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Deploying Sensors for Gravity Measurement
in a Body-Area Inertial Sensor Network

Chun-Hao Wu and Yu-Chee Tseng

Abstract— This paper deals with human posture tracking by
deploying accelerometers on a human body. One fundamental
issue in such scenarios is how to calculate the gravity. This is
very challenging especially when the human body parts keep on
moving. Fortunately, it is likely that there is a point of the body
that touches the ground in most cases. This allows sensors to
collaboratively calculate the gravity vector. Assuming multiple
accelerometers being deployed on a rigid part of a human body,
a recent work proposes a data fusion method to estimate the
gravity vector on that rigid part. However, finding the optimal
deployment of sensors that minimizes the estimation error of the
gravity vector is not addressed. In this paper, we formulate the
deployment optimization problem and propose two heuristics,
called Metropolis-based method and largest-inter-distance-based
method. Simulation and real experimental results show that our
schemes are quite effective in finding near-optimal solutions for
a variety of rigid body geometries.

Index Terms— Accelerometer, deployment optimization,
modeling of systems and physical environments, wireless sensor
network.

I. INTRODUCTION

ABODY-AREA inertial sensor network (BISN) consists of
multiple accelerometers, magnetometers, and gyroscopes

connected by wired/wireless links. An important usage of a
BISN is to track human motions through these inertial sensors.
Its applications include video games [1], robotic balancing [2],
localization [3], sports training [4], medical care [5], [6], and
computer graphics [7].

Regarding a human body as multiple rigid parts connected
by joints, many researchers consider a full-body motion as
the combination of the motions of multiple rigid parts through
the human body skeleton structure. Basically, the motion of
each rigid part is measured by some inertial sensors deployed
on a human body [8]. Many gesture applications have been
developed [5], [9], [10].
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Fig. 1. Gravity measurement in (a) car and (b) human body, where g is the
gravity vector.

One fundamental issue in BISNs is the gravity measurement
problem [8]. Accelerometers sense both motion acceleration
and the gravity simultaneously. It is desirable to obtain only
the gravity vector with respect to a rigid part of a human
body, no matter it is moving or not. A trivial case is when
an accelerometer is mounted on a car driving on a flat plane
as in Fig. 1(a). The gravity vector �g with respect to the
accelerometer is always the same. However, as shown in
Fig. 1(b), for a human body, the orientation of each rigid part
keeps on changing. Therefore, for accelerometers, determining
the gravity vector of a rigid part is a fundamental issue to be
solved before trying to track human motions.

To solve the gravity measurement problem, [2] considers a
rigid part of a human body as being held by a joint which
is at a constant velocity with respect to the Earth coordi-
nate. Assuming multiple accelerometers deployed at known
locations on the rigid part, it proposes a data fusion method
to calculate the gravity vector on the rigid part. However, it
only partly addresses the error issue, which is common to
sensor reading. Also, the locations of these sensors may highly
impact the potential value of errors. In this paper, based on the
model in [2], we further formulate the deployment optimization
problem as one of finding the best locations of accelerometers
on a rigid part that minimize the estimation error of the gravity
vector. The problem is difficult even for simple geometries
of rigid parts. We propose two heuristics, called Metropolis-
based method and largest-inter-distance-based (LID-based)
method. The former follows a probabilistic search principle
that is theoretically guaranteed to reach near-optimal solutions
eventually. The latter is based on a “largest inter-distance
(LID)” guideline obtained from our observations, which states
that sensors should be evenly distributed over the surface of
the rigid part. We show that this guideline leads to an optimal
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Fig. 2. Geometrical model of our work, where v and φ are unknown to our
system and g is to be calculated.

solution for some special cases and near-optimal solutions in
general. Experimental results show that both methods perform
quite well, even for complicated geometries.

We remark that although the LID guideline, which tries to
push accelerometers away from each other on one rigid part,
has been widely adopted in other fields, its validity on our
sensing model is not yet verified. Our analysis starts from
the kinematical model of rigid parts and we demonstrate its
effectiveness simulation- and experiment-wise.

Our results are applicable to any geometrical model
illustrated in Fig. 2, where a rigid part is held by a joint that
moves at a constant velocity v with respect to an Earth-fixed
coordinate. The rigid part may rotate at any angular velocity φ
about the joint. Both v and φ are unknown to our system. This
allows us to apply it to many physical rehabilitation, robotic
balancing, and gait analysis scenarios. Also note that in this
paper, we do not address physical deployment issues, such
as the fixation of accelerometers on a human body. They are
addressed by many emerging techniques and are beyond our
scope [11].

The rest of this paper is organized as follows. Section II
reviews related works. Section III formulates the gravity
measurement and the deployment optimization problems.
Section IV presents our heuristics. Performance studies are
discussed in Section V. Conclusions are drawn in Section VI.

II. RELATED WORKS

The deployment of sensors directly determines the network
topology and influences communications. This issue has long
been studied in wireless sensor networks. A comprehensive
survey can be found in [12]. Many deployment algorithms
have been proposed for isotropic sensors with unit-disc sensing
coverage [13]–[16]. Directional sensors, such as cameras, have
been studied in [17] and [18]. The irregularity of sensing
quality has been studied in [19]. However, none of these
studies is suitable for accelerometers when they are deployed
on a human body for motion sensing.

Comprehensive surveys on BISNs can be found in
[20] and [21], and surveys on human motion tracking can
be found in [22] and [23]. Traditionally, one accelerometer
is deployed on one rigid part of a human body to measure
its orientation, and the results from multiple parts are com-
bined through a skeleton model to reconstruct full-body
motions [3], [8], [24]. With additional motion constraints,

Fig. 3. Kinematical model for one rigid body.

[25]–[28] further avoid infeasible orientations. However, these
approaches rely on empirical methods to eliminate such fac-
tors. To solve this issue, [2] assumes multiple accelerometers
being deployed on one rigid part and proposes a kinematical
method that optimally measures the gravity. However, how to
optimize the locations of accelerometers so as to remove as
much sensor reading errors as possible is left by as an open
problem.

III. GRAVITY MEASUREMENT AND DEPLOYMENT

OPTIMIZATION PROBLEMS

This paper deals with human posture tracking by deploying
accelerometers on a human body. One fundamental issue in
such scenarios is how to calculate the gravity, no matter
when the body parts are moving or not [8]. A human body
can be regarded as multiple movable parts, each being a
rigid body, connected to another part by a rotational joint
[29], [30]. Multiple accelerometers are placed on each rigid
body for gravity measurement.

To formulate the gravity measurement problem, we con-
sider one rigid body deployed with multiple sensors as
in Fig. 3. We assume that there is an Earth-fixed coordi-
nate system, representing views of a fixed observer, with
θ = (0, 0, 0) as its origin and xθ , yθ , and zθ as its axes.
The gravity �g with respect to this θ -coordinate is thus 1 g
(or 9.8 m/sec2) along the −zθ axis. Let the joint of the rigid
body be at location r(t) with respect to the θ -coordinate at
time t . For the rigid body, we assume that there is a fixed
coordinate with respect to the joint with r(t) as its origin
and xr , yr , and zr as its axes. Therefore, each point on
the rigid body has a fixed coordinate with respect to the
r -coordinate, no matter the rigid body moves or not. For any
point at location p with respect to the r -coordinate, its location
with respect to the θ -coordinate at time t can be written as
p′(t) = r(t) + R(t)p, where R(t) is the 3 × 3 rotation matrix
that rotates (xr , yr , zr ) to (xθ , yθ , zθ ) [29].

Let s1, s2, . . ., sm be m accelerometers deployed on the rigid
body and p1, p2, . . ., pm be their locations at the r -coordinate,
respectively. Without loss of generality, we assume that these
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accelerometers are properly pre-calibrated in the sense that
their x-, y-, and z-axes are aligned to the xr , yr , and zr axes
of the r -coordinate, respectively (otherwise, a rotation matrix
from the r -coordinate to each sensor’s coordinate would do
the translation). This implies that the gravity being observed
by the joint is the same as that being observed by any sensor.

Now, consider any sensor si , i = 1, 2, . . . , m. Its location
with respect to the θ -coordinate at time t is p′

i(t) = r(t) +
R(t)pi (note that pi is time-invariant). Taking the second
derivative of p′

i(t), we have its acceleration with respect to
the θ -coordinate

p̈′
i(t) = r̈(t) + R̈(t)pi . (1)

Since si is calibrated to the r -coordinate, its actual reading
ai (t) should be ai(t) = RT (t)

(− p̈′
i(t) + �g) + ni (t), where

RT (t) is the inverse/transpose of R(t) (the inverse of a rotation
matrix equals its transpose) and ni (t) is the noise. Note that
both ai (t) and ni (t) are 3 × 1 vectors with respect to the
r -coordinate, and each element of ni (t) has a zero mean with
a standard deviation σn . [For example, when the rigid body is
at rest, p̈′

i(t) = 0 and ai (t) = RT (t)g + ni (t); when it falls
freely, ai (t) = ni (t).]

Below, assuming a fixed t , we will omit time information
in our formulation. Plugging Eq. (1) into ai , we have

ai = RT (−r̈ − R̈ pi + �g) + ni

= [
RT (−r̈ + �g) , −RT R̈

]
[

1
pi

]
+ ni .

Putting m equations for all si ’s together, we have the equality

A = Q P + N (2)

where

A = [
a1 . . . am

] ∈ �3×m,

Q = [
RT (−r̈ + g) , −RT R̈

] ∈ �3×4,

P =
[

1 . . . 1
p1 . . . pm

]
∈ �4×m ,

N = [
n1 . . . nm

] ∈ �3×m .

Here, A and P are known and Q is to be determined. P is
called the deployment matrix of sensors s1, s2, . . ., sm .

Assuming that the joint moves at a constant velocity with
respect to θ , we can plug r̈ = 0 in Eq. (2). Hence, Q’s first
column vector RT (−r̈ + g) = RT g. By estimating Q, we can
determine RT g. Let Q̂ be an estimation of Q. Following [2],
a Q̂ that makes Q̂ − Q as small as possible can be found by
Q̂ = AP+, where P+ is the Moore–Penrose pseudoinverse
of P when m > 4 and P+ = P−1 (the inverse of P) when
m = 4 [31]. This implies that to find Q̂ we need at least four
sensors. Since Q̂− Q is zero-mean, to measure how Q̂ is close
to Q, [2] defines an error variance, which solely depends on
the deployment matrix P:

σ 2
e (P) = 3σ 2

n

4∑

k=1

1

ρ2
k (P)

(3)

where ρk(P) is the kth largest singular value of P . It is claimed
that a smaller σ 2

e (P) implies a more accurate Q̂. Therefore,

we formulate the deployment optimization problem as follows:
given a rigid body and m accelerometers to be deployed on
the surface of the rigid body, the goal is to find a deployment
matrix P such that the error variance σ 2

e (P) is minimized.
Note that since the 3σ 2

n in Eq. (3) is a constant, we only need
to focus on the summation part.

IV. OPTIMIZATION HEURISTICS

The above formulation has related the sensor deployment
problem to one of finding a P that minimizes σ 2

e (P). The
problem is difficult even for simple geometries. Below, we
present two heuristics, called Metropolis-based and largest-
inter-distance-based (LID-based) methods. The former is
based on probabilistic optimization, and the latter is based
on some observations and guidelines.

A. Metropolis-Based Method

We present a Metropolis-based deployment method that can
be applied to rigid bodies of arbitrary shapes. It follows a
probabilistic search to get rid of local optimal solutions. It,
however, has longer search time. This is acceptable for our
sensor deployment problem since once a good solution is
found, it can be used repeatedly.

In this method, we partition the surface of the rigid body
into mesh-like grid points. We say that two deployment
matrices Pi and Pj are neighbors if they differ by exactly
one sensor’s location and this sensor’s locations in Pi and Pj

are neighboring grids. We define the eight nearest grid points
of a grid point as the latter’s neighbors. Therefore, each Pi

has up to 8m neighbors. We denote by B(Pi ) the set of Pi ’s
neighbors. The algorithm works as follows.

1) Select any arbitrary deployment matrix Pi .
2) From Pi , we choose one of its neighbors, say Pj , as the

next deployment with probability qi j (discussed below).
Note that

∑
∀ j qi j = 1.

3) Repeat step 2 for a predefined number of times, and
output the best deployment (with the smallest σ 2

e (P))
along the above search path.

We design the transition probability qi j according to the
Metropolis’ theorem [32]. The resulting qi j s should ensure: if
we run the above search process long enough, each deploy-
ment P should be visited by a mathematically stationary
distribution π(P) such that

π(P) =
(
1/σ 2

e (P)
)λ

C
(4)

where the parameter λ > 3 and C = ∑
P

(
1/σ 2

e (P)
)λ

. Note
that C normalizes the distribution, and a higher λ ensures
that a better deployment will be allocated a higher visiting
probability. By Metropolis’ theorem, this transition probability
should be defined as

qi j =

⎧
⎪⎨

⎪⎩

1
8m min{1,

π(Pj )
π(Pi )

} if Pj ∈ B(Pi ),

0 if Pj �∈ B(Pi ),

1 − ∑
Pj �=Pi

qi j if Pj = Pi .

(5)

Note that the actual value of C is immaterial in Eq. (5).
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We argue that, though simple, this algorithm is highly
probable to obtain a near-optimal solution. This is because
Eq. (4) is devised similar to a (continuous) Pareto distribution
with a density function f (x) = C ′/xλ defined over a ≤ x ,
where C ′ and a are constants. The Pareto distribution has a
mean of (λ− 1)a/(λ− 2), which is very close to the minimal
value a for a large λ. Through this similarity, we can expect the
mean

∑
P σ 2

e (P)π(P) to be very close to the minimum σ 2
e .

Note that the variance of a Pareto distribution is also very tight
for a large λ. Hence, once the search reaches the stationary
distribution, the output deployment is highly probable to be a
near-optimal solution.

B. Largest-Inter-Distance-Based Method

While the Metropolis-based method takes a long time to
search near-optimal solutions, this method is based on some
observations and a guideline, making it both efficient and
effective in most cases. To minimize the term

∑4
k=1 1/ρ2

k (P)
in Eq. (3), we propose the following “largest inter-distance
(LID)” guideline: Sensors should be evenly distributed over the
surface area such that the distance between each pair of them
is maximized. The guideline is drawn from observations on
some special cases where optimal deployments can be found.
Below, we discuss these special cases and then present the
LID-based method.

To show the optimality of a deployment, we present the
following lemma.

Lemma 1: The error variance σ 2
e (P) of a 4 × m deploy-

ment matrix P = (Pij ) is bounded by

σ 2
e (P) ≥ 16/|P|2 (6)

where |P| =
√∑

i, j P2
i j . The equality holds iff ρ1(P) =

ρ2(P) = ρ3(P) = ρ4(P).
Proof: The harmonic mean of ρ2

k (P), k = 1, . . . , 4, can
be expressed by

4

1/ρ2
1 (P) + 1/ρ2

2(P) + 1/ρ2
3 (P) + 1/ρ2

4 (P)
= 4

σ 2
e (P)

.

By properties of the Frobenius matrix norm [33], we have
ρ2

1 (P) + ρ2
2 (P) + ρ2

3 (P) + ρ2
4 (P) = |P|2, so the arithmetic

mean of ρ2
k (P)s is |P|2/4. The lemma is a direct consequence

of the fact that the arithmetic mean is always larger than the
harmonic mean. Eq. (6) holds when ρ2

i (P) = ρ2
j (P) for all i

and j [34], or simply ρi (P) = ρ j (P) because ρi (P) ≥ 0 for
all i .

Lemma 1 also suggests that when the joint of a rigid
body is at its geometric center, a near-optimal deploy-
ment may be obtained according to the LID guideline.
To see this, consider a spherical rigid body with its joint
at its center. Since each point on the sphere is equidis-
tant to the joint, the |P| has a fixed value. In Fig. 4(a),
we deploy three fixed sensors at p1 = (1/

√
3 − 1,

1+1/
√

3,−√
3/3), p2 = (1+1/

√
3, 1/

√
3−1,−√

3/3), and
p3 = (−2/

√
3,−2/

√
3,−√

3/3), and move the fourth sensor
p4 around on the upper part of the sphere. Let the coordinate of
p4 be (p4x, p4y, p4z). Fig. 4(b) shows the reciprocal 1/σ 2

e (P)
with respect to (p4x, p4y). Evidently, a larger 1/σ 2

e (P), or a
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Fig. 4. (a) Sphere rigid body attached by three fixed sensors and one moving
sensor and (b) reciprocals 1/σ 2

e (P) by moving point p4.
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Fig. 5. (a) Cube rigid body attached by three fixed sensors and one moving
sensor and (b) reciprocals 1/σ 2

e (P) by moving point p4.

smaller σ 2
e (P), can be obtained by moving p4 farther away

from other sensors. The maximal value of 1/σ 2
e (P) appears

at p4 = (0, 0,
√

3). Under this configuration, we actually have
ρ1(P) = ρ2(P) = ρ3(P) = ρ4(P) = 2. Since |P| is fixed
for all Ps, the optimality directly follows from Lemma 1.
Basically, following the LID guideline to move four sensors
around a sphere will result in forming a regular tetrahedron,
whose faces are regular triangles. It can be shown that such
deployments are optimal (see the proof in Appendix I). We
summarize the results with a theorem.

Theorem 1: Given four sensors to be deployed on a sphere
rigid body whose joint is at its geometric center, a regular
tetrahedron deployment gives the minimum σ 2

e (P).
The LID guideline can also be applied to other geometries.

In Fig. 5(a), we consider four sensors to be deployed on a cube
whose joint is at its geometric center. We fix three sensors at
p1 = (1,−1,−1), p2 = (−1,−1, 1), and p3 = (−1, 1,−1)
and move p4 = (p4x , p4y, 1) around the top surface where
−1 ≤ p4x ≤ 1 and −1 ≤ p4y ≤ 1. Fig. 5(b) shows the
reciprocal 1/σ 2

e (P) with respect to (p4x, p4y). As can be seen,
when p1, p2, p3, and p4 follows the LID guideline and results
in forming a regular tetrahedron, the deployment is optimal
(see the proof in Appendix II).

Theorem 2: Given four sensors to be deployed on a cube
rigid body whose joint is at its geometric center, a regular
tetrahedron deployment at the vertices gives the minimum
σ 2

e (P).
For the case of a rectangular box with the joint placed

at its geometric center, we have experimented many cases
with four sensors and found that a tetrahedron-like deployment
(such as the one in Fig. 6) always gives the minimum σ 2

e (P).
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Fig. 6. Rectangular box attached by four sensors with its joint at ×.

Fig. 7. Example of iterative projection on three consecutive polygons.

Fig. 8. Example of running the LID-based method by Unity. (a) Initial
deployment. (b) Final deployment.

Fig. 9. Rigid body geometries, each with its joint placed at one of the three
possible positions. (a) Cube. (b) Box. (c) Prism. (d) Cylinder. (e) Arm.

However, we can not derive a formal proof of its optimality
yet. On the other hand, when the joint is not at its geo-
metric center, we do find a counterexample as follows. In
the case of Fig. 6, where the joint is at the left surface
(marked by a ×), the σ 2

e (P) is 0.5844. With the same joint
position, when p1 = (0, 2.5, 1.6), p2 = (0,−0.7,−2.46),
p3 = (1.56,−2.5, 2.48), and p4 = (12.84, 2.5,−2.48), we
find a smaller σ 2

e (P) = 0.5347. Hence, the LID guideline
is able to give optimal solutions in some special cases and
near-optimal solutions in general.

Now, we present an algorithm to implement the LID guide-
line for rigid bodies of arbitrary shapes. It distributes sensor
nodes by introducing virtual forces that mimics the electronic

particles distribution principle: the nearer the particles, the
stronger the repelling forces between them. This algorithm
works as follows.

1) Initially, randomly place sensors s1, s2, . . . , sm on the
surface of the rigid body. Let p1, p2, . . . , pm be their
locations, respectively.

2) For each pair of si and s j , the repelling force contributed
by s j on si is defined by a 3 × 1 vector

f j i =
(

1

‖pi − p j‖ + β

)
pi − p j

‖pi − p j‖
where β is a constant speed to expedite the iterative
process. In the exceptional case of pi = p j , we set
f j i to a unit vector of any direction. The total force
contributed by all other sensors on si is fi = ∑

j �=i f j i .
3) For each sensor si , we let it move a displacement vector

of k fi , where k is a scaling constant. So the new location
of si is pi + k fi . Since this location may not be on
the surface of the rigid body, a projection operation is
needed (we will discuss this below).

4) Let p(old)
i and p(new)

i be the previous and next locations
of si , respectively. We test whether

∑m
i=1‖p(new)

i −
p(old)

i ‖ ≤ σth, where σth is a threshold value, or the
allowed number of iterations is reached. If so, we
terminate this algorithm; otherwise, go back to step 2.

The above algorithm follows the virtual-force discipline [35]
to maximize the inter-distances among sensors. Note that since
the final locations depend on the initial locations, to avoid
falling into a local minimum, we may repeat the algorithm
several times with randomized initial locations.

Below, we explain the projection operation in step 3.
To be computationally feasible, we approximate a surface
by polygons as usually done in computer graphics. Fig. 7
shows an example. Sensor si is at location pi and is pushed
by a displacement k fi . The projection is conducted in a
polygon-by-polygon manner. First, pi + k fi is projected to
polygon 1. Since the projected point is beyond the range
of polygon 1, we regard that a partial displacement d1
out of k fi has been consumed and si has been moved
to p′

i , which is at the edge of polygon 1 (see Fig. 7).
A remaining displacement of k fi − d1 needs to be applied to
p′

i . Similarly, p′
i + (k fi −d1) is projected to polygon 2. Since

the projected point is also beyond the range of polygon 2,
we regard that a partial displacement d2 out of k fi − d1 has
been consumed and si has been moved to p′′

i , which is at
the edge of polygon 2 (see Fig. 7). A remaining displace-
ment of k fi − d1 − d2 needs to be applied to p′′

i . Finally,
p′′

i + (k fi − d1 − d2) is projected to polygon 3. Since the
projected point is within the range of polygon 3, the final
location of si is p′′′

i on polygon 3. Note that the above iterative
process is indeed supported by many 3D game engines, such
as Unity [36]. Fig. 8 shows how we configure an arm by
polygons in Unity and run our LID-based method.

V. SIMULATION AND EXPERIMENTAL RESULTS

We have conducted simulations and real experiments to
verify our schemes.
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Fig. 10. Comparison of α, with 95% confidence intervals shown on the bars. (a)–(e) Geometry a–e.

A. Simulation Setup

We consider five rigid body geometries in Fig. 9. For each
geometry, we simulate its joint at three possible positions, one
at its geometric center (shown by ◦), one at the center of a
face (shown by ×), and one at a corner (shown by 
). The
combinations of geometries and joints give a total of 15 rigid
bodies to be evaluated.

For each rigid body, we compare the following three deploy-
ment methods.

1) Random Deployment: This method distributes sensors
at random positions. It represents previous approaches,
which place sensors without any optimization [2].

2) Metropolis-Based Deployment: This is our Metropolis-
based deployment method. In our simulations, we give
each run 10 000 iterations and set the grid sizes of
geometries (a) to (e) in Fig. 9 to 0.1, 0.4, 0.4, 0.2, and
0.15, respectively.

3) LID-Based Deployment: This is our LID-based deploy-
ment method. In our simulations, we set β = 0.5, k = 1,
and σth = 0.0001. The maximum iteration number of a
run is set to 10 000.

To simulate the estimation of gravity vectors, for each
deployment matrix P , we follow Eq. (2) to calculate Q̂.
Without any loss of generality, R in Eq. (2) is set to the
identity matrix, so the real gravity vector RT �g (which is hidden
in Q) becomes �g. The R̈ is arbitrarily set to the identity matrix

because it is filtered out by our estimation scheme. The noise
level σn is set to 50 mg (note that the magnitude of �g is 1000
mg). The estimated gravity vector ĝ is the first column of Q̂.
Since �g has a constant magnitude, we compare the angle α
between ĝ and �g.

B. Comparison of Accuracy and Execution Time

First, we consider using m = 4 sensors only. For each
rigid body, each method is run 200 times (each with its own
randomized initial sensor positions) to constitute an averaged
simulation result. We compare methods by α, σ 2

e , and the
execution time.

The results of α and σ 2
e are shown in Figs. 10 and 11,

respectively. The unit of σ 2
e is ignored since it is merely

used for comparison. Comparing Figs. 10 and 11, we see that
optimizing α can be done through σ 2

e . The random deploy-
ment method always gives large α and σ 2

e . Our proposed
methods obtain significant improvements and also show tight
confidence intervals. The LID-based method outperforms the
Metropolis-based method in most cases, except a few cases
in Fig. 11(c) for the triangular prism. One possible reason
for the exceptions may be that it does not consider the joint
position. Since both proposed methods give very small σ 2

e , we
can believe that their results are near-optimal.

Fig. 12 compares the execution time measured on a PC
with an Intel i7 CPU. We report the cases when joints are at
the geometric centers. The random method terminates almost
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Fig. 11. Comparison of σ 2
e , with 95% confidence intervals shown on the bars. (a)–(e) Geometry a–e.
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Fig. 12. Comparison of execution time. (a)–(e) Geometry a–e.

immediately after execution, but it gives poor results. The
Metropolis-based method trades notably longer execution time
for better results. Evidently, the LID-based method is both
effective and efficient.

C. Effects of the Number of Sensors

The previous results only consider m = 4. Here we vary
m to observe the effect. For each value of m, we repeat

the previous simulations for our proposed methods. The ran-
dom deployment method is ignored (for better presentation).
Figs. 13 and 14 show the mean α and the mean σ 2

e , respec-
tively, where we denote by “J1” the joint position 1 (refer to
Fig. 9), by “J2” the joint position 2, and so on. The results
show that deploying more sensors does reduce the errors. The
LID-based method is still preferred. Note that in Fig. 13(c),
for the joint position 2, the LID-based method can outperform
the Metropolis-based method by using m = 5 sensors. Fig. 15
compares the execution time. The LID-based method is not
sensitive to the value of m, whereas the Metropolis-based
method has linearly increasing execution time as m increases.

D. Real Gravity Measurement

In addition to simulations, we also conducted real exper-
iments to measure the gravity vector. We constructed a rec-
tangular box, fixed the box by a hinge joint, deployed eight
lab-made sensor nodes on its surface, and then rotated the
box to test the measurement. Each sensor node is equipped
with a triaxial accelerometer and a triaxial gyroscope. Fig. 16
shows our experiment scenario and how we rotated the box
around the beam. Here, the joint is set to be (0, 0, 0) of the
r -coordinate, whose three axes are denoted by xr , yr , and
zr , respectively. Note that the xr axis is along the beam. We
rotated the box “up” and “down” around the beam repeatedly.
The sensors sampled the motion at a rate of 10 Hz. The
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Fig. 13. Effects of m on α. (a)–(e) Geometry a–e.
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Fig. 14. Effects of m on σ 2
e (P). (a)–(e) Geometry a–e.

sensing data was stored at each sensor node and reported to
a sink in a reliable way. Then, for the accelerometers, we

computed the estimated gravity vector ĝ(t) with respect to the
r -coordinate. For comparison, we also measure the rotation of
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Fig. 15. Effects of m on execution time. (a)–(e) Geometry a–e.

(a)

(b) (c)

Fig. 16. Our experimental scenario (a) geometry model, (b) state “up,” and
(c) state “down.”

the box by integrating the angular velocities obtained from a
gyroscope.

To show the accuracy, we note that the real gravity vector
RT �g(t) is unavailable. Since any measurement method is
accompanied with its own errors, it is difficult to show the

accuracy of a method by numerical comparison with other
methods. However, some ground truths are available in our
designed experiment. The most obvious one is that the direc-
tion of ĝ(t) should correspond to how we rotated the box.
Let αx (t) be the angle between ĝ(t) and xr , and αy(t) be that
between ĝ(t) and yr . We compare three schemes. Fig. 17(a)
shows the result when only the accelerometer at p3 is used
to measure the gravity (so, ĝ(t) is the raw data). It shows
how the traditional scheme of a single accelerometer would
perform. Fig. 17(b) shows the result of our scheme, where
we use all accelerometers to compute ĝ(t), which is obtained
from the first column of Q̂(t). Fig. 17(c) shows the result
obtained from the gyroscope at p3. We directly measure αx(t)
and αy(t) by integrating the angular velocities around xr and
yr , respectively.

For the results in Fig. 17, ideally, αx (t) should be a constant
(because the rotation was about the xr -axis) and αy(t) should
show an “up-down” pattern in the range of 90° to 180°. Since
a gyroscope is less sensitive to motion accelerations, we use
Fig. 17(c) as a reference to compare our scheme with the
traditional scheme. Note that a gyroscope also suffers from
its own problems, such as drifting biases. We only consider
the tendency of its waveform to be similar to the ground
truth. Now, for αx (t), it should be evident that our scheme
is closer to Fig. 17(c) whereas Fig. 17(a) is quite unstable.
The αy(t) of our scheme is also closer to Fig. 17(c). The
unstable peak values of Fig. 17(a) show that it suffers more
from motion accelerations when the rotation slows down and
begins to change direction. Our scheme is able to exploit
multiple accelerometers to eliminate such disturbance. The
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Fig. 17. Angles between ĝ(t) and the axes. (a) Traditional. (b) Our scheme.
(c) Gyroscope.

experimental results show that our scheme works well in real
situations.

VI. CONCLUSION

In this paper, we have investigated the gravity measure-
ment problem for rigid bodies. We have modeled the sensor
deployment problem by considering the locations of sensors
on one rigid body to minimize the measurement errors. The
model is quite suitable for BISNs. Based on our formulation,
we proposed two heuristics to find near-optimal deployments
for arbitrary rigid bodies. One is based on a probabilis-
tic optimization technique that eventually finds near-optimal
solutions. The other is based on a “largest inter-distance”
guideline, which leads to optimal solutions in some special
cases. Experimental results showed that our methods are quite
effective and significantly outperform previous approaches.

APPENDIX I
PROOF OF THEOREM 1

In Section IV-B, we show that Theorem 1 holds for a sphere
of radius

√
3. Here, we show that Theorem 1 also holds for

spheres of any radii. Specifically, let the position of a sensor
si , i = 1, . . . , 4, be pi = (pix , piy, piz). Deploying si on a
sphere of radius d implies that p2

ix + p2
iy + p2

iz = d2. We show
that when pis form a regular tetrahedron, the deployment is
optimal.

A deployment matrix P is a 4 × 4 matrix, where each
column is a four dimensional vector. Although the geometrical
interpretation of singular value decomposition (SVD) of P
plays an important role in understanding Theorem 1, it is
hard to show the SVD process for four dimensional vectors.
Noting that the LID guideline can be applied under dimension
reduction of P , instead of considering a 3D sphere and its
four-dimensional P directly, we will first consider deploying
m = 3 sensors on a 2D circle, analyze properties of its
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Fig. 18. SVD process for a regular triangle. (a) Before multiplying P .
(b) After multiplying P .

three-dimensional P (a 3 ×3 matrix) geometrically, and show
that following the LID guideline, a regular triangle deployment
is optimal. Then, the analysis will be extended to a four-
dimensional P in a straightforward manner to complete the
proof.

In the 2D reduction, three sensors are deployed on a circle
of radius d . Each si ’s location pi = (pix , piy) satisfies
p2

ix + p2
iy = d2. The deployment matrix becomes

P =
⎡

⎣
1 1 1

p1x p2x p3x

p1y p2y p3y

⎤

⎦ . (7)

Similarly, |P| has a fixed value. Below, we apply Lemma 1
to Eq. (7) to show that when pi s form a regular triangle
(the counterpart of a regular tetrahedron), the deployment is
optimal.

Each column of P in Eq. (7) is a vector that points to a
circle on the x = 1 plane [(refer to Fig. 18(b)]. It turns out
that when we consider a circle of any radius d , the equalities
ρ1(P) = ρ2(P) = ρ3(P) in Lemma 1 may not exist. To
overcome such difficulties, we extend P in Eq. (7) to

P̃ =
⎡

⎣
δ δ δ

p1x p2x p3x

p1y p2y p3y

⎤

⎦

where δ > 0. Note that in the 3D space of P̃ , the circle is
translated from the x = 1 plane to the x = δ plane.

Lemma 2: The equalities ρ1(P̃) = ρ2(P̃) = ρ3(P̃) hold if
and only if ‖p1− p2‖ = ‖p2− p3‖ = ‖p3− p1‖ and d = √

2δ.
Proof: Let the SVD of P̃ be P̃ = R2 � R1, where R1 and

R2 are rotation matrices, and � is the diagonal matrix whose
diagonal entries are ρ1(P̃), ρ2(P̃), and ρ3(P̃). As shown in
Fig. 18, the three matrices are applied to the base vectors
e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1) to carry
out the transformation. If ρ1(P̃) = ρ2(P̃) = ρ3(P̃), we have
P̃ = R2 � R1 = ρ1(P̃)R2 R1. That is, after multiplying P̃ , the
base vectors remain orthogonal to each other and each ei is
scaled by ρ1(P̃). At the x = δ plane, setting radius d = √

2δ
preserves the orthogonality, which also implies that p1, p2,
and p3 form a regular triangle. The “only if” part can be
shown similarly.
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In moving from the x = δ plane back to the x = 1 plane,
the following property holds.

Lemma 3: The product of singular values ρ1(P)ρ2(P)
ρ3(P) equals ρ1(P̃)ρ2(P̃)ρ3(P̃)/δ.

Proof: By properties of SVD, the squares of singular
values of a matrix P , namely ρ2

k (P)s, are the eigenvalues of
PT P . Since the determinant of a square matrix equals the
product of its eigenvalues, we have

det(PT P) = ρ2
1 (P)ρ2

2 (P)ρ2
3 (P).

We may decompose P̃ as

P̃ =
⎡

⎣
δ 0 0
0 1 0
0 0 1

⎤

⎦ P = �P.

By properties of determinants, we also have

det(P̃T P̃) = det
[
(�P)T (�P)

]

= det(�P) det(�P)

= det(�)2 det(PT P)

= δ2 det(PT P).

Since singular values are larger than zero, we have the desired
result.

Because the arithmetic mean
∑3

k=1 ρ2
k (P̃)/3 is fixed for

all deployments, from Lemma 2 and the power mean
inequality [34], we know that an extended P̃ where sen-
sors form a regular triangle has the largest geometric
mean

√
3ρ2

1 (P̃)ρ2
2 (P̃)ρ2

3 (P̃) and the largest harmonic mean
3/

∑3
k=1 ρ−2

k (P̃), and they are equal to the arithmetic mean.
Hence, by Lemma 3, we also know that the original P has
the largest geometric mean. Now that the arithmetic mean is
fixed for all deployments, we can expect that P has the largest
harmonic mean, supporting our claim.

We now extend the above discussion to the original 4 × 4
deployment matrix. We show that a regular tetrahedron, where
every tuple of three points pi , p j , and pk forms a regular
triangle, is an optimal deployment on a sphere. The extension
can be done in a straightforward manner. Lemma 2 and
Lemma 3 are extended as follows.

Lemma 4: The equalities ρ1(P̃) = ρ2(P̃) = ρ3(P̃) =
ρ4(P̃) hold if and only if d = √

3δ and p1, p2, p3, and
p4 form a regular tetrahedron.

Lemma 5: The following equality holds for a deployment
matrix P and its extension P̃ : ρ1(P)ρ2(P)ρ3(P)ρ4(P) =
ρ1(P̃)ρ2(P̃)ρ3(P̃)ρ4(P̃)/δ.
Again, since the arithmetic mean of ρ2

k (P)s is fixed for all
deployments, we can expect a tetrahedron, which has the
largest geometric mean, to also have the largest harmonic
mean. We show it by an example in Fig. 4. Since the harmonic
mean is the reciprocal of error variance σe(P), we conclude
that a regular tetrahedron is optimal.

APPENDIX II
PROOF OF THEOREM 2

First, we show that Theorem 2 holds for the cube in
Fig. 5(a). The four sensor locations p1, p2, p3, and p4 in

Fig. 5(a) form a regular tetrahedron, and the deployment
matrix P has the maximal norm |P|. Because a cube can
be circumscribed by an outer sphere, the regular tetrahedron
in Fig. 5(a) is indeed a rotation of the regular tetrahedron in
Fig. 4(a). From Theorem 1, we know that a regular tetrahedron
deployment is optimal for a fixed |P|. Then, the optimality
ensues from Lemma 1. Similarly, Theorem 2 also holds for
cubes of other edge lengths.
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