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We study the transport coefficients, including the conductivities and shear viscosity of the non-

relativistic field theory dual to the Lifshitz black brane with multiple Uð1Þ gauge fields by virtue of the

gauge/gravity duality. Focusing on the case of double Uð1Þ gauge fields, we systematically investigate

the electric, thermal, and thermoelectric conductivities for the dual nonrelativistic field theory. In the

large frequency regime, we find a nontrivial power law behavior in the electric alternating current

conductivity when the dynamical critical exponent z > 1 in (2þ 1)-dimensional field theory. The

relations between this novel feature and the ‘‘symmetric hopping model’’ in condensed matter physics

are discussed. In addition, we also show that the Kovtun-Starinets-Son bound for the shear viscosity

to the entropy density is not violated by the additional Uð1Þ gauge fields and dilaton in the Lifshitz

black brane.
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I. INTRODUCTION

The holographic principle [1,2], especially with its
first realization in string theory (the AdS/CFT correspon-
dence), offers us very intriguing and powerful tools to
deal with the strongly coupled quantum systems from the
dual viewpoint [3–5]. The more general framework of the
correspondence, which is called the gauge/gravity duality,
has been extensively applied to the study of QCD, quark
gluon plasma, hydrodynamics, etc.; for an incomplete list,
see Refs. [6–28]. In the framework of the gauge/gravity
duality, the features of strongly coupled quantum field
theory on the conformally flat boundary can be fully
captured by its dual weakly coupled classical gravita-
tional or string theory in the curved bulk spacetime.
Even though the gauge/gravity duality is widely believed
to be held for arbitrary spacetime backgrounds, so far,
there are only a few explicit examples, in which the best
known one is that the strongly coupled N ¼ 4 super-
symmetric Yang-Mills theory in four-dimensional flat
spacetime is equivalent to the classical (weakly coupled)
limit of the type IIB superstring theory (supergravity) in
AdS5 � S5 spacetime. For most other cases, one still
requires the bulk to be asymptotically anti-de Sitter
(AdS) spacetime, whereas the boundary field theory is
conformally invariant and relativistic. However, besides
numerous strongly coupled systems in high-energy phys-
ics described by the relativistic quantum field theory,
there also exist large classes of strongly coupled
phenomena described by the nonrelativistic field theory
in various condensed matter systems, especially near

the (quantum) critical points. Therefore, it is very
interesting and important to extend the gauge/gravity
duality into a nonrelativistic version in order to under-
stand the strongly coupled phenomena in the laboratory
condition.
Much progress has been made toward this direction in

the past few years. One class of work focused on the
study of field theories with the Schrödinger symmetry,
motivated by the study of fermions at unitarity; see
Refs. [29,30]. Another class of work tried to utilize the
dual gravitational theories to study the condensed matter
systems near quantum phase transitions that contain the
Lifshitz fixed points [31–41], such as the strongly corre-
lated electron systems. The particular property of the
Lifshitz symmetry is that it consists of the anisotropic
scaling

x ! �x and t ! �zt; (1)

where z is called the dynamical critical exponent. When
z ¼ 1, the above transformation is the usual relativistic
scaling. From the perspective of the gauge/gravity dual-
ity, the essential point is to construct bulk gravitational
solutions by adding some appropriate sources to realize
the boundary nonrelativistic quantum field theories with
the Lifshitz symmetry. The first attempt was done in
Ref. [31], in which a four-dimensional asymptotic
Lifshitz spacetime at zero temperature was obtained in
the AdS Einstein gravity together with one- and two-
form gauge fields. The bulk solution can be viewed as a
toy model to provide us with some useful descriptions
for certain magnetic materials and liquid crystals.
Subsequently, many asymptotic Lifshitz black hole so-
lutions have been found and analyzed; see, for example,
Refs. [33,36,42–47]. With the help of these solutions,
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important properties of the dual strongly coupled non-
relativisitc quantum field theories—such as the transport
coefficients, n-point correlation functions, renormalized
stress tensor, and higher-order corrections [48–51]—can
be studied by performing the calculations on the side of
the Lifshitz black holes/branes.

The asymptotic Lifshitz solutions can be obtained
from different types of theories; the one that received
much attention is the Einstein-Maxwell-dilaton (EMD)
theory, which can be used to model the dual nonrelativ-
istic quantum field theories at finite charge density.
Recently, a class of analytic Lifshitz black hole/brane
solutions has been solved in the EMD theory by adding
multiple independent Uð1Þ gauge fields [52]. These
kinds of charged Lifshitz black hole configurations can
provide potential interesting applications to condensed
matter systems such as fluids, non-Fermi liquids, and
conductors that contain the Lifshitz fixed points. Some
holographic aspects in these spacetime backgrounds
have been brought out, such as the instabilities of dual
superfluid by adding a probe charged scalar field in the
bulk [53].1 For other related works, see, for example,
Refs. [55–57].

The purpose of this paper is to use these charged
Lifshitz black branes [52] to further study certain inter-
esting phenomena of the dual strongly coupled nonrela-
tivistic quantum field theory with the Lifshitz fixed
points on the boundary. Based on the dictionary of the
gauge/gravity duality, we know that the multiple Uð1Þ
gauge fields in the bulk will source multiple electric
currents in the boundary field theory. As a theoretical
model, there are no constraints on the number of inde-
pendent electric currents even though their physical
interpretations are not yet very clear. What we focus
on in this paper is to investigate the transport coefficients
of the dual nonrelativistic field theory, which includes
the electric conductivity �, the thermal conductivity ��,
the thermoelectric conductivity �, and the shear viscos-
ity �. To reach this goal, we consider the linearized
gravitational and gauge field perturbations (the scalar
channel and the shear channel) in the bulk EMD theory.
In particular, the bulk Lifshitz black hole can be viewed
as the nonrelativistic counterpart of the Reissner-
Nordström-AdS black hole when N ¼ 2. Focusing on
this case, we calculate the conductivities of the dual
nonrelativistic field theories numerically, which are ex-
pected to capture the universal behavior of a class of
conductors near the Lifshitz fixed points. Speicifically,
after deriving the renormalized second-order on-shell
effective action, we work out the numerical results of
conductivities, including the electric, thermoelectric, and

thermal conductivities. In particular, we work in d ¼ 3
and d ¼ 4 (d is the dimension of the boundary field
theory) for 1 � z � 2. We find some new frequency
dependent power law features of the ac conductivities
in the large frequency regime for 1< z � 2. The pos-
sible relations between these novel features and the
symmetric hopping model in condensed matter physics
are discussed in the context. In addition, another inter-
esting problem is to see whether these additional bulk
Uð1Þ gauge fields and the dilaton will affect the famous
KSS bound derived in the Einstein gravity [10,11]. By
solving the equation of motion of the transverse graviton
at the low-frequency limit and applying the linear re-
sponse theory, we show that this bound is not violated,
although the additional gauge fields and dilaton do,
respectively, contribute to the shear viscosity as well as
the entropy density of boundary charged fluids.
The outline of the paper is as follows. In Sec. II, we

give a brief review of the Lifshitz black hole/brane
backgrounds that we will use in this paper. In Sec. III,
we obtain the renormalized second-order on-shell action
of the perturbations and compute the electric, thermal,
and thermoelectric conductivities of the boundary non-
relativistic field theory, in the N ¼ 2 case. We calculate
the shear viscosity of the boundary fluid both for N ¼ 1
and generic N cases by solving the equation of motion of
the transverse graviton in Sec. IV. Conclusions and dis-
cussions are drawn in Sec. V. Besides, we list some
detailed calculations for deriving the perturbation equa-
tions and the second-order on-shell actions in the
Appendix.

II. CONFIGURATION OF LIFSHITZ BLACK
HOLES/BRANES

Let us consider the (dþ 1)-dimensional theory with
action2

I¼
Z
ddþ1x

ffiffiffiffiffiffiffi�g
p

�
�
R��ð�Þ

4
F2�1

2
ð@�Þ2�1

2
Jð�ÞA2�Vð�Þ

�
; (2)

where F�	 ¼ @�A	 � @	A� is the Uð1Þ gauge field

strength, � is the dilaton field, �ð�Þ is the coupling
between the gauge field and the dilaton, Jð�Þ is the
source term, and Vð�Þ is the potential term. When we
add N � 1 number of independent Uð1Þ gauge fields,
the above variables can be accordingly changed as
�ð�Þ ! P

N
a¼1 �að�Þ and F�	 ! Fa�	, and the equations

of motion are

1A generalization of theses solutions with an additional hyper-
scaling violation factor was obtained in Ref. [54], in which their
dual nonrelativistic field theories were briefly analyzed as well.

2This action is usually referred to as the Einstein-Proca-dilaton
model when Jð�Þ � 0, i.e., when the gauge field is massive.
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h� ¼ dVð�Þ
d�

þ 1

4

XN
a¼1

d�a

d�
F2
a; r�ðfað�ÞF�	

a Þ ¼ JA	
a;

R�	 � 1

2
g�	R ¼ 1

2

XN
a¼1

�að�Þ
�
Fa��F

�
a	 � 1

4
g�	F

2
a

�
þ 1

2
J

�
Aa�Aa	 � 1

2
A2
ag�	

�

þ 1

2

�
@��@	�� 1

2
g�	ð@�Þ2 � g�	Vð�Þ

�
: (3)

The Lifshitz black holes can be obtained from the following ansatz:

ds2 ¼ �
ðrÞe��ðrÞdt2 þ dr2


ðrÞ þ b2ðrÞdxidxi; Aa ¼ AatðrÞdt (4)

together with

� ¼ �ðrÞ; Jð�Þ ¼ 0; Vð�Þ ¼ 2� and �a ¼ e�a�: (5)

Note that now the Einstein-Proca-dilaton model becomes the EMD model since we have set Jð�Þ ¼ 0.
For N ¼ 1 case, the solution is

ds2 ¼ � r2z

l2z
�ðrÞdt2 þ l2dr2

r2�ðrÞ þ
r2

l2
Xd�1

i¼1

dx2i ; �ðrÞ ¼ 1� rzþd�1
h

rzþd�1
;

A0
1t ¼ l�z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðdþ z� 1Þðz� 1Þ

p
�

ffiffiffiffiffiffiffiffi
d�1

2ðz�1Þ
p

rdþz�2; e� ¼ �r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz�1Þðd�1Þ

p
;

� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd� 1Þ
z� 1

s
; � ¼ �ðzþ d� 2Þðzþ d� 1Þ

2l2
;

(6)

where l is the curvature radius of the Lifshitz spacetime,� is the scalar field amplitude,m is related to the mass of the black
hole, and 0 is the derivative with respect to r. The Hawking temperature and the Bekenstein-Hawking entropy are,
respectively,

T ¼ ðzþ d� 1Þrzh
4�lzþ1

; SBH ¼ Vd�1

4Gdþ1

�
rh
l

�
d�1

; (7)

and Vd�1 ¼
R
dd�1x is the spatial volume of the boundary.

For generic N, the black hole solution is [52]

ds2 ¼ � r2z

l2z
fkðrÞdt2 þ l2

r2fkðrÞ
dr2 þ r2

l2
d�2

k;d�1;

fkðrÞ ¼ k

�
d� 2

dþ z� 3

�
2 l2

r2
þ 1�mr�ðdþz�1Þ þ XN�1

a¼2


2
a�

�
ffiffiffiffiffiffiffi
2z�1
d�1

p
l2z

2ðd� 1Þðdþ z� 3Þ r
�2ðdþz�2Þ;

A0
1t ¼ l�z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðdþ z� 1Þðz� 1Þ

p
�

ffiffiffiffiffiffiffiffi
d�1

2ðz�1Þ
p

rdþz�2; A0
at ¼ 
a�

�
ffiffiffiffiffiffiffi
2z�1
d�1

p

rdþz�2
; ða ¼ 2; . . . ; N � 1Þ

A0
Nt ¼ l1�z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðd� 1Þðd� 2Þðz� 1Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþ z� 3

p �
d�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðd�1Þðz�1Þ
p

rdþz�4; �1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd� 1Þ
z� 1

s
; �a ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz� 1Þ
d� 1

s
;

�N ¼ �d� 2

d� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd� 1Þ
z� 1

s
; ða ¼ 2; . . . ; N � 1Þ; e� ¼ �r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd�1Þðz�1Þ

p
; � ¼ �ðdþ z� 1Þðdþ z� 2Þ

2l2
;

(8)

where 
a are related to the charges of the black hole, while k is the factor indicating the topology of the horizon. For
k ¼ 0, the horizon is flat; for k ¼ �1, the horizon is hyperbolic, and the horizon is spherical for k ¼ 1. In the following, we
shall take the spatial flat case, namely, the Lifshitz black brane with k ¼ 0. When N � 2, the black brane will contain
multiple horizons in the presence of electromagnetic fields; let us define the outer event horizon to be located at r ¼ rh, i.e.,
fðrhÞ ¼ 0. Then the temperature of the black brane is
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T ¼ 1

4�

�
rh
l

�
zþ1

f0ðrhÞ

¼ 1

4�

�
rh
l

�
zþ1

�
2ðdþ z� 2Þ

rh
�mðdþ z� 3Þ

rdþz
h

�
; (9)

where fðrÞ ¼ 1 � mr�ðdþz�1Þ þ P
N�1
j¼2


2
j�

�
ffiffiffiffiffiffiffi
2z�1
d�1

p
l2z

2ðd�1Þðdþz�3Þ �
r�2ðdþz�2Þ. The horizon entropy SBH and entropy density
s of the dual conformal field theory are

SBH¼ rd�1
h

4Gdþ1l
d�1

Vd�1 and s¼ SBH
Vd�1

¼ rd�1
h

4Gdþ1l
d�1

: (10)

III. CONDUCTIVITIES

In this section, we will compute the conductivities of the
nonrelativistic quantum field theory dual to the Lifshitz
black brane. The electric conductivity � can be calculated
by just turning on the bulk gauge field fluctuations
�Axðt; rÞ ¼ axðrÞe�i!t. However, if we want to consider
the thermal conductivity �� and the thermoelectric conduc-
tivity �, we need to consider the backreaction of the gauge
fields to the metric; namely, we need to meanwhile turn on
�gtxðt; rÞ ¼ htxðrÞe�i!t. For the EMD theory (when taking
J ¼ 0) in Eq. (2), we can obtain the linearized Einstein and
Maxwell equations as (see the Appendix for details)

h0tx � 2b0

b
htx þ

XN
a¼1

�að�ÞA0
ataax ¼ 0; (11)

a00ax þ
�ðd� 3Þb0

b
þ 
0



� �0

2
þ �0

�að�Þ
d�að�Þ
d�

�
a0ax

þ!2


2
e�aax ¼

�
2b0htx

b

� h0tx



�
A0
ate

�; (12)

where bðrÞ, 
ðrÞ, and �ðrÞ are factors in Eq. (4). Note that
Eq. (11) is the first-order differential equation for htx,
which can be integrated out as

htx ¼ �bðrÞ2
Z 1

bðrÞ2
XN
a¼1

�að�ÞA0
ataaxdr; (13)

and Eq. (12) can be written into the following equation:

a00ax þ
�ðd� 3Þb0

b
þ 
0



� �0

2
þ �0

�að�Þ
d�að�Þ
d�

�
a0ax

þ!2


2
e�aax ¼ 1




�XN
c¼1

�cð�ÞacxA0
ct

�
A0
ate

� (14)

with the help of Eq. (11).
When N ¼ 1, the background Lifshitz black brane,

Eq. (6), is neutral as the Schwarzschild AdS black brane;
the electric conductivity has been studied by adding a
probe Uð1Þ gauge field in the bulk in Ref. [49].

In the following, we will focus on the N ¼ 2 situation,
in which

e�� ¼
�
r

l

�
2z�2

; 
ðrÞ ¼ r2

l2
fðrÞ;

e� ¼ �r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd�1Þðz�1Þ

p
; bðrÞ ¼ r

l
;

fðrÞ ¼ 1�mr�ðdþz�1Þ þ 
2
2�

�
ffiffiffiffiffiffiffi
2z�1
d�1

p
l2z

2ðd� 1Þðdþ z� 3Þ r
�2ðdþz�2Þ:

(15)

Recall that for the N ¼ 2 case, the background gauge field
A1t is divergent at the spatial infinity; it only supports the
asymptotic Lifshitz geometry instead of contributing to the
free charge of the background electromagnetic field [52].
On the contrary, the gauge field A2t plays the role of the
free electromagnetic field. Besides, our numeric results
show that the asymptotic expansion of a1x is also divergent
at the spatial infinity. Thus, only the fluctuations of A2,
namely, a2x, are the genuine electromagnetic perturba-
tions, which will contribute to the electric conductivities
of the dual field theory on the boundary. Consequently, to
study the conductivities, we only need to turn on the
perturbations a2x and htx while turning off the perturbation
a1x. Then after substituting the above black brane solution,
Eq. (15), into the original fluctuation equations (11) and
(14), we obtain

h0tx � 2

r
htx þ 
2r

z�da2x ¼ 0; (16)

a002x þ
�
f0

f
þ dþ 3z� 4

r

�
a02x

þ
�
!2l2zþ2

f2r2zþ2
� 
2

2�
�

ffiffiffiffiffiffiffi
2z�1
d�1

p
rð2�2d�2zÞl2z

f

�
a2x ¼ 0: (17)

The explicit asymptotic behavior of a2x near the infinite
boundary with certain d and z considered in this paper can
be found in Table I, in which C1 and C2 are expansion
coefficients that depend on the frequency !. According to
the gauge/gravity duality, C1 represents the source, while
C2 represents the vacuum expectation value of the current
operator Jx dual to a2x.
In addition, the asymptotic behavior of htx near the

infinity boundary is

htx � r2hð0Þtx þ hð1Þtx

rðd�z�1Þ þ � � � ; (18)

TABLE I. The expansions of a2x with respect to various d and
z near infinity. The coefficients C1 and C2 are functions of the
frequency !.

z ¼ 1 z ¼ 3=2 z ¼ 2

d ¼ 3 C1 þ C2

r C1 þ C2

r5=2 C1þC1!
2 logðrÞ
4r4

þC2

r4

d ¼ 4 C1þC1!
2 logðrÞ
2r2

þC2

r2
C1þ 2C1!

2

3r3
þ C2

r7=2
C1 þ C1!

2

4r4
þ C2

r5
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where hð1Þtx ¼ C1
2=ð1þ d� zÞ, in which C1 is the source
term of the expansions in a2x; see Table I.

A. Second-order on-shell action

In order to compute the transport coefficients of �, �,
and ��, we need to know the quadratic on-shell actions for
these perturbations. The on-shell action for the perturba-
tion a2x and htx up to second order is (we have set l ¼ 1)

Sð2Þon-shell ¼ Sð2Þa2x þ Sð2Þhtx
; (19)

where

Sð2Þa2x ¼
Z

ddx

�
� 1

2
a2xa

0
2xe

��=2�2ð�Þ
rd�3

���������r!1
; (20)

Sð2Þhtx
¼
Z

ddxe�=2rd�3

�
�htxh

0
tx þ 1

2
h2tx

�

0



� �0

����������r!1
:

(21)

Usually, the on-shell action, Eq. (19), is divergent near the
asymptotic boundary; the divergence can be eliminated
through the holographic renormalization approach, i.e.,
by adding appropriate boundary counterterms to the action
(see, for example, Refs. [58–60]). In the configuration of
the Lifshitz black brane, the counterterms have different
forms with respect to different d and z. We will list them in
the following.

First of all, we will introduce the counterterms to Sð2Þa2x in
Eq. (20). These counterterms are classified according to the
expansions of a2x in Table I: a) d ¼ 3, z ¼ 1, and 3=2.—In

this case, the on-shell action of Sð2Þa2x is finite at the infinite

boundary. There are no counterterms to Sð2Þa2x just like in the
usual relativistic holographic superconductors [61].

b) (d ¼ 3, z¼2) and (d ¼ 4, z¼1).—For (d ¼ 3, z¼2)
and (d ¼ 4, z ¼ 1), there will be logarithmic divergence

for Sð2Þa2x on the infinite boundary. In this case, the generic
expansions of a2x near r ! 1 now are

a2xðrÞ�C1þ C1!
2 logðrÞ

ðdþ3z�5Þrdþ3z�5
þC2

�
1

r

�
dþ3z�5

: (22)

The divergent term of Sð2Þa2x can be obtained from Eq. (20) as

Idiv:a2x ¼
Vd�1

T
C1

2!2 log ðrÞ�
ffiffiffiffiffiffiffi
2z�1
d�1

p
; (23)

where T is the temperature of the boundary field theory and
Vd�1

T is just the volume integration
R
dtdd�1xi. Therefore, in

this case the counterterm should be

Ict:a2x ¼ � 1

2
log ðrÞ

Z
ddx

ffiffiffiffiffiffiffiffiffiffi
��0

q
�2ð�ÞðF0

ijÞ2; (24)

where �0 is the determinant of the induced metric while F0
ij

is the induced gauge field strength on the asymptotic UV
cutoff boundary, respectively. It is easy to get that ðF0

ijÞ2 ¼
2!2ða2xÞ2r�2z=
. Therefore, the finite on-shell Sð2Þa2x is

Ið2Þa2x ¼ Sð2Þa2x þ Ict:a2x

¼
Z

ddx

�
C1C2ðdþ 3z� 5Þ � C2

1!
2

dþ 3z� 5

�
: (25)

c) d ¼ 4, z ¼ 3=2 and 2.—For d ¼ 4, z ¼ 3=2, and
z ¼ 2, the general expansions of a2x is

a2xðrÞ � C1 þ C1!
2

2ðz� 1Þz
�
1

r

�
2z þ C2

�
1

r

�
3z�1

: (26)

In this case, the divergent term of Sð2Þa2x is

Idiv:a2x ¼
Vd�1

T

!2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz�1Þ=3

p
C2
1

z� 1
rz�1: (27)

The counterterm for this divergence now is

Ict:a2x ¼
�1

2z� 2

Z
ddx

ffiffiffiffiffiffiffiffiffiffi
��0

q
�2ð�ÞðF0

ijÞ2: (28)

Therefore, from the expansions, we can get the finite on-
shell action as

Ið2Þa2x ¼Sð2Þa2x þIct:a2x ¼
Z
ddxC1C2ð3z�1Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz�1Þ=3

p
: (29)

Next, we will introduce the counterterms for the on-shell

action Sð2Þhtx
in Eq. (21). We can expand it near r ! 1 as

Sð2Þhtx
¼ Idiv:htx þ Ifinite:htx ; (30)

where,

Idiv:htx ¼
Z

ddxðhð0Þtx Þ2ðz� 2Þrd�zþ1; (31)

Ifinite:htx ¼
Z

ddx

�ðdþ z� 3Þ
d� zþ 1

C1
2h
ð0Þ
tx

þ 1

2
ðhð0Þtx Þ2mðdþ z� 1Þr2�2z

�
: (32)

It can be found that when z ¼ 1, the last term in Ifinite:htx is

finite, while for z > 1 it will vanish at r ! 1. As usual, we
can introduce the Gibbons-Hawking term IGH and a coun-
terterm for the cosmological constant Ict:cc into the on-shell
action to cancel the divergence,3 where

IGH ¼ 2
Z

ddx
ffiffiffiffiffiffiffiffiffiffi
��0

q
K; (33)

Ict:cc ¼ 2
Z

ddx
ffiffiffiffiffiffiffiffiffiffi
��0

q
ðd� 1Þ; (34)

in which K ¼ �0
�	r�n	 is the trace of the extrinsic curva-

ture while n� is the outward-pointing unit normal vector on
the boundary. Expanding Eqs. (33) and (34) to the qua-
dratic order of the perturbations near r ! 1, we arrive at

Ið2ÞGH ¼
Z

ddx

�
ðhð0Þtx Þ2ðz� d� 1Þrd�zþ1

þ 1

2
ðhð0Þtx Þ2mðdþ z� 1Þr2�2z

�
; (35)

3The counterterms for the Lifshitz spacetime in Eq. (10) in
Ref. [60] will be the same as ours if they restricted to the Ricci
flat boundary.
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Ið2Þct:cc ¼
Z

ddx

�
ðhð0Þtx Þ2ðd� 1Þrd�zþ1 þ 2ðd� 1Þ

d� zþ 1
C1
2h

ð0Þ
tx

þ 1

2
ðhð0Þtx Þ2ðd� 1Þmr2�2z

�
: (36)

Therefore, the total finite on-shell action of the perturbation
htx can be obtained from Eqs. (31), (32), (35), and (36) as

Ið2Þhtx
¼Sð2Þhtx

�Ið2ÞGH�Ið2Þct:cc

¼
Z
ddx

�
�C1
2h

ð0Þ
tx �mðd�1Þ

2
ðhð0Þtx Þ2r2�2z

�

¼
Z
ddx

�
�ðdþ1�zÞhð0Þtx h

ð1Þ
tx �mðd�1Þ

2
ðhð0Þtx Þ2r2�2z

�
:

(37)

Therefore, finally, the total renormalized quadratic
on-shell action for the perturbations a2x and htx is

Ið2Þtotal ¼ Ið2Þhtx

¼
Z

ddx

�
C1C2ðdþ 3z� 5Þ

� ðdþ 1� zÞhð0Þtx h
ð1Þ
tx �mðd� 1Þ

2
ðhð0Þtx Þ2r2�2z

�
;

(38)

for d ¼ 3, z ¼ 1, and 3=2;

Ið2Þtotal ¼ Ið2Þa2x þ Ið2Þhtx

¼
Z

ddx

�
C1C2ðdþ 3z� 5Þ � C2

1!
2

dþ 3z� 5

� ðdþ 1� zÞhð0Þtx h
ð1Þ
tx �mðd� 1Þ

2
ðhð0Þtx Þ2r2�2z

�
;

(39)

when (d ¼ 3, z ¼ 2) and (d ¼ 4, z ¼ 1); or

Ið2Þtotal ¼ Ið2Þa2x þ Ið2Þhtx

¼
Z

ddx

�
C1C2ð3z� 1Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz�1Þ=3

p

� ðdþ 1� zÞhð0Þtx h
ð1Þ
tx �mðd� 1Þ

2
ðhð0Þtx Þ2r2�2z

�
;

(40)

when d ¼ 4,z ¼ 3=2, and 2.

B. Electric, thermoelectric, and thermal conductivities

As long as we get the quadratic on-shell action for the
perturbations, we can derive the electric and thermal trans-
port coefficients jointly as follows:

hJxi
hQxi

 !
¼ � �T

�T ��T

 !
Ex

�ðrxTÞ=T

 !
; (41)

where Jx is the electric current and Qx is the heat current;
both are in the x direction. And �, �, and �� are the electric

conductivity, the thermoelectric conductivity, and the ther-
mal conductivity, respectively. Following the procedures in
Refs. [61,62], we can obtain these transport coefficients,
which are listed in Table II.
From Table II, we can find that both the thermoelectric

conductivity � and the thermal conductivity depend on the
electric conductivity � and the frequency !. Therefore, in
Figs. 1 and 2, we only show the numerical results for the
electric conductivity � since the rest transport coefficients
can be easily obtained from �. In the numerical calcula-
tions, we have scaled l ¼ 1, rh ¼ 1, and 
2 ¼ � ¼ 1.
Actually, in the numerical calculations, we have set the

integration starting point very close to the horizon but not
exactly equal to rh because the coefficients of Eq. (17) will
diverge at r ¼ rh, and we have adopted the usual incoming
wave boundary conditions near the horizon. From Figs. 1
and 2, we can find that at ! ¼ 0, the real parts of the
conductivity are finite; however, the imaginary parts of
the conductivity will diverge at ! ¼ 0. Thus, from the
Kramers-Kronig relations, we can readily deduce that the
real parts actually will develop a delta function at ! ¼ 0.
This delta function is due to the translational invariance of
the system. This is known in previous literature [62].
For large frequencies, the expansions for a2x can be

found in Table I, in which the coefficients C2 and C1 are
functions of !. Therefore, from Table II as well as Table I,
we can get the approximate behavior of the conductivity
depending on the frequency ! as

�d¼3ð!Þ �
8><
>:
!0; z ¼ 1;

!2=3; z ¼ 3=2;

!ðaþ log ð!ÞÞ; z ¼ 2:

�d¼4ð!Þ �
8><
>:
!ðbþ log ð!ÞÞ; z ¼ 1;

!4=3; z ¼ 3=2;

!3=2; z ¼ 2;

(42)

where a and b are some constants. This large-frequency
behavior of the conductivities can be seen from the right
parts of Figs. 1 and 2.
In Fig. 1, the real part of the conductivity will tend to a

constant when! becomes large for z ¼ 1, which is similar

TABLE II. The various conductivities for different z and d.

� � ��

z ¼ 1 C2ðdþ3z�5Þ
i!C1

� 
2

i!T � ��
T � mðd�1Þ

i!T þ�2�

d ¼ 3 z ¼ 3
2

C2ðdþ3z�5Þ
i!C1

� 
2

i!T � ��
T �2�

z ¼ 2 C2ðdþ3z�5Þ
i!C1

� 2!
iðdþ3z�5Þ � 
2

i!T � ��
T �2�

z ¼ 1 C2ðdþ3z�5Þ
i!C1

� 2!
iðdþ3z�5Þ � 
2

i!T � ��
T � mðd�1Þ

i!T þ�2�

d ¼ 4 z ¼ 3
2

C2ð3z�1Þ�
ffiffiffiffiffiffiffiffiffiffi
2ðz�1Þ=3

p
i!C1

� 
2

i!T � ��
T �2�

z ¼ 2 C2ð3z�1Þ�
ffiffiffiffiffiffiffiffiffiffi
2ðz�1Þ=3

p
i!C1

� 
2

i!T � ��
T �2�
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FIG. 2 (color online). The real and imaginary parts of the conductivity for d ¼ 4 with respect to various z. The left parts are of the
low-frequency regime, while the right parts are of the high-frequency regime.
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FIG. 1 (color online). The real and imaginary parts of the conductivity for d ¼ 3 with respect to various z. The left parts are of the
low-frequency regime, while the right parts are of the high-frequency regime.
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to the previous papers [61,62]. But the differences are in
the case of z ¼ 3=2 and z ¼ 2, in which the Reð�Þ will
depend on ! according to Eq. (42). This is an interesting
and new phenomenon from the viewpoint of the gauge/
gravity duality, which was not observed in the previous
literature as far as we know. For example, in Ref. [62] the
author argued that the electric conductivity in the case of
d ¼ 3 will tend to a constant because of the dimensional
analysis. However, here we can explicitly see that in our

model for d ¼ 3 and z > 1, � will be proportional to !sðzÞ
in the large frequency limit, where s is a function of z. This
peculiar frequency dependent ac electric conductivity may
be related to some new materials in the realistic world.
Fortunately, in Ref. [63] the author has studied the ac
conductivity for various disordered solids in (d ¼ 2þ 1)
and (d ¼ 3þ 1) dimensions, both experimentally and
theoretically. We found that the electric conductivity for
d ¼ 3 and d ¼ 4 in our Figs. 1 and 2 have similar behav-
iors to the experiments or the computer simulations in the
large-frequency limit in the paper [63]. In that paper, the
author has proposed a kind of symmetric hopping model to
illustrate the large-frequency behavior of the electric con-
ductivities. Therefore, we expect that the Lifshitz black
brane model in the present paper may be related to this kind
of symmetric hopping model from certain aspects. We will
further report this kind of relation in another work [64].

In Fig. 2 for z ¼ 1, the large-frequency behavior of the
conductivity is like !ðbþ log ð!ÞÞ, which resembles the
expansions in the Appendix in Ref. [65]. The arguments for
the conductivity for z ¼ 3=2 and z ¼ 2 are the same as
those for d ¼ 3 in Fig. 1.

IV. SHEAR VISCOSITY

As we know, any interacting field theory at finite tem-
perature in the limit of long time and long wavelength can
be effectively described by hydrodynamics. In this section
we will compute the shear viscosity of the dual field theory
in the low-frequency limit. To do so, we need to turn on the
transverse tensor mode fluctuation (which is the scalar
channel) of the metric �g�	 ¼ hxy.

A. The case of N¼ 1

Let us begin with the N ¼ 1 case first; see
Eq. (6). Taking the mode expansion of the fluctuation
�gxyðt; rÞ ¼ hxyðrÞe�i!tþik� (where � ¼ xd�1; see the

Appendix), we obtain the linearized Einstein equation of
the xy component as

’00 þ
�
zþ d

r
þ�0

�

�
’0 þ

�
l2þ2z!2

r2þ2z�2
� k2l4

r4�

�
’ ¼ 0; (43)

which is the equation of motion of a minimally coupled
massless scalar field propagating in the unperturbed space-
time background, where we have defined ’ ¼ hxy.

To solve Eq. (43), it is convenient to introduce the new

coordinate u2 ¼ rzþd�1
h

rzþd�1 ; then the boundary is located at

u ¼ 0, while u ¼ 1 is the horizon. After taking the long
wavelength limit k2 ! 0, the fluctuation equation becomes

’00 þ
� ~�0

~�
� 1

u

�
’0 þ 4l2ðzþ1Þ!2u

2ðz�dþ1Þ
dþz�1

r2zh ðzþ d� 1Þ2 ~�2
’ ¼ 0; (44)

where ~�ðuÞ ¼ 1� u2 and 0 is the derivative with respect
to u. At the horizon, since we are going to calculate the
retarded Green’s function of the dual field theory, we need
to impose the incoming wave boundary condition. Thus,
we set ’ ¼ ð1� uÞ��ðuÞ; then � can be determined
through the near horizon expansion of Eq. (44), which
gives � ¼ � i!

rz
h
ðzþd�1Þ . To obtain the solution of �ðuÞ in

the full spacetime region, we can expand it in terms of! as

�ðuÞ ¼ �0ðuÞ þ!�1ðuÞ þOð!2Þ (45)

and then solve the above equation order by order.
Furthermore, requiring �0 to be regular at the horizon
and normalizing it to be one at the boundary, as well as
�1 vanishing at the horizon, we find that

�0 ¼ 1 and �1 ¼ � i

ðzþ d� 1Þrzh
ln

�
1þ u

2

�
; (46)

then we have

’ ¼ ð1� uÞ�
i!

rz
h
ðzþd�1Þ

�
1� i!

ðzþ d� 1Þrzh
ln

�
1þ u

2

��
:

(47)

To compute the shear viscosity of the boundary
field theory, we need to compute the flux factor
F ¼ K

ffiffiffiffiffiffiffi�g
p

guu’�ðuÞ@u’ðuÞ, where K is a normalization

constant related to the effective coupling constant of the
bulk transverse graviton. Keeping to the order ofOð!Þ, it is
straightforward to compute the flux factor and the retarded
two-point Green’s function as

GR ¼ �2F ju¼0 ¼ � i!rd�1
h

16�Gdþ1l
d�1

; (48)

so the shear viscosity can be obtained by the Kubo
formula as

� ¼ �lim
!!0

ImGRð!; ~k ¼ 0Þ
!

¼ rd�1
h

16�Gdþ1l
d�1

; (49)

then we have

�

s
¼ 1

4�
; (50)

which satisfies the KSS bound in the Einstein gravity.
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B. Case of N� 2

Now we consider N � 2 cases; see Eq. (8). As we have
shown in the Appendix, the equation of motion for ’ ¼ hxy
is also that of a minimally coupled massless scalar field,
which is of the same form as Eq. (43),

’00ðrÞ þ
�
f0

f
þ dþ z

r

�
’0ðrÞ þ

�
l2zþ2!2

r2zþ2f2
� l4k2

r4f

�
’ðrÞ ¼ 0:

(51)

Note that since fðrÞ has multiple zero roots and cannot be
determined in general, to solve Eq. (51) it is more conve-
nient to apply the matching method in which the exact
form of fðrÞ is not involved.

In the near horizon region, i.e., r� rh � rh, fðrÞ ’
f0ðrhÞðr� rhÞ, then Eq. (51) can be simplified as

’00ðrÞ þ 1

r� rh
’0ðuÞ þ

�
c1!

2

ðr� rhÞ2
� c2k

2

r� rh

�
’ðrÞ ¼ 0;

(52)

in which

c1 ¼
�

1

4�T

�
2

and c2 ¼ 1

4�T

�
rh
l

�
z�3

: (53)

Let us further define �r ¼ r=rh and take the long wave-
length limit k2 ! 0; Eq. (52) becomes

’00ð �rÞ þ 1

�r� 1
’0ð �rÞ þ c1!

2

ð�r� 1Þ2 ’ð �rÞ ¼ 0; (54)

which gives

’ð �rÞ ¼ �c3ð �r� 1Þiw2 þ �c4ð �r� 1Þ�iw
2 ; (55)

in the r coordinate, the solution is

’ðrÞ ¼ c3ðr� rhÞiw2 þ c4ðr� rhÞ�iw
2 ; (56)

wherew ¼ !
2�T . The first part of Eq. (55) or Eq. (56) is the

outgoing mode, while the second part is the ingoing mode.
To calculate the retarded Green’s function, we need to
adopt the ingoing mode, which requires �c3 ¼ c3 ¼ 0 in
Eqs. (55) and (56). In the low-frequency limit, Eq. (56) can
be expanded as

’ðrÞ ¼ c4

�
1� i!

4�T
ln ðr� rhÞ þOð!2Þ

�
: (57)

In the near region, rh! < r! � 1; then in the k2 ! 0
limit, Eq. (51) reduces to

’00ðrÞ þ
�
f0

f
þ dþ z

r

�
’0ðrÞ ¼ 0; (58)

which can be solved as

’ðrÞ ¼
Z c5

frdþz
drþ c6: (59)

Note that in the near horizon limit r ! rh, Eq. (59) can be
simplified as

’ðrÞ 	
Z c5

f0ðrhÞðr� rhÞrdþz
h

drþ c6

¼ c5

f0ðrhÞrdþz
h

ln ðr� rhÞ þ c6; (60)

while in the large radius limit, fðrÞ ! 1, Eq. (59) becomes

’ðrÞ 	
Z c5

rdþz
drþ c6 ¼ � c5

ðdþ z� 1Þ
1

rdþz�1
þ c6:

(61)

In the outer region rh � l � r, f0ðrÞ ! 0, fðrÞ ! 1,
and again we take k2 ! 0; then Eq. (51) becomes

’00ðrÞ þ dþ z

r
’0ðrÞ þ l2zþ2

r2zþ2
!2’ðrÞ ¼ 0: (62)

In the u ¼ 1=r coordinate, Eq. (62) can be changed to

’00ðuÞ � dþ z� 2

u
’0ðuÞ þ l2zþ2u2z�2!2’ðuÞ ¼ 0; (63)

and its solution is

’ðuÞ ¼ u
�þ
2

�
c7J��þ

2z

�
l1þz!uz

z

�
þ c8J�þ

2z

�
l1þz!uz

z

��
;

(64)

where

c7 ¼ �c7ð2zÞ�
�þ
2z ðl1þz!Þ�þ2z �

�
1� dþ z

2z

�
and

c8 ¼ �c8ð2zÞ�
�þ
2z ðl1þz!Þ�þ2z �

��1þ dþ 3z

2z

�
;

in which, �c7 and �c8 are certain constants while �þ ¼ dþ
z� 1 is the conformal dimension of the operator dual to
the massless scalar field in the bulk. Again, in the low-
frequency limit, Eq. (64) can be expanded as

’ðrÞ¼ �c7ð1þOð!2ÞÞ

þ �c8l
ð1þzÞ�þ

z

�
2

z

��þ
z
!1þd�1

z r��þð1þOð!2ÞÞ: (65)

The condition for matching the solutions in these three
regions is rh < r � !�1. Comparing Eq. (60) with
Eq. (57), we get that

c4 ¼ c6 and � i!c4 ¼ c5
lzþ1rd�1

h

; (66)

while the matching of Eq. (61) with Eq. (65) gives

c6 ¼ �c7 and � c5
dþ z� 1

¼ �c8l
ð1þzÞ�þ

z

�
2

z

��þ
z
!1þd�1

z :

(67)

Namely, the coefficients in these three regions are related
by the following relations:
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�c7 ¼ c6 ¼ c4 and

�c8l
ð1þzÞ�þ

z

�
2

z

��þ
z
!1þd�1

z ¼ c4
lzþ1rd�1

h

dþ z� 1
i!: (68)

Furthermore, the normalization condition requires that’ðrÞ
is normalized to be one, namely, c4 ¼ 1. Consequently,
the asymptotic solution at the low-frequency limit
becomes

’ðrÞ¼ ðr�rhÞ�iw
2

�
1þ lzþ1rd�1

h r��þ

ðdþz�1Þ i!þOð!2Þ
�
: (69)

After eliminating the divergent terms, the dominant part
of the radial flux of the scalar field at the boundary is

F ¼ K
ffiffiffiffiffiffiffi�g

p
grr’�ðrÞ@r’ðrÞjr!1

¼ �iK
rd�1
h

ld�1
!þOð!2Þ

¼ � i

32�Gdþ1

rd�1
h

ld�1
!þOð!2Þ; (70)

where K ¼ 1=ð32�Gdþ1Þ is the effective coupling con-
stant of the scalar field ’ðrÞ; then the retarded Green’s
function is

GRðkÞ ¼ �2F ðk; rÞjr!1; (71)

and the shear viscosity is calculated from the Kubo
formula,

� ¼ �lim
!!0

ImGR

!
¼ 1

16�Gdþ1

rd�1
h

ld�1
: (72)

Therefore, the ratio of the shear viscosity to the
entropy is

�

s
¼ 1

4�
; (73)

which gives the same value as that of the Lifshitz
black brane with only one Uð1Þ gauge field. The result
indicates that the additional background Uð1Þ gauge
fields do not alter the KSS bound of the boundary fluid,
although they do contribute to the shear viscosity and the
entropy density, respectively.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we studied the model of a strongly coupled
nonrelativistic quantum field theory with multiple Uð1Þ
gauge fields near the Lifshitz fixed points in the framework
of the nonrelativistic gauge/gravity duality. By considering
the linearized perturbations of bulk gravitational and gauge
fields, we solved the equation of motions for gauge fields
with backreactions (shear channel) and the bulk transverse
graviton (scalar channel). For the N ¼ 2 case, we derived
the renormalized second-order effective action and system-
atically calculated the electric, thermal, and thermoelectric
conductivities of the dual nonrelativistic quantum field

theories with respect to various d and z. Specifically, we
found the novel frequency dependent power law behavior
of the ac electric conductivity in the large-frequency limit
when d ¼ 3 and z > 1. From the knowledge of the con-
densed matter physics, we expect that our model provides a
holographic description of the symmetric hopping model
in some sense. The argument goes to the case of d ¼ 4 as
well; we will report further the relationship between the
Lifshitz black brane and the hopping conductivities in
another paper elsewhere. In addition, when taking the limit
of long wavelength and low frequency in the generic N
cases, we also showed that the ratio of shear viscosity to
entropy density of the dual boundary fluids still satisfies the
KSS bound derived in the Einstein gravity.
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APPENDIX: LINEARIZED PERTURBATIONS
OF THE GRAVITATIONAL THEORY

1. Einstein-Maxwell-dilaton theory

The Einstein-Maxwell-dilaton theory with multiple
Uð1Þ gauge fields that we are considering has the action

I ¼ 1

16�Gdþ1

Z
ddþ1x

ffiffiffiffiffiffiffi�g
p

�
�
R� 2�� 1

2
@��@��� 1

4

XN
a¼1

e�a�F2
a

�
: (A1)

Its Einstein equation is

R�	� 2�

d�1
g�	

¼1

2
@��@	�þ1

2

XN
a¼1

e�a�

�
Fa��F

�
a	� 1

2ðd�1ÞF
2
ag�	

�
:

(A2)

Let us make the metric ansatz to be a dþ 1-dimensional
black brane solution as

ds2 ¼ H1ðrÞð�fðrÞdt2 þ dxidxiÞ þH2ðrÞdr2; (A3)

where its outer horizon is located at fðrhÞ ¼ 0.
Consider the small metric fluctuation caused by some

external perturbation:
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gð0Þ�	 ! g�	 ¼ gð0Þ�	 þ �g�	; (A4)

the Christoffel symbol is

��
�	 ¼ �ð0Þ�

�	 þ ���
�	

¼ �ð0Þ�
�	 þ g��

2
ðr��g�	 þr	�g�� �r��g�	Þ:

(A5)

When taking the linear order perturbation of the metric,
i.e., �g�	 ¼ h�	, the Christoffel symbol can be expanded

up to the second order of h as

��
�	 ¼ �ð0Þ�

�	 þ �ð1Þ�
�	 þ �ð2Þ�

�	 ; (A6)

where

�ð1Þ�
�	 ¼ gð0Þ��

2
ðr�h�	 þr	h�� �r�h�	Þ;

�ð2Þ�
�	 ¼ �h��

2
ðr�h�	 þr	h�� �r�h�	Þ:

(A7)

Note that under the first-order variation, the Ricci tensor
varies as

R�	 ¼ Rð0Þ
�	 þ �Rð0Þ

�	 ¼ Rð0Þ
�	 þ Rð1Þ

�	 þ Rð2Þ
�	; (A8)

where

Rð1Þ
�	 ¼ �ð1Þ�

�	;� � �ð1Þ�
��;	

¼ 1

2
ðr�r�h�	 þr�r	h��Þ � 1

2
hh�	 � 1

2
r	r�h

(A9)

and

Rð2Þ
�	¼�ð2Þ�

�	;���ð2Þ�
��;	

¼�h��

2
ðr�r�h�	þr�r	h���r�r�h�	Þ

þh��

2
r	r�h���r�h

��

2

�ðr�h�	þr	h���r�h�	Þþr	h
��

2
r�h��:

(A10)

The first-order and second-order Ricci scalars are

Rð1Þ ¼ gð0Þ�	Rð1Þ
�	 � h�	Rð0Þ

�	

¼ r�r�h�� �hh� 2�

d� 1
h (A11)

and

Rð2Þ ¼ gð0Þ�	Rð2Þ
�	 � h�	Rð1Þ

�	

¼ �h�	ðr�r�h	� þr�r�h	�Þ
þ h�	r�r	hþ h�	hh�	

�r�h
��r�h�� þr�h

��

2
r�hþr�h

�	

2
r�h�	;

(A12)

respectively.
Then the linearized Einstein equation is

Rð1Þ
�	 � 2�

d� 1
h�	

¼ 1

2

XN
a¼1

e�a�

�
�Fa��Fa�	h

�� � 1

2ðd� 1Þ

� ðF2
ah�	 � 2F�

a�Fa��h
��gð0Þ�	Þ

�
; (A13)

when there is only transverse gravitational fluctuation
hxy ¼ hxyðrÞe�i!tþik� , where � ¼ xd�1 is the d� 1th spa-

tial coordinate. Using the Rð0Þx
x component of the zeroth

order equation of motion, i.e.,

Rð0Þx
x � 2�

d� 1

¼ 1

2

XN
a¼1

e�a�

�
� 1

2ðd� 1ÞFa��Fa��g
ð0Þ��gð0Þ��

�
;

Eq. (A13) becomes

�H1

2
h’þ

�
H02

1

2H1H2

� 1

2
hH1

�
’

¼ 2�

d� 1
H1’� 1

2

XN
a¼1

e�a�
1

2ðd� 1ÞF
2
aH1’

¼ Rð0Þ
xx ’; (A14)

which gives the equation of motion of the minimally
coupled massless scalar field ’ ¼ hxy,

�H1

2
h’ ¼ �H1

2

1ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q @�

� ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q
gð0Þ�	@	’

�
¼ 0:

(A15)

2. Gauge field perturbation with backreaction

To compute the conductivities of the dual field theory,
we need to turn on the gauge field perturbation along the
spatial direction; this gauge field perturbation will, in turn,
induce the hti off-diagonal part of the background metric
perturbation since hti and aai are the vector mode fluctua-
tions. Without loss of generality, we choose �Aa� ¼
��
xaa�ðrÞe�i!tþik� , which induces the corresponding metric

perturbation as �g�	 ¼ htxðrÞe�i!tþik� . Then the linearized
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Einstein and Maxwell equations are obtained by making the
combined diffeomorphism and gauge variations to the origi-
nal equations, namely,

��þ�

�
R�	 � 2�

d� 1
g�	

�

¼ ��þ�

�
1

2
@��@	�þ 1

2

XN
a¼1

e�a�

�
�
Fa��F

�
a	 � 1

2ðd� 1ÞF
2
ag�	

��
; (A16)

where �� means the diffeomorphism transformation while
�� indicates the gauge field transformation that obeys the

following relations:

��g�	 ¼ L�g�	 and ��Aa� ¼ aa�: (A17)

In the linear order perturbation, the nonvanishing compo-
nents of the first-order Ricci tensor are Rxt ¼ Rtx and Rxr ¼
Rrx. Then the linearized Einstein equations are

Rð1Þ
xt � 2�

d� 1
hxt

¼ 1

2

XN
a¼1

e�a�

�
gð0Þrr@raax@rAat � 1

2ðd� 1ÞF
ð0Þ2
a hxt

�
;

(A18)

together with the xx component of the zeroth-order Einstein
equation, Eq. (A18) becomes

1

4fH1H
2
2

ðH2f
0ðh0txH1 � htxH

0
1Þ þ fH1ðh0txH0

2 � 2h00txH2Þ

þ fhtxð�H0
1H

0
2 þ 2H00

1H2ÞÞ ¼ 1

2H2

XN
a¼1

e�a�a0axA0
at

(A19)

and

Rð1Þ
rt ¼ � 1

2

XN
a¼1

e�a�gð0Þtt@taaxA0
at

¼ i!

2

XN
a¼1

e�a�gð0ÞttaaxA0
at; (A20)

which gives

h0tx �H0
1

H1

htx þ
XN
a¼1

e�a�aaxA
0
at ¼ 0; (A21)

where 0 indicates @r.

In addition, the linearized Maxwell equation is
obtained by

��þ�@�ð ffiffiffiffiffiffiffi�g
p

e�a�g��g	�Fa��Þ

¼ @�

0
@

ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q
2

e�a�gð0Þ
�h
�gð0Þ��gð0Þ	�Fð0Þ
a��

1
A

� @�

� ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q
e�a�ðh��gð0Þ	� þ gð0Þ��h	�ÞFð0Þ

a��

�

þ @�

� ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q
e�a�gð0Þ��gð0Þ	�ð@�aa� � @�aa�Þ

�
¼ 0: (A22)

Its nonvanishing components are

@rð ffiffiffiffiffiffiffi�g
p

e�a�gð0Þrrgð0Þxxgð0Þttð�htxÞ@rAatÞ
þ @tð ffiffiffiffiffiffiffi�g

p
e�a�gð0Þxxgð0Þtt@taaxÞ

þ @rð ffiffiffiffiffiffiffi�g
p

e�a�gð0Þrrgð0Þxx@raaxÞ ¼ 0:

In the black brane background, Eq. (A3), the above equa-
tions become

a00ax þ
�ðd� 2ÞH0

1

2H1

� H0
2

2H2

þ f0

2f
þ �a�

0
�
a0ax þ!2H2

fH1

aax

¼
�
H0

1htx
fH2

1

� h0tx
fH1

�
A0
at: (A23)

When taking the ansatz H1 ¼ b2, H2 ¼ 1=
, fðrÞ ¼

e��=b2, and �að�Þ ¼ e�a� in Eqs. (4), (A21), and
(A23) change into

h0tx � 2b0

b
htx þ

XN
a¼1

�að�ÞA0
ataax ¼ 0 (A24)

and

a00axþ
�ðd�3Þb0

b
þ
0



��0

2
þ �0

�að�Þ
d�að�Þ
d�

�
a0axþ!2


2
e�aax

¼
�
2b0htx

b

�h0tx



�
A0
ate

�: (A25)

In the linear order perturbation of the metric and the
gauge fields, the bulk action can also be expanded into
second order as

I ¼ Ið0Þ þ Ið1Þ þ Ið2Þ; (A26)

where the zeroth-order action is
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Ið0Þ ¼ 1

16�Gdþ1

Z
ddþ1x

ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q �
Rð0Þ � 2�� 1

2
gð0Þ�	@��@	�� 1

4

XN
a¼1

e�a�Fð0Þ2
a

�

¼ 1

16�Gdþ1

Z
ddþ1x

ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q �
4�

d� 1
� 1

2ðd� 1Þ
XN
a¼1

e�a�Fð0Þ2
a

�
(A27)

and the first order action is

Ið1Þ ¼ 1

16�Gdþ1

Z
ddþ1x

ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q �
r�r	h�	 �hh� 1

2

XN
a¼1

e�a�Fð0Þ
a�	F

ð1Þ�	
a

�

¼ 1

16�Gdþ1

Z
�
ddx

ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q
n�

�
r	h�	 �r�h� XN

a¼1

aa	ðe�a�Fð0Þ�	
a Þ

�
; (A28)

which are purely surface terms when the bulk equations of motion are satisfied (on-shell condition), where n� is the unit
normal vector of the hypersurface �.

The second-order action is

Ið2Þ ¼ 1

16�Gdþ1

Z
ddþ1x

ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q �
�h�	r�r�h	� þ 1

2
h�	r�r	hþ 1

2
h�	hh�	

� 1

4

XN
a¼1

e�a�ðFð1Þ
a�	F

ð1Þ�	
a � 4Fð1Þ

a��F
ð0Þ�
a� h�� þ Fð0Þ

a��F
ð0Þ
a	�h

�	h��Þ þ
�
1

2
h�	h�	 þ 1

4
h2
�
Lð0Þ þ h

2
Lð1Þ

�

þ 1

16�Gdþ1

Z
�
ddx

ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q
n�

�
�h�	r�h�	 þ 1

2
h��r�hþ 1

2
h�	r�h�	

�
; (A29)

where Lð0Þ and Lð1Þ are, respectively, the first- and second-order Lagrangian densities in Ið0Þ and Ið1Þ.
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