound) of the decycling number in
the order of a graph, another parameter that is closely related to the decycling number
is the cycle packing number, which is the maximum number of vertex-disjoint cycles.
We denote this parameter by c(G). Determining the cycle packing number of a graph
is also known to be NP-complete (Bodlaender 1994). A trivial relation between the
decycling number and the cycle packing number is ¢(G) < 7(G).

A graph is said to be outerplanar provided that all its vertices lie on the boundary
of a face (after embedding the graph in a sphere). Even for an outerplanar graph G,
not much is known about 7(G). Bau et al. (1998) found formulas of decycling num-
bers for subclasses of outerplanar graphs. For maximal outerplanar graph of order n,
they provided a sharp upper bound | % |, which can be derived by the acyclic coloring
argument (Fertin et al. 2002). Kloks et al. (2002) proved that 7(G) < 2¢(G) by a
greedy algorithm.

An outerplanar graph G is called lower-extremal if t(G) = ¢(G) and upper-
extremal if T(G) = 2¢(G). In this paper, we provide a necessary and sufficient con-
dition for an outerplanar graph being upper-extremal. On the other hand, we provide
a sufficient condition for an outerplanar graph being lower-extremal. We find a class
S of outerplanar graphs none of which is lower-extremal and show that if G has no
subdivision of S (or S-subdivision) for all § € S, then G is lower-extremal.

For graphs notations and terminologies here, we refer to West (2001).

2 Upper-extremal graphs

For simplicity, we use ij to denote an edge {i, j}. We start by presenting an upper-
extremal graph with simplest structure.

Definition 1 S is a graph with vertex set V = {0, 1,...,2k — 1} and edge set £ =
{ii+1):0<i<2k—1}U{i(i +2):i1iseven} (the indices are under modulo 2k).

Then t(S) = {%1 and ¢(Sy) = L%J. S3 is clearly an upper-extremal graph; indeed,
its subdivisions are the only 2-edge-connected outerplanar graphs that are upper-
extremal and have cycle packing number one. We define the simplified graph of a
graph G to be the graph obtained from G by continuously deleting isolated vertices
or degree one vertices until there is no more such vertex and denote it by |G].

Throughout the paper, let F(G) denote the outer face of an outerplanar G. An
edge uv is called a basic edge of G if uv and some u, v-path on the boundary of
F (G) form the boundary of a face of G. Then, we have
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Fig.1 An S3-tree G of order 3,
where 7(G) =6 =2¢(G)

Lemma 1 For an outerplanar graph G with ¢(G) = 1, G is upper-extremal if and
only if |G| is an Sz-subdivision.

Proof 1Tt suffices to prove the necessity. If |G| has a cut-vertex v, then v belongs to
two blocks of |G|, say G| and G», and |G| — v has a cycle which is vertex-disjoint
with G or G;. Then | G| has two vertex-disjoint cycles, a contradiction. Thus |G ] is
2-connected. Any two basic edges of |G| have a common vertex; otherwise, we can
find two vertex-disjoint cycles. This implies that |G| has at most three basic edges.
Then | G| has exactly three basic edges; otherwise we can decycle it by deleting one
vertex. Hence it is an S3-subdivision. Il

To characterize the upper-extremal graphs, we first define a class of special upper-
extremal graphs—S3-trees. A graph is an S3-tree of order t if it has exactly ¢ vertex-
disjoint S3-subdivisions and every edge not on these S3-subdivisions belongs to no
cycle (see Fig. 1 for an example). It is easy to verify that any S3-tree of order ¢ has
exactly ¢ vertex-disjoint cycles, and to decycle an S3-tree, we have to delete two
vertices from each S3-subdivision. Hence, all S3-trees are upper-extremal. We will
show that there is no other upper-extremal outerplanar graph.

For X, Y C V(G), an X, Y-path is a path having one endpoint in X, the other one
in Y, and no other vertex in X UY, and a {v}, Y -path is simply written as a v, Y -path.
Then,

Lemma 2 An outerplanar graph G comprised of a connected S3-tree H of order t
and two internally disjoint v, V(H)-paths has t + 1 vertex-disjoint cycles for
ve¢ V(H).

Proof Suppose that vy, vy € V(H) are the endpoints of these two v, V (H)-paths.
Let C be the cycle comprised of these two v, V (H)-paths and the vy, v2-path in H
such that C is the boundary of some face of G. Then the intersection (vertex and
edge) of C and any S3-subdivision § in H is either an edge on the boundary of the
outer face of § or a vertex of §; otherwise, there would be a subdivision of K3 3 or
K4, a contradiction. Hence, we can easily find a cycle in every S3-subdivision that is
vertex-disjoint with C. g

Theorem 3 An outerplanar graph G is upper-extremal if and only if G is an S3-tree.
Proof 1Tt suffices to consider the necessity. We prove it by induction on ¢(G). The

statement is clearly true for G if ¢(G) = 0. Let G be an upper-extremal graph. Then
we can find a maximal induced path P with some endpoints u and v such that uv
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Fig. 2 Gray edges form some vertex-disjoint cycles

is an edge of G (u # v since G is upper-extremal). Then G \ {u, v} must be upper-
extremal and c(G \ {u, v}) < c(G) — 1. Thus we can assume that G \ {u, v} is an
S3-tree of order 7. Then ¢(G) >t + 1. Since 7(G) <2t + 2 and G is upper-extremal,
c(G) =t + 1 and thus t(G) =2t + 2.

Define G* := |G \ {x : x is on some cycle of G \ {u, v} }]. Then ¢(G*) = 1. If
7(G*) = 2, then by Lemma 1 G* is an S3-tree of order one. This implies that G
contains ¢ + 1 vertex-disjoint S3-subdivisions. By Lemma 2, there exists at most one
path between any two S3-subdivisions and thus G is an S3-tree. Now, we consider
w.l.o.g. that G* — u is acyclic. Let V* := V(G*). Then G is a graph comprised of
G*, |G\ V*], and some internally disjoint V*, V(|G \ V*])-paths. Notice that there
is at most one w, V*-path if w € V(|G \ V*]) is not on any S3-subdivision. We
classify the vertices in V* \ V(P) into two disjoint sets A and B where A is the
union of the vertex sets of components of G* — u except the one containing v. Let
V' be the vertex set of a component of |G \ V*]. Then each component of G[A] has
at most one path to V’ and there is at most one B, V'-path; otherwise, by Lemma 2
c(G) =t + 2 (see Fig. 2(a)), a contradiction. We consider the following cases.

Case 1: G* has a cycle containing u but not v. Then there is at most one v, V'-
path; otherwise, ¢(G) > ¢ + 2. Then the remaining case we have to deal with is that
there is exactly one B, V'-path and one u, V'-path. Let x, y be the endpoints of these
two paths in V’. Then at least one of x and y is on an S3-subdivision in G[V’] and
thus we can decycle G by deleting # and a minimum decycling set of G \ {u, v}
including it, contradicting the fact that 7(G) = 27 4 2.
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Case 2: Every cycle of G* contains both u and v. Then G* — v is also acyclic.
Suppose that V,, € V' is the set of vertices as the endpoints of some u,V’-paths
and V, C V' is the set of vertices as the endpoints of some B U {v},V’-paths. If
min(| V|, [Vy|) = 2 and max(|V,|, |Vy|) = 3, then by Lemma 2 ¢(G) >t + 2 (see
Fig. 2(b) for an example), a contradiction. Thus |V, | =2 = |V,| or |V,| =1 or
[Vy| =1.1f |V, =1 (or |V,| = 1), then G can be decycled by deleting v (or #) and a
minimum decycling set of G \ {u, v}, contradicting that t(G) = 2t + 2. It remains to
consider that |V,,| =2 = |V, |. If V, NV, =0, then c¢(G) >t + 2 (see Fig. 2(c) for an
example), a contradiction. Suppose that V,, NV, = {w}. Then w must be on some S3-
subdivision. Therefore, we can decycle G by deleting # and a minimum decycling set
of G \ {u, v} with w included (see Fig. 2(d) for an example), again a contradiction. [

3 Lower-extremal graphs

To prove that a property is sufficient for a graph being lower-extremal, we will use
induction. In order to facilitate the proof of the induction step, we need a hereditary
graph property. A graph property is called monotone if it is closed under removal of
vertices. We provide the following general result that is applicable to all graphs.

Lemma 4 Suppose that a 2-connected graph is lower-extremal provided that it sat-
isfies a monotone property P. Then G is lower-extremal if G satisfies P.

Proof We prove the statement by induction on |G|. The statement is true for graphs
with ¢(G) =0 or |V(G)| = 1. For a graph G of connectivity one, let G| be a leaf
block of G and v be the cut-vertex of G in V(G1). Let G, = G \ V(G| — v). Then
¢(G) is either ¢(G1) + ¢(Gy) or ¢(G1) + c(G2) — 1, and 7(G) < 7(G) + t(G>).
Thus suppose to the contrary that T(G) > ¢(G). Then c¢(G) = ¢(G1) +c(G2) — 1 and
7(G) = 1(G1) 4 1(G7). The first equality shows that every maximum set of vertex-
disjoint cycles of G; must contain a cycle with v for i = 1, 2, and thus ¢(G; — v) <
c(G;) fori =1, 2. The second equality shows that v does not belong to any minimum
decycling set of G* where G* = G or G and thus 7(G* — v) = 7(G™). Thus by the
monotonicity of P and the induction hypothesis, c(G* —v) = 7(G* —v) = 1(G*) =
¢(G™), a contradiction. O

To introduce a sufficient condition for a graph being lower-extremal, we first clas-
sify all edges of an outerplanar graph. For a 2-connected outerplanar graph G, let
Eo(G) and E1(G) be the set of edges on the boundary of F(G) and the set of ba-
sic edges of G, respectively. For k > 2, define E;(G) to be the set of basic edges of
G\ Uf‘:—f E;(G). For an edge uv € E(G), we use C (uv) to denote a cycle generated
by uv and a u, v-path on the boundary of F(G) such that the cycle is the boundary of
aface of G \ | J'Z| E:(G). We also call it a basic cycle of the graph G \ |'Z] E;(G)
generated from edge uv.

Lemma 5 If G is a 2-connected outerplanar graph with no Si-subdivision for all
odd number k, then G is lower-extremal.
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Proof We prove the statement by induction on |E(G)|. It is easy to verify that the
statement is true for graphs with at most three edges. It suffices to prove that there
exists a 2-connected subgraph G’ of G that has fewer number of edges and no S-
subdivision for all odd number k and satisfies 7(G) < t(G’) (then 7(G) < 1(G’) =
c(G') < c(G)).

The statement is clearly true for G with |E2(G)| = 0. Suppose |E2(G)| > 1
(and thus |E1(G)| > 1). Take an edge e = xy € E3(G) and a basic cycle C(e) of
G\ E1(G). Let E C E1(G) be the set of edges with both endpoints on C(e). We
consider the following cases.

Case 1: E induces an x, y-path of G, say xvivs---v;y. Here, t must be even
since G contains an S;ip-subdivision. Let D be a minimum decycling set of
G —e. If D contains x or y, then D is also a decycling set of G and thus
7(G) < 1(G — e). Suppose x,y ¢ S. W.Lo.g., we can assume that D N C(e) con-
tains only vertices of degree larger than two. Then |D N C(e)| > (¢t + 2)/2. Let
D' = (D\ C(e)) U{x,v2,v4,...,v}. Then D’ is a decycling set of G of size at
most (G — e). Thus, 1(G) < t(G —e).

Case 2: E generates a maximal path that contains none of x and y, say vivy - - - v;.
We let G’ to denote G\ V(C(e) —x — y) if E ={vjviy1:i=1,...,t — 1} and
G\ {viviy1:i=1,...,t — 1} otherwise. Then G’ is clearly 2-connected. Thus we
have 7(G) < 7(G') + L] = c(G') + 5] = ¢(G).

Case 3: E induces at most two components which are paths as xvivy---v;
and yuiuy---uy. Suppose ¢ (or t) is odd. Let D be a minimum decycling set
of G — e. Similar to the argument in Case 1, suppose that x,y ¢ D. Then |D N
{vi,v2, ..., ¢} = (¢ + 1)/2 and thus (D \ {vi, v2, ..., 0D U{x,v2,v4,..., 01} 18
a decycling set of G. Hence 7(G) < (G — e). It remains to consider that ¢ and ¢’
are even. Let G’ = G\ V(C(e) — x — y) and D be a minimum decycling set of
G’. Then DU {vy,v3,...,v,—1}U{uy,uz,...,uy_1} is a decycling set of G of size
T(G) + (t +t')/2. Since G[V(C(e))] has (¢ + t")/2 vertex-disjoint cycles that do
not contain x and y, 7(G) < t(G') + (t +t")/2 =c(G') + (t +')/2 < ¢(G). This
concludes the proof. g

The property of being without Si-subdivision is monotone. Therefore, by
Lemma 4 and Lemma 5, we have

Theorem 6 For an outerplanar graph G, if G has no Si-subdivision for all odd
number k, then G is lower-extremal.
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