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a b s t r a c t

In order to control bending radii of flexible substrates in displays, this paper presents an optimal

fast-response sliding-mode control method. Maximum driving voltages are utilized in sliding-mode

control based on a linear quadratic estimator. An optimal design for the threshold value and the

reaching-law parameter are obtained by using a procedure of the fast-response regulation. Implementing

the proposed method, this study measures electrical resistances for different widths of line patterns on

polyethylene terephthalate/indium tin oxide substrates up to 11,000 bending times.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

With rapid advance in semiconductor technology as well as in
electronic display industry, the digital household appliances are
becoming more and more diversified. However, hard electronic
products can not satisfy people who demand comfortable and
convenient lifestyle. The flexible electronics, which is thin and
flexible, shock-resistant, and not limited by the occasion or space,
will become the top choice of consumer electronic products. The
inspection technique of flexible electronic products is not mature.
Therefore, Grego, Lewis, Vick, and Temple (2005) provided two
methods for bending-test technique. But there are some limiting
factors when using the methods. The purpose of this study is to
put forward a new control technique for measuring bending
characteristics of flexible electronics under different bending radii
by using a flexible-characteristics inspection system (FCIS). FCIS
was designed to exert an external force on the flexible electronics.
It resulted in a curved screen and made the flexible electronics
crooked. Hence, this study shot the crooked states of flexible
displays using a charge-coupled device (CCD), and carried out
image processing using a LabVIEW software, calculated the
bending radius of the flexible electronics (Gonzalez & Woods,
2008; Wen, Liu, Chen, Ko, & Chung, 2008). In mass and rapid
inspections, there are various sizes and thin film layers in
different flexible electronics products. Since parameters of FCIS
mathematical model are different every time due to variable
ll rights reserved.

u 30010, Taiwan.
boundary conditions of each flexible electronics, the mathema-
tical model is highly nonlinear. Therefore, in order to achieve
stable bending-radius control, a controller is designed in the
present study.

In constructing ARX models, according to Verhaegen and
Verdult (2007), a cyclic manner of iteratively refining data from
real-life measurements identifies model parameters for an
unknown dynamical system. To carry out bending-radius control
on FCIS in this study, a mathematical model of a FCIS mechanism
is first identified by an ARX model (Peng, Ozaki, Toyoda, &
Oda, 2001). Secondly, a control-algorithm design is developed
according to results of FCIS plant identification. Simulation results
obtained by CCD feedback signals are used to calculate the
bending radius. Thirdly, the architecture of the control algorithm
is integrated on FCIS to implement bending-radius control for
measuring electrical characteristics of flexible electronics. Never-
theless, the mathematical model of FCIS is highly nonlinear, and
there are also uncertainties and disturbance in FCIS. There are a
lot of well-known control methods, e.g. fuzzy control, neural
control, sliding-mode control (SMC) and so on. Compared to SMC,
it takes a lot of time to obtain the parameters in neural control by
multilayer neural network learning (Lin & Lee, 1999). Fuzzy
control requires more system responses to design a good mem-
bership function. According to the experimental results (Chung,
Wen, & Lin, 2007), the performance of SMC is better than fuzzy
control in the presence of systemic uncertainties and distur-
bances. Because SMC is effective in dealing with systemic uncer-
tainties and disturbances (Alfaro-Cid, McGookin, Murray-Smith, &
Fossen, 2005; Edwards & Tan, 2006), an advanced SMC algorithm
is developed in this study. In addition, iterative learning control
(ILC) may improve the transient response and tracking
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performance of uncertain dynamic systems that operate repeti-
tively (Xu, Panda, & Lee, 2009). According to a brief and categor-
ization of ILC (Ahn, Chen, & Moore, 2007), there are two kinds of
technical papers about ILC. One is related to the literature that
focuses on ILC applications (Chen & Moore, 2002; Dou, Tan, Lee, &
Zhou, 1999; Wu & Liu, 2004), and the other is related to the
literature focused on the theoretical developments (Chien, 2000;
Chen, Moore, & Bahl, 2004; Jiang & Unbehauen, 2002). Briefly, ILC
is an intelligent control methodology (Abdallah, Soualian, &
Schamiloglu, 1998) for improving the transient performance of
systems that operate repetitively over a fixed time interval.
Messner, Horowitz, Kao, and Boals (1991) compensated the non-
linear properties of plant and disturbance by using learning
estimation. However, iterative learning estimations require more
time to compute control inputs. As a result, to achieve a robust
and fast-response control system for various kinds of flexible
electronics, an optimal fast-response sliding-mode control
(OFRSMC) is presented in this study with simulations and
experiments for measuring electrical characteristics of flexible
electronics. The new technique measures electrical characteristics
of flexible polyethylene terephthalate (PET)/indium tin oxide
(ITO) substrates up to 11,000 bending times from flat to 2 cm
bending radius by using FCIS based on the OFRSMC. In addition,
this study measures resistances for 5, 10, 20, 30, 40, and 50 dpi
widths of the line pattern on PET/ITO samples. If resistances of
flexible electronics increase a lot after bending tests, flexible
electronics probably will not work. According to inspection
results, a designer or maker of flexible electronics can design
useful and comfortable flexible electronic products for human
being.
2. Measurement apparatus of flexible-characteristics
inspection system

In order to measure electrical characteristics of the flexible
electronics, this study puts forward the flexible-characteristics
Fig. 1. Schematic diagram of flexible-
inspection system, as depicted in Fig. 1, which comprises a clip
unit, a flexible-characteristics inspection stage with a motor, a
motion controller, a computer, and a CCD camera. In addition, the
clip unit is configured with two clipping arms which can work
cooperatively for holding a flexible electronic substrate. In order
to bend the flexible substrate in pure bending, this study designed
an opposite moving of the two clipping arms in the round moving
simultaneously to implement. The sever motor drives the flat belt
pulley and the spur gear pair in the same speed simultaneously.
The flat belt pulley and the spur gear pair link up different
clipping arms, respectively. The transmission speed from the
server motor to flat belt pulley is the same as to spur gear pair,
but in opposite directions respectively. Therefore, both clipping
arms can make an opposite movement of the two clipping arms in
the circular path at the same moving speed simultaneously.
Moreover, because there is only a bending force on the perpendi-
cular direction of the flexible substrate by clipping arms, an
opposite movement of the two clipping arms in the circular path
simultaneously can make a pure bending for testing the flexible
substrate.

Moreover, to measure the electrical-resistance characteristics,
a 4-point-probe electrical-resistance measurement apparatus is
integrated into two clipping arms, as shown in Fig. 2. Measure-
ment errors concerning the electrode-contact electrical-resistance
can hence be reduced by using the principle of the 4-point-probe
electrical-resistance measurement (Meier & Levinzon, 1965). In
this study, the flexible substrate is sheet-like or plate-like object.
3. Design and simulation of optimal fast-response sliding-
mode control

3.1. Design of optimal fast-response sliding-mode control

FCIS depicted in Fig. 1 is a nonlinear system. Real-world
nonlinear control problems are dealt with by different techniques
(Cheng & Li, 1998; Li & Shieh, 2000). The model of FCIS can be
characteristics inspection system.



Fig. 2. Four-point-probe electrical-resistance measurement apparatus.
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identified by an ARX model as

y kð Þ ¼
b1h�1

þ � � � þbnh�n

1þa1h�1
þ � � � þanh�n

u kð Þþ
1

1þa1h�1
þ � � � þanh�n

e kð Þ

ð1Þ

where h is the shift operator, e(k)AR is a zero-mean white-noise
sequence that is independent from u(k)AR, and ai and bi are real-
valued scalars (Verhaegen & Verdult, 2007). According to Fig. 1,
FCIS includes a motor, a flat belt pulley, a spur gear pair, clipping
arms, and a flexible substrate. Therefore, a frequency-sweep input
sequence (Verhaegen & Verdult, 2007) is utilized to set up an
identification experiment in this study. Accordingly, the transfer
function that relates the control voltage V(z) to the bending
curvature Y(z) can be obtained in state-variables form

Xðkþ1Þ ¼ AzXðkÞþBzuðkÞ

yðkÞ ¼ CzXðkÞ

(
ð2Þ

where X(k)ARn is the state variables of system, u(k)ARm is the
input voltage of the motion controller and y(k)ARr is the assumed
model output related to the bending radius of the flexible
substrate on FCIS.

Sliding-mode control’s robust and disturbance-insensitive
characteristics enable the SMC to perform well in systems with
model uncertainty, disturbances and noises. In this paper, SMC is
utilized to design the control input voltage of the motion
controller. To design SMC, a sliding function is designed first,
and then enforces a system trajectory to enter sliding surface in a
finite time. As soon as the system trajectory enters the sliding
surface, it moves along the sliding surface to a control goal.
To sum up, there are two procedures of sliding mode. The pro-
posed SMC is based on pole placement (Chang, 1999), since the
sliding function can be designed by pole placement. Some conditions
are prescribed set for the sliding vector design in the proposed
sliding-mode control:
1.
 Refligo0, ajAR, ajo0, ajali.

2.
 Any eigenvalue in {a1,y,am} is not in the spectrum of Az.

3.
 The number of any repeated eigenvalues in {l1,y,ln�m,

a1,y,am} is not greater than m, the rank of Bz, where
{l1,l2,y,ln�m} are sliding-mode eigenvalues and {a1,a2,y,am}
are virtual eigenvalues.

As proved by Sinswat and Fallside (1977), if the condition (3)
in the above is established, the control system matrix Az�BzK can
be diagonalized as

Az�BzK ¼
V

F

� ��1 FV 0

0 GF

" #
V

F

� �
ð3Þ

where FV¼diag[l1,l2,y,ln�m], GF¼diag[a1,a2,y,am], and V and F

are left eigenvectors with respect to FV and GF, respectively.
Hence, Eq. (3) can be rewritten as

VðAz�BzKÞ ¼FV V

FðAz�BzKÞ ¼GFF

(
ð4Þ

rearrangement of Eq. (4) yields

FAz�GFF ¼ ðFBzÞK ð5Þ

according to Chang (1999),

rankðFAz�GFFÞ ¼ rankðFÞ ð6Þ

since F contains m independent left eigenvectors, one has
rank(F)¼m. From Eqs. (5) and (6), it is also true that rank(FAz�

GFF)¼rank((FBz)K)¼rank(F)¼m. In other words, FBz is invertible.
With the designed left eigenvector F above, the sliding function
S(k) is designed as

SðkÞ ¼ FXðkÞ ð7Þ

The second step is the discrete-time switching control design.
A different and much more expedient approach than that of Gao
and Hung (1993) is adopted here. This approach is called the
reaching law approach that has been proposed for continuous
variable structure control (VSC) systems (Hung, Gao, & Hung,
1993). This control law is synthesized from the reaching law in
conjunction with a plant model and the known bounds of
perturbations. For a discrete-time system, the reaching law is
(Gao, Wang, & Homaifa, 1995)

Sðkþ1Þ�SðkÞ ¼�qTSðkÞ�eTsgnðSðkÞÞ ð8Þ

where T40 is the sampling period, q40 is the reaching-law
parameter, e40 is the sliding-layer thickness and 1�qT40.
Therefore, the switching control law for the discrete-time system
is derived based on this reaching law. From Eq. (7), S(k) and
S(kþ1) can be obtained in terms of sliding vector F as,

SðkÞ ¼ FXðkÞ

Sðkþ1Þ ¼ FXðkþ1Þ ¼ FAzXðkÞþFBzuðkÞ

(
ð9Þ

it follows that:

Sðkþ1Þ�SðkÞ ¼ FAzXðkÞþFBzuðkÞ�FXðkÞ ð10Þ

from Eqs. (8) and (10),

Sðkþ1Þ�SðkÞ ¼�qTSðkÞ�eTsgnðSðkÞÞ

¼ FAzXðkÞþFBzuðkÞ�FXðkÞ

solving for usc(k) gives the switching control law

uscðkÞ ¼�ðFBzÞ
�1
½FAzXðkÞþðqT�1ÞFXðkÞþeTsgnðFXðkÞÞ� ð11Þ
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In order to achieve the output tracking control, a reference
command input r(k) is introduced into the system by modifying a
state feedback control law up(k)¼�KX(k) with pole-placement
design method (Franklin, Powell, & Workman, 1998) to become

upðkÞ ¼NurðkÞ�KðXðkÞ�NxrðkÞÞ ð12Þ

where KARn is a gain matrix obtained by assigning n desired
eigenvalues {l1,y,ln�m,a1,y,am} of Az�BzK and

Nu

Nx

" #
¼

Az�I Bz

Cz 0

" #�1
0

I

� �
ð13Þ

The proposed SMC input, based on Eq. (12), is assumed to be

uSðkÞ ¼ upðkÞþuscðkÞ ¼NurðkÞ�KðXðkÞ�NxrðkÞÞþuscðkÞ ð14Þ

substituting Eq. (11) into (14) gives the proposed SMC input as

uSðkÞ ¼NurðkÞ�KðXðkÞ�NxrðkÞÞ�ðFBzÞ
�1
½FAzXðkÞ

þðqT�1ÞFXðkÞþeTsgnðFXðkÞÞ� ð15Þ

The pole-placement SMC design method utilizes the feedback
of all the state variables to form the desired sliding vector. In
practice, not all the state variables are available for direct
measurement. It is necessary to estimate the state variables that
are not directly measurable. Therefore, the SMC input depicted in
Eq. (15) is rewritten as

uSðkÞ ¼NurðkÞ�Kð ~X ðkÞ�NxrðkÞÞ�ðFBzÞ
�1
½FAz

~X ðkÞ

þðqT�1ÞF ~X ðkÞþeTsgnðF ~X ðkÞÞ� ð16Þ

where ~X ðkÞ is an observed state. Define a full-order estimator
(FOE) as

~X ðkþ1Þ ¼ Az
~X ðkÞþBzuðkÞþKeðyðkÞ�Cz

~X ðkÞÞ

~yðkÞ ¼ Cz
~X ðkÞ

(
ð17Þ

and Ke is an observer feedback gain matrix.
Image noise in CCD feedback signals is an error factor in

controlling a bending radius. Hence, a linear quadratic estimator
(LQE) is applied here to estimate optimal states. Based on Eq. (2),
consider a system model

Xðkþ1Þ ¼ AzXðkÞþBzuðkÞþGnðkÞ
yðkÞ ¼ CzXðkÞþoðkÞ

(
ð18Þ

where X(k)ARn is the state variable, u(k)ARm is the control input
voltage, y0(k)ARr is the assumed plant output related to the
bending radius, and n(k)ARn and o(k)ARr are system disturbances
and measurement noise with covariances E[ooT]¼Q, E[nnT]¼R,
and E[onT]¼0. The objective of LQE is to find a vector X̂ðkÞ, which
is an optimal estimation of the present state X(k). Here ‘‘optimal’’
means the cost function (Franklin et al., 1998; Phillips & Nagle,
1995)

J¼ lim
T-1

E

Z T

0
ðXT QXþuT RuÞdt

� �
ð19Þ

is minimized. The solution is an estimator written as

X̂ðkþ1Þ ¼ AzX̂ðkÞþBzuðkÞþKf ðyðkÞ�CzX̂ðkÞÞ

ŷðkÞ ¼ CzX̂ðkÞ

(
ð20Þ

where Kf is the ‘‘optimal Kalman’’ gain Kf ¼ PCT
z R�1 and P is the

solution of the algebraic Riccati equation

AzPþPAT
z�PCT

z R�1CzPþQ ¼ 0 ð21Þ

SMC and LQE are integrated into a so called optimal sliding-mode
control (OSMC) with control input

uOSðkÞ ¼NurðkÞ�KðX̂ðkÞ�NxrðkÞÞ�ðFBzÞ
�1
½FAzX̂ðkÞ

þðqT�1ÞFX̂ðkÞþeTsgnðFX̂ðkÞÞ� ð22Þ
In order to expedite the response time, the maximum driving
voltage control is utilized in OSMC by a fast-response regulator,
whose input is written as

uF kð Þ ¼ 1
2 Umax sgn 9r kð Þ9�F

� �
þ1

� 	
�1

2 sgn 9r kð Þ9�F
� �

�1
� 	

½NurðkÞ�KðXðkÞ�NxrðkÞÞ�ðFBzÞ
�1
½FAzXðkÞ

þðqT�1ÞFXðkÞþeTsgnðFXðkÞÞ�� ð23Þ

where F is a threshold value of the reference command input.
When 9r(k)9 is larger than F, sgnð9rðkÞ9�FÞ ¼ 1. Therefore, the
proposed input is

uF kð Þ ¼ 1
2 Umax 1þ1½ ��1

2 1�1½ � Nur kð Þ�K X kð Þ�Nxr kð Þð Þ
�

�ðFBzÞ
�1
½FAzXðkÞþðqT�1ÞFXðkÞþeTsgnðFXðkÞÞ�� ¼Umax ð24Þ

as a consequence, the maximum driving voltage Umax is applied.
However, when 9r(k)9 is less than F, sgnð9rðkÞ9�FÞ ¼�1. There-
fore, the proposed input becomes

uF kð Þ ¼ 1
2 Umax �1þ1½ ��1

2 �1�1½ � Nur kð Þ�K X kð Þ�Nxr kð Þð Þ
�

�ðFBzÞ
�1
½FAzXðkÞþðqT�1ÞFXðkÞþeTsgnðFXðkÞÞ��

¼NurðkÞ�KðXðkÞ�NxrðkÞÞ�ðFBzÞ
�1
½FAzXðkÞ

þðqT�1ÞFXðkÞþeTsgnðFXðkÞÞ� ð25Þ

In Eq. (23), both threshold value F and reaching-law para-
meter q affect response speed. In addition, boundary conditions of
each flexible electronics are different and the mathematical
model is a nonlinear model for controlling the bending radius.
In order to achieve a fast-response and robust bending-radius
control, an optimal design for F and q is vital. Therefore, fast
response regulation is developed in this study to obtain F and q

optimally, so that the maximum driving voltage is applied in the
early control period. Assume a nonlinear output written as

yðkÞ ¼ aebk ð26Þ

taking the logarithm to both sides of Eq. (26) yields

ln yðkÞ ¼ ln aþbk ð27Þ

the best-fit values (Perl, 1960) are thus

a¼ e

Pn

k ¼ 1

k2
Pn

k ¼ 1

ln yðkÞ�
Pn

k ¼ 1

k
Pn

k ¼ 1

kln yðkÞÞ=n
Pn

k ¼ 1

k2
�
Pn

k ¼ 1

k


 �2
 !

ð28Þ

b¼
n
Pn

k ¼ 1 kln yðkÞ�
Pn

k ¼ 1 k
Pn

k ¼ 1 ln yðkÞ

n
Pn

k ¼ 1 k2
�ð
Pn

k ¼ 1 kÞ2
ð29Þ

in terms of a and b parameters, the predictive arrival time kr is
obtained as

kr ¼
lnRi�ln a

b
ð30Þ

where Ri is a command input. Then, the threshold value for the
maximum driving voltage input is obtained as

F¼ aebsr kr ð31Þ

where sr is a ratio parameter for minimum sliding-mode time and
the threshold value has to be no smaller than eT. Then, reaching-
law parameter q is also obtained as

q¼
1�F

T
ð32Þ

therefore, according to a procedure of the fast-response regula-
tion from Eq. (28) to (32), the threshold value and reaching-law
parameter can be obtained. The system block diagram is shown in
Fig. 3 where Ri is a input signal of the bending radius. In the
beginning, the maximum driving voltage is applied to control a
bending radius. A CCD provides the bending-radius feedback
signal for LQE, which can estimate optimal states in the presence
of system disturbances and measurement noise in SMC. After
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several control cycles, the threshold value and the reaching-law
parameter are obtained by the fast-response regulation. Finally,
the SMC with the fast-response regulator and LQE can implement
the bending-radius control robustly. According to Eqs. (22) and
(23), a new controller called optimal fast-response sliding-mode
control (OFRSMC) is expressed by

uORS kð Þ ¼ 1
2 Umax sgn 9r kð Þ9�F

� �
þ1

� 	
�1

2 sgn 9r kð Þ9�F
� �

�1
� 	

½NurðkÞ�KðX̂ðkÞ�NxrðkÞÞ�ðFBzÞ
�1
½FAzX̂ðkÞ

þðqT�1ÞFX̂ðkÞþeTsgnðFX̂ðkÞÞ�� ð33Þ

OFRSMC will be carried out in simulations and experiments,
which are presented in Section 3.3 and Section 4.1, respectively.

3.2. Stability analysis of OFRSMC

This section deals with a system model described by Eq. (2)
and defines a reference command input r(k). To overcome the
nonlinear control problem, the model of FCIS is identified by an
ARX model. A motor provides driving frequencies varying up to
0.2 Hz for bending frequencies from negative to positive bending,
and bending radii of substrates are measured in real time by CCD
images, as shown in Fig. 1. The sampling time T is 0.08 s. All the
parameters of the FCIS described by the ARX model are obtained
by using a cyclic manner of iteratively refining data (Verhaegen &
Verdult, 2007) from bending-radius measurements. Accordingly,
the transfer function that relates the control voltage V(z) and the
bending radius Y(z) can be written as

H zð Þ ¼
YðzÞ

VðzÞ
¼

0:10361z2�0:14046zþ0:06742

z3
ð34Þ

in addition, the transfer function of FCIS can be rewritten in state-

variables form. Accordingly, Az ¼

0 0 0

1 0 0

0 1 0

2
64

3
75, Bz ¼

1

0

0

2
64

3
75 and

Cz ¼ 0:10361 �0:14046 0:06742
� 	

are obtained for Eq. (2).
In this study, Ackermann’s formula (Ackermann, 1972) is
used to determine the pole-placement feedback gain matrix

K ¼ �0:08 0:0017 0:00001�
�

. The pole-placement algorithm

described in Section 3.1 is utilized to determine a sliding vector

F ¼ 0:99756 �0:06983 0:001
� 	

. In practice, the fact that not all

state variables are available for direct measurement results in the
necessity to estimate the state variables that are not measurable.
Hence, the FOE designed by Ackermann’s formula and LQE are
utilized in this study, where the observer feedback gain matrix is

Ke ¼

�0:05933

6:0022

�6:8346

2
64

3
75 and the optimal Kalman gain is

Kf ¼

1:9193

�1:7375

0:66094

2
64

3
75, respectively. In addition, according to Eq. (13),

Nu and Nx are obtained as [32.712] and

32:712

32:712

32:712

2
64

3
75, respectively.

In order to analyze the stability of FCIS with the OFRSMC,
Lyapunov analysis (Slotine & Li, 1991) and a proof method by
contradiction (Andrilli & Hecker, 2009) is utilized. Consider a
discrete-time quadratic Lyapunov function candidate

VLðXðkÞÞ ¼ Xn
ðkÞOXðkÞ ð35Þ

where O is a given symmetric positive definite matrix. Differ-
entiating the positive definite function VL(X(k)) along the system
trajectory yields another quadratic form

DVLðXðkÞÞ ¼ VLðXðkþ1ÞÞ�VLðXðkÞÞ ¼ Xn
ðkÞðAn

sOAs�OÞXðkÞ

¼�Xn
ðkÞLXðkÞ ð36Þ

where

As
nOAs�O¼�L ð37Þ
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is called a Lyapunov equation and As is a system state matrix with
a control method. If both O and L are both positive definite
matrices satisfying Eq. (37), the system is globally asymptotically
stable. Therefore, according to the OFRSMC law, when 9r(k)9 is
larger than F, Eq. (33) is rewritten as

uLOSðkÞ ¼Umax ð38Þ

substituting Eq. (38) into (2) gives the model of FCIS with the
OFRSMC as

Xðkþ1Þ ¼ AzXðkÞþBzUmax

yðkÞ ¼ CzXðkÞ

(
ð39Þ

where Az¼As. According to a proof method by contradiction,
firstly assume that Eq. (39) is unstable. Eq. (37) is rewritten as

Az
nOAz�O¼�L ð40Þ

let L¼ I and denote O as a symmetric matrix. The solution O in

Eq. (40) is

1 6:6613e�16 1:6177e�16

6:6613e�16 2 2:433e�15

1:6177e�16 2:433e�15 3

2
64

3
75. According to

Sylvester’s criterion (Ogata, 1994), O is positive definite. The
solution O contradicts the assumption that the model of FCIS
with the OFRSMC when 9r(k)9�F40 is unstable.

On the other hand, when 9r(k)9 is less than F, Eq. (33) is
rewritten as

uLOSðkÞ ¼�KX̂ðkÞ�ðFBzÞ
�1FAzX̂ðkÞ ¼�ðKþðFBzÞ

�1FAzÞX̂ðkÞ ð41Þ

where qTffi1 and eT-0. Substituting Eq. (41) into (2) gives the
model of FCIS with the OFRSMC as

X̂ðkþ1Þ ¼ AzX̂ðkÞ�BzðKþðFBzÞ
�1FAzÞX̂ðkÞ ¼ ðAz�BzðKþðFBzÞ

�1FAzÞX̂ðkÞ ¼ AsX̂ðkÞ

ŷðkÞ ¼ CzX̂ðkÞ

(

ð42Þ

according to a proof method by contradiction, assume that Eq.
(42) is unstable. Eq. (37) is rewritten as

ðAz�BzðKþðFBzÞ
�1FAzÞ

nOðAz�BzðKþðFBzÞ
�1FAzÞ�O¼�L ð43Þ

let L¼ I and denote O as a symmetric matrix. The solution O in
Eq. (43) is

1:02290 0:15302 0:01749

0:15302 2:02290 0:15302

0:01749 0:15302 3:02290

2
64

3
75. According to Sylvester’s

criterion (Ogata, 1994), O is positive definite. The solution O
contradicts the assumption that the model of FCIS with the OFRSMC
when 9r(k)9�Fo0 is unstable. Therefore, FCIS with the OFRSMC is
asymptotically stable in the large.
3.3. Simulation of OFRSMC

In simulations, random disturbances of 10% input signal in
magnitude are exerted on the system plant. Because image noise
in CCD feedback signals is an important error factor in bending
radius control, random measurement noises of 10% input signal in
magnitude are exerted on CCD feedback signals. Figs. 4 and 5
show simulation results of FCIS in controlling the flexible sub-
strate at 0.5 cm�1 bending curvature based on SMC with the FOE,
OSMC, and OFRSMC without and with random measurement noise
by using MATLAB and Simulink, respectively. In Figs. 4 and 5, the
blue solid line represents command input, the magenta solid line is
the system output based on SMC with FOE, the green broken line is
the system output based on OSMC, and the red solid line is the
system output based on the OFRSMC. In addition to parameters of
the control system in Section 3.2, the reaching-law parameter q is
12.4 and the sliding-layer thickness e is 1.25 in the simulation
based on SMC with FOE and OSMC. In the simulation based on
OFRSMC, the maximum driving voltage is applied in the first five
control cycles. According to the five control-cycle data and the fast-
response regulation, a¼0.045, b¼2.1, kr¼1.147, sr¼0.33, the
threshold value F¼0.1 and the reaching-law parameter q¼11.25
are obtained.

In this study, to evaluate the system performance, integrated
absolute error (IAE) that is often of practical significance is used
as the performance index and is expressed as

IAE¼

Z TF

0
9eðtÞ9dt ð44Þ
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where e(t) is a error function of the plant and TF is a finite time
(Franklin et al., 1998). The integral of time multiplied by absolute
error (ITAE) that provides the performance index of the best
sensitivity is expressed as

ITAE¼

Z TF

0
t9eðtÞ9dt ð45Þ

where e(t) is a error function of the plant and TF is a finite time
(Franklin et al., 1998). According to the simulated results shown
in Figs. 4 and 5, the performance of three control systems in
controlling the flexible substrate at 0.5 cm�1 bending curvature
are evaluated by using IAE and ITAE indices and the results, are
shown in Table 1.

In addition, Fig. 6 depicts simulation results of FCIS with random
measurement noise in controlling the flexible substrate at
0.25 cm�1 bending curvature based on SMC with FOE, OSMC, and
OFRSMC repeatedly. In Fig. 6(a), (b) and (c), the blue solid lines
represent command inputs, the red solid lines are the system
outputs by using SMC with FOE, OSMC, and OFRSMC, respectively.
Table 1
IAE and ITAE indices of simulation results for the control systems based on SMC

with FOE, OSMC, and OFRSMC in controlling the flexible substrate at 0.5 cm�1

bending curvature without and with random measurement noise.

Without random measurement

noise

With random measurement

noise

IAE ITAE IAE ITAE

SMC with FOE 7.3082 8.1117 7.4636 9.5385

OSMC 7.3082 8.0873 7.3053 8.1127

OFRSMC 5.2747 4.6069 5.2912 4.7158
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The following conclusions can be arrived at from the analysis
of simulation results from Figs. 4 to 6 and Table 1:
1.
20

20

20
e (

e fle

ith
According to Fig. 4, there are no overshoot without random
measurement noise by using the three controllers. Because in
controlling bending radius the overshoot situation is not
allowed, We succeed in designing the three controllers. How-
ever, according to Figs. 5 and 6, there are overshoots in the
control performances by using SMC with FOE controller. In
Table 1, the control performances without and with random
measurement noise based on SMC with FOE controller are
obviously worse than the other two. Accordingly, the control
performance of SMC with LQE is better than SMC with FOE in
overcoming measurement noise.
2.
 In Fig. 6, one bending cycle using either SMC with FOE or
OSMC needs 12 s, whereas using the OFRSMC needs 8 s only.
Accordingly, there are more bending cycles in 36 s by using the
OFRSMC method than by using SMC with FOE and OSMC.
3.
 Form simulation results, the response time for the bending-
radius control based on the OFRSMC is the shortest among the
three controllers. And the response time by using the OFRSMC
is almost half time by using SMC with FOE or OSMC. In Table 1,
the control performances based on the OFRSMC are obviously
better than the other two. Therefore, the bending-radius on
FCIS based on the OFRSMC performs better than that based on
SMC with FOE, or the OSMC. It is certain that the OFRSMC
method is capable of fast controlling the bending radius of
flexible substrate on FCIS robustly and successfully. Section 4
depicts experimental results of controlling the bending radius
of flexible substrates on FCIS based on SMC with FOE, OSMC,
and OFRSMC, respectively.
25 30 35 40

25 30 35 40

25 30 35 40
sec)

Command input
SMC with FOE

Command input
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Command input
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xible substrate at 0.25 cm�1 bending curvature repeatedly. Blue solid lines

FOE, (b) OSMC and (c) OFRSMC. (For interpretation of the references to color in
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4. Experimental results

4.1. Experimental results of OFRSMC

In order to measure electrical characteristics of flexible elec-
tronics under different radii of curvature, a commercially avail-
able ITO-coated PET (OCTM 100) from CPFilms Inc. is utilized.
A laser writer is utilized to make line patterns of different widths
on a PET/ITO sample for a flexible back plate, which is used to
drive the display media. SMC with FOE, OSMC, and OFRSMC
control the bending radius at 2 cm respectively and the bending-
radius control results are shown in Fig. 7. In addition, Fig. 8
compares experimental results of FCIS in controlling the flexible
substrate at 4 cm bending radius based on SMC with the FOE,
OSMC, and OFRSMC repeatedly. In experiments, parameters of
SMC with FOE and OSMC in simulations are utilized. In the
-
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FOE, the blue solid line is the system output based on OSMC, and the green solid
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Fig. 8. Experimental results of FCIS in controlling the flexible substrate at 4 cm ben
experiment based on OFRSMC, the maximum driving voltage is
applied in the first five control cycles. By using five control-cycle
data and the fast-response regulation, a¼0.072, b¼0.566,
kr¼3.424, sr¼0.3, the threshold value F¼0.129 and the
reaching-law parameter q¼10.89 are obtained. According to the
experimental results shown in Fig. 7, the performances of the
three control systems in controlling the flexible substrate at 2 cm
bending radius are evaluated by using IAE and ITAE indices and
the results are shown in Table 2.

The following conclusions are drawn from experimental
results:
1.
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ding
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wit

rad

S

O

O

According to Fig. 7 and Table 2, there appears no overshoot by
using the three controllers. The performance of bending-radius
control based on the OFRSMC is better than that based on SMC
with FOE and OSMC, because the OFRSMC is more effective in
overcoming system disturbances and measurement noise.
2.
 In Fig. 8, three-cycle bending operations by using SMC with
FOE, OSMC, and the OFRSMC need 37 s, 36 s, and 17 s,
respectively. Due to fast-response-regulation capability of the
OFRSMC, the three-cycle bending period based on the OFRSMC
is the shortest among the three controllers.
3.
 In a manner similar to simulation results, the OFRSMC
response is the fastest and the most robust in view of
Figs. 7 and 8 and Table 2. Compared to SMC with FOE and
25 30 35 40 45
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and ITAE indices of experimental results for the control systems based on SMC

h FOE, OSMC, and OFRSMC in controlling the flexible substrate at 2 cm bending

ius.

IAE ITAE

MC with FOE 183.95 264.66

SMC 173.00 154.35

FRSMC 113.52 55.70



Fig. 9. (a) The entire picture, (b) zoom-in picture with electrodes of 5 dpi width of

the line pattern on a PET/ITO sample.
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OSMC, OFRSMC can overcome variable parameters, nonlinear-
ity and measurement noise to achieve a better bending-radius
control. Since experimental and simulation results are in good
agreement, it is concluded that the OFRSMC outperforms the
other two methods. Therefore, it is certain that the OFRSMC
method is capable of bending-radius control on FCIS for fast
and robustly measuring electrical characteristics in bending.
Fig. 10. Flexible PET/ITO sample is (a) flat, (b) compressive bending, and (c) tensile

bending for ITO layer by force F; where white, gray and magenta color represent

PET, ITO layer and isolation line, respectively. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this

article.)
4.2. Measurement results of electrical characteristics of flexible

substrate in bending

According to the experimental results given in Section 4.1,
FCIS could be utilized for measuring bending characteristics of
flexible electronics under different bending radii, as it successfully
provides a more stable and robust bending condition by using
the OFRSMC method for measuring electrical characteristics of
flexible electronics.

Therefore, in order to measure electrical characteristics of
flexible substrate under different radii of curvature, a commer-
cially available ITO-coated PET (OCTM 100) from CPFilms Inc. is
utilized. It has 50 nm think ITO on 125 mm think PET sheet. A laser
writer is used in this work to make different widths of the line
pattern on the PET/ITO sample. For example, Fig. 9 shows a 5 dpi
width of the line pattern on a PET/ITO sample. The length and
width of the line pattern are 152 mm and 5 mm, respectively.
Therefore, by using FCIS based on the OFRSMC the method of
4-point-probe electrical-resistance measurement is applied for
measuring the electrical resistance of the line pattern in flat and
2 cm bending radius conditions.

There are two types for bending a flexible substrate. One is the
compressive bending, which means the bending direction makes
ITO layers compressed, whereas the other is tensile bending. For
example, Fig. 10(a), (b), and (c) depicts that ITO layers in flexible
PET/ITO sample are in flat, compressive bending, and tensile
bending, respectively. A one-time bending cycle by using FCIS
based on the OFRSMC is to control from flat, 2 cm bending radius,
and return to flat. Therefore, a 50 dpi PET/ITO sample was
measured in flat and 2 cm compressive-bending radius condi-
tions, respectively, for bending 11,000 times by using FCIS based
on the OFRSMC, as shown in Table 3. In addition, this study



Table 3
Electrical-resistance measurement and change-rate of electrical resistance of 50 dpi flexible PET/ITO sample in flat and 2 cm bending radius conditions after 11,000 times

compressive bending.

Bending times Bending conditions

Flat 2 cm Bending radius

Bending radius (cm) Resistance (kO) Change-rate of electrical

resistance (%)

Bending radius (cm) Resistance (kO) Change-rate of electrical

resistance (%)

0 N 20.976 0.000 2.01 20.983 0.000

500 N 21.046 0.334 2.00 21.058 0.357

1000 N 21.063 0.415 2.05 21.071 0.419

2000 N 21.082 0.505 2.02 21.093 0.524

3000 N 21.100 0.591 2.05 21.108 0.596

4000 N 21.110 0.639 2.05 21.116 0.634

5000 N 21.117 0.672 2.04 21.125 0.677

6000 N 21.126 0.715 2.01 21.131 0.705

7000 N 21.129 0.729 2.04 21.136 0.729

8000 N 21.131 0.739 2.05 21.139 0.743

9000 N 21.135 0.758 2.05 21.145 0.772

10,000 N 21.140 0.782 2.05 21.150 0.796

11,000 N 21.145 0.806 2.03 21.149 0.791
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Fig. 11. (a) Change-difference of electrical resistance and (b) change-rate of electrical resistance after 11,000 times tensile and compressive bending for 5, 10, 20, 30, 40,

and 50 dpi PET/ITO samples, respectively.
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measures the electrical resistance for different widths of the line
pattern on the sample up to 11,000 bending times. Fig. 11 depicts
the change-difference and change-rate of electrical resistance
after 11,000 times tensile and compressive bending for 5, 10,
20, 30, 40, and 50 dpi samples, respectively, where change-
differences are calculated from the difference of the electrical
resistance of the line pattern between before and after bending,
and change-rates are calculated from the difference of the
electrical resistance of the line pattern between before and after
bending divided by the electrical resistance of the line pattern
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before bending. According to measurement results, the following
conclusions are drawn:
1.
 Table 1 depicts that the sample resistance with 2 cm bending
radius is larger than the flat one, because the ITO-line pattern
becomes thinner in bending. In addition, it also depicts that as
the bending times increase, change-rates of electrical resis-
tance in both flat and 2 cm bending radius conditions also
increase.
2.
 In Table 1, both results of the flat and 2 cm bending radius
conditions are similar.
3.
 Decreasing the width of the line pattern also increases change-
rates of the resistance in both flat and 2 cm bending radius
conditions.
4.
 As a consequence, tensile and compressive bending curve-
fitting equations are respectively written as

Cd ¼ 1:1148e0:137w ð46Þ

Cd ¼ 1:8368e0:097w ð47Þ

where Cd is the change-difference of resistance between before
and after 11,000 bending times, and w is the width of line
patterns on the PET/ITO samples. According to Fig. 11 and both
Eqs. (46) and (47), the relationship between the width of the
line pattern and the change-rate of electrical resistance is
exponential. In addition, this study obtains change-rate curve
fitting equations for tensile and compressive bendings

Cr ¼ 0:0613e0:088w ð48Þ

Cr ¼ 0:0806e0:0482w ð49Þ

where Cr is the change-rate of electrical resistance between
before and after 11,000 bending times, and w is the width of
line patterns on the PET/ITO samples. From Fig. 11 and both
Eqs. (48) and (49), the relationship between the width of the
line patterns and the change-rate of electrical resistance is also
exponential.
5.
 According to measurement results for two bending types, the
increasing rate for the change-difference or the change-
difference of resistance in tensile bending is higher than in
compressive bending when decreasing the line pattern width.

5. Conclusions

This study has presented a stable, robust, and fast-response
bending-radius condition of flexible substrates by using FCIS
based on the OFRSMC. This study also has measured electrical
properties of flexible PET/ITO substrates up to 11,000 bending
times by using FCIS based on the OFRSMC. Measurement results
lead to the exponential relation between the width of the line
pattern and the change-difference or the change-rate of electrical
resistance in tensile or compressive bending. The relationship will
be an important reference for flexible electronics research in the
future. Accordingly, FCIS is a good tool for inspections of flexible
displays under bending. In addition to the electrical property, the
present system can also be utilized to measure other properties in
bending, e.g., mechanical and optical characteristics, depicted on
flexible electronics.
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