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We present the first lattice QCD determination of the �b ! � transition form factors that govern the

rare baryonic decays �b ! �‘þ‘� at leading order in heavy-quark effective theory. Our calculations are

performed with 2þ 1 flavors of domain-wall fermions, at two lattice spacings and with pion masses down

to 227 MeV. Three-point functions with a wide range of source-sink separations are used to extract the

ground-state contributions. The form factors are extrapolated to the physical values of the light-quark

masses and to the continuum limit. We use our results to calculate the differential branching fractions for

�b ! �‘þ‘� with ‘ ¼ e, �, � within the standard model. We find agreement with a recent CDF

measurement of the �b ! ��þ�� differential branching fraction.
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I. INTRODUCTION

The flavor-changing neutral-current transitions b ! s�
and b ! s‘þ‘� can provide strong constraints on models
of new physics. The effective weak Hamiltonian describing
decays of this type has the form [1–8]

H eff ¼ � 4GFffiffiffi
2

p VtbV
�
ts

X
i¼1;...;10;S;P

ðCiOi þ C0
iO

0
iÞ; (1)

where the operators that directly give ‘‘short-distance’’
contributions to these decay amplitudes are

O7 ¼ e

16�2
mb �s�

��PRbF
ðe:m:Þ
�� ; O0

7 ¼
e

16�2
mb �s�

��PLbF
ðe:m:Þ
�� ;

O9 ¼ e2

16�2
�s��PLb�l��l; O0

9 ¼
e2

16�2
�s��PRb�l��l;

O10 ¼ e2

16�2
�s��PLb�l���5l; O0

10 ¼
e2

16�2
�s��PRb�l���5l;

OS ¼ e2

16�2
mb �sPRb�ll; O0

S ¼
e2

16�2
mb �sPLb�ll;

OP ¼ e2

16�2
mb �sPRb�l�5l; O0

P ¼ e2

16�2
mb �sPLb�l�5l;

(2)

and the Cð0Þ
i are Wilson coefficients. In the standard model,

the Wilson coefficients of the scalar and pseudoscalar
operators OS;P, as well as those of the opposite-chirality
operators O0

i, are highly suppressed [9]. Experimental
measurements of b ! s decay rates, angular distributions,
and related observables provide constraints on various
functions of the Wilson coefficients Ci and C0

i [9]. In this
way, these measurements restrict models of new physics
and their allowed parameters. Most of the existing studies
have focused on mesonic decays such as B ! K�� and
B ! Kð�Þ‘þ‘�, for which experiments have reached a high
level of precision. To get the most complete set of con-
straints on new physics, it is important to consider many

different observables. To this end it is useful to analyze also
baryonic b ! s decays such as �b ! �� and �b !
�‘þ‘�. The decay �b ! ��þ�� has recently been
observed using the Tevatron [10], and is being measured
by the LHCb collaboration.
One important aspect that distinguishes �b decays from

B meson decays is the spin of the �b baryon, which in
principle provides an additional handle on the fundamental
interactions. When produced through Z bosons at eþe�
colliders, b quarks have a strong longitudinal polarization,
and the�b baryons keep most of that polarization [11–16].
At the Tevatron and the LHC, the �b baryons produced in
proton-(anti)proton collisions are expected to have some
degree of transverse polarization [17–19], which can be
measured accurately using the method proposed in
Ref. [20]. As first mentioned in Ref. [21] and later studied*smeinel@mit.edu
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in detail in Ref. [22], the �b polarization can be exploited
to test the ‘‘helicity structure’’ of H eff , that is, to disen-
tangle the contributions from the Wilson coefficients Ci

and C0
i. In practice, this entails measuring an asymmetry

in the angular distribution between the �b spin and the
momentum of a particle in the final state [22]. Even
for unpolarized �b baryons, the spin of the final-state �
baryon can also be exploited to test the helicity structure of
H eff , as discussed for �b ! �� in Refs. [22–27] and for
�b ! �‘þ‘� in Refs. [25,26,28–30]. To this end, an
angular analysis needs to be performed for the secondary
weak decay � ! p��. Lepton asymmetries for �b !
�‘þ‘� have also been considered [26,30–32].

In order to use these �b decays to search for new
physics, the matrix elements h��jH eff j�bi or
h�‘þ‘�jH effj�bi must be determined. For the operators
in Eq. (2), this then requires the computation of the had-
ronic matrix elements h�j�s�bj�bi, which are expressed in
terms of ten QCD form factors. When using heavy-quark
effective theory (HQET) for the b quark, the number of
independent �b ! � form factors reduces to 2 [33–35].
Furthermore, in the limit of large recoil, soft-collinear
effective theory predicts that only one form factor remains
[27,36,37]. The �b ! � form factors have been estimated
using various models or approximations, including quark
models [38–41], perturbative QCD [42], and sum rules
[25,26,36,43], but have not been determined from QCD
previously. In the charm sector, some information on the
�c ! � form factors is available from the experimental
measurement of the semileptonic �c ! �eþ�e decay
[44,45], and this information has been used to constrain
the �b ! � form factors in Refs. [23,38]. In summary,
several estimates of �b ! � form factors exist in the
literature, but a considerable uncertainty remains, espe-
cially in the low-recoil region where soft-collinear effec-
tive theory and light-cone sum rules are not applicable.
Clearly, first-principles, nonperturbative QCD calculations
of the form factors are needed, and the method for perform-
ing such calculations is lattice QCD.

In this paper, we report on the first lattice QCD calcu-
lation of �b ! � form factors (we presented preliminary
results of this work in Ref. [46]). We use HQET for the b
quark, and compute the two form factors that appear. Their
definitions are given in Sec. II. Treating the b quarks with
HQET on the lattice [47] also leads to several other tech-
nical simplifications that make the calculation feasible,
as will become clear in Sec. III A. For the up, down, and
strange quarks, we use a domain-wall fermion action
[48–50], which is computationally expensive but provides
chiral symmetry even at nonzero lattice spacing. Our cal-
culations make use of gauge field ensembles generated
by the RBC/UKQCD collaborations [51]. These ensembles
include 2þ 1 flavors of dynamical sea quarks, and
the lattice parameters used in our study are given in
Sec. III B. We use two different lattice spacings and several

different values of the light-quark masses, which allows us
to perform simultaneous extrapolations of the form factors
to the continuum limit and to the physical values of the
quark masses. The data analysis involves several stages,
which are explained in Secs. III C, III D, III E, and III F, and
estimates of the systematic uncertainties in the form factors
are given in Sec. III G. As a first application of our form
factor results, in Sec. IV we then calculate the differential
branching fractions for the decays �b ! �‘þ‘� with
‘ ¼ e,�, � in the standard model. The differential branch-
ing fraction for �b ! ��þ�� can be compared to the
existing Tevatron data and is of immediate interest for
LHCb. Further phenomenological applications of the form
factors that we have determined are left for future work.

II. DEFINITION OF FORM FACTORS

In QCD, using Lorentz symmetry and the discrete C, P,
T symmetries, one can show that the matrix elements
h�ðp0; s0Þj�s�bj�bðp; sÞi with � ¼ ��, ���5, q����,

q�����5 (where q ¼ p� p0) are parametrized by ten

independent form factors (see for example Ref. [36]).
Heavy-quark symmetry, which becomes exact in the limit
mb ! 1, reduces the number of independent form factors
to 2 [33–35]. In the following, when working with HQET,
we denote the heavy quark by Q. The �Q ! � matrix

element with an arbitrary Dirac matrix � is then given by
[33–35]

h�ðp0; s0Þj �s�Qj�Qðv; 0; sÞi
¼ �uðp0; s0Þ½F1ðp0 � vÞ þ 6vF2ðp0 � vÞ��Uðv; sÞ; (3)

where v is the four-velocity of the �Q, and the two form

factors F1 and F2 can be expressed as functions solely of
p0 � v, the energy of the � baryon in the �Q rest frame.

Here we use the following normalization of states and
spinors:

h�ðp; sÞj�ðp0; s0Þi ¼ 2E�ð2�Þ3�ss0�
3ðp� p0Þ; (4)

h�Qðv; k; sÞj�Qðv; k0; s0Þi ¼ 2v0ð2�Þ3�ss0�
3ðk� k0Þ; (5)

X2
s0¼1

uðp0; s0Þ �uðp0; s0Þ ¼ m� þ 6p0; (6)

X2
s¼1

Uðv; sÞ �Uðv; sÞ ¼ 1þ 6v: (7)

For most of the analysis in this paper, it is convenient to
work with the linear combinations

Fþ ¼ F1 þ F2; F� ¼ F1 � F2; (8)

instead of F1 and F2. Note that in the limitmb ! 1, five of
the ten helicity-based �b ! � form factors introduced in
Ref. [36] become equal to Fþ, while the other five become
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equal to F� [see Eq. (2.10) of Ref. [36], where F1 is
denoted by A, and F2 is denoted by B].

III. LATTICE CALCULATION

A. Two-point and three-point functions

For the lattice calculation, we work in the�Q rest frame,

so that v ¼ ð1; 0; 0; 0Þ. The heavy quark, Q, is imple-
mented with the Eichten-Hill lattice HQET action [47],
where we use one level of hypercubic (HYP) smearing [52]
for the temporal gauge links in order to improve the signal-
to-noise ratio of the correlation functions [53]. For the up,
down, and strange quarks, we use a domain-wall action
[48–50], and the gluons are implemented using the Iwasaki
action [54,55]. Our calculations are based on gauge field
configurations generated by the RBC/UKQCD collabora-
tions [51] using these actions. Further details of the lattices
will be given in Sec. III B.

In order to extract the matrix element (3), we need to
compute suitable three-point and two-point functions as
discussed in the following. We use the following baryon
interpolating fields:

�Q� ¼ 	abcðC�5Þ
� ~da
~ub�Qc
�; (9)

�� ¼ 	abcðC�5Þ
�~ua
 ~db�~sc�; (10)

where a, b, c are color indices; �, 
, � are spinor indices;
and C is the charge conjugation matrix. The tilde on the up,
down, and strange quark fields u, d, s denotes gauge-
covariant three-dimensional Gaussian smearing, intended
to reduce excited-state contamination in the correlation
functions.

In the three-point functions, we use the following
OðaÞ-improved discretization of the continuum HQET
current [56]:

JðHQETÞ� ðmbÞ ¼ Uðmb; a
�1ÞZ

�
�
JðLHQETÞ� þ c

ðmsaÞ
�

msa

1� ðwMF
0 Þ2 J

ðLHQETÞ
�

þ c
ðpsaÞ
� aJðLHQETÞ�D

�
; (11)

where JðLHQETÞ� and JðLHQETÞ�D are given by

JðLHQETÞ� ¼ �Q�s; (12)

JðLHQETÞ�D ¼ �Q�� � rs: (13)

The current JðHQETÞ� is renormalized in the MS scheme at

� ¼ mb. Note that here we match from lattice HQET to
continuum HQET, but not yet to QCD. This is important
because the form factors F1 and F2 are defined in contin-
uum HQET, not full QCD. The matching to QCD will lead
to radiative corrections to the simple relationship (3) which
depend on �. We will return to this issue in Sec. IV when

computing the differential branching fraction for �b !
�‘þ‘�.
In Eq. (11), symmetries of the lattice actions and the

equations of motion have been used to reduce the number
of operators that appear [56]. The term with coefficient

cðmsaÞ
� provides OðmsaÞ improvement, while the term with

coefficient c
ðpsaÞ
� provides OðpsaÞ improvement (here ps

denotes the momentum of the strange quark). The quantity
wMF

0 is related to tadpole improvement, and is defined as

wMF
0 ¼ 1� am5 þ 4ð1� u0Þ [56], where am5 is the

domain-wall height and u0 is the fourth root of the average

plaquette. The matching coefficients Z, c
ðmsaÞ
� , and c

ðpsaÞ
�

have been computed to one-loop order in lattice perturba-
tion theory for the actions used here in Ref. [56] and are
evaluated at the scale � ¼ a�1 (the inverse lattice spac-

ing). The coefficient Z is independent of �, but cðmsaÞ
� and

c
ðpsaÞ
� change sign depending on whether � commutes or

anticommutes with �0. We are interested in the matrix
element (3) renormalized at � ¼ mb, and following
Ref. [56] we therefore perform a renormalization-group
evolution from � ¼ a�1 to � ¼ mb, using the two-loop
anomalous dimension of the heavy-light current in HQET,
which was derived in Refs. [57,58]. This leads to the
multiplicative factor Uðmb; a

�1Þ in Eq. (11). The
renormalization-group running is performed with Nf ¼ 3

flavors from � ¼ a�1 down to � ¼ mc, and then with
Nf ¼ 4 flavors from � ¼ mc up to � ¼ mb. This two-

step running is used because the nonperturbative lattice
calculations are done with Nf ¼ 2þ 1 dynamical flavors,

and with a�1 >mc. However, note that doing a simple
Nf ¼ 4 running from � ¼ a�1 to � ¼ mb gives a result

that differs only by 0.5%. Numerical values forUðmb; a
�1Þ,

Z, cðmsaÞ
� , cðpsaÞ

� , and u0 will be given in Table II in the next

section.
Having defined the interpolating fields and the current,

we will now discuss the correlation functions. We compute
‘‘forward’’ and ‘‘backward’’ two-point functions for the �
and �Q as follows:

Cð2;�Þ
�� ðp0; tÞ ¼ X

y

e�ip0�ðy�xÞh��ðx0 þ t; yÞ ���ðx0;xÞi; (14)

Cð2;�;bwÞ
�� ðp0; tÞ ¼ X

y

e�ip0�ðx�yÞh��ðx0;xÞ ���ðx0 � t; yÞi;

(15)

C
ð2;�QÞ
�� ðtÞ ¼ h�Q�ðx0 þ t;xÞ ��Q�ðx0;xÞi; (16)

C
ð2;�Q;bwÞ
�� ðtÞ ¼ h�Q�ðx0;xÞ ��Q�ðx0 � t;xÞi; (17)

where the superscript ‘‘bw’’ denotes the backward corre-
lator. In Eqs. (16) and (17), the �Q interpolating fields at

source and sink are required to be at the same spatial point
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x because of the static heavy-quark propagator. Finally, the
forward and backward three-point functions for a given
gamma matrix � in the current are defined as

Cð3Þ
��ð�;p0;t;t0Þ¼X

y

e�ip0�ðx�yÞh��ðx0;xÞ

�JðHQETÞy� ðx0� tþ t0;yÞ ��Q�ðx0� t;yÞi;
(18)

Cð3;bwÞ
�� ð�;p0;t;t� t0Þ¼X

y

e�ip0�ðy�xÞh�Q�ðx0þ t;yÞ

�JðHQETÞ� ðx0þ t0;yÞ ���ðx0;xÞi: (19)

All of the above correlation functions (14)–(19) can be
computed using light- and strange-quark propagators with
a Gaussian-smeared source located at ðx0;xÞ. For the three-
point functions, the quark propagator contractions are
illustrated schematically in Fig. 1. Because no additional
domain-wall propagators are required, we can efficiently
compute the three-point functions for arbitrary values of
t and t0, only limited by statistical precision.

In order to discuss the spectral decomposition of the
correlation functions, we introduce the following defini-
tions for the overlap factors:

h0j�Q�ð0Þj�QðsÞi ¼ Z�Q
U�ðsÞ; (20)

h0j��ð0Þj�ðp0; sÞi ¼ ½ðZð1Þ
� þ Zð2Þ

� �0Þuðp0; sÞ��; (21)

where Zð1Þ
� and Zð2Þ

� depend on p0. Here we need two

different overlap factors Zð1Þ
� and Zð2Þ

� for the �, because

the spatial-only smearing of the quarks in the interpolating
field (10) breaks hypercubic symmetry [59]. The spectral
decompositions of the two-point and three-point functions
then read

Cð2;�Þ
�� ðp0; tÞ ¼ Cð2;�;bwÞ

�� ðp0; tÞ
¼ 1

2E�

e�E�t½ðZð1Þ
� þ Zð2Þ

� �0Þðm� þ 6p0Þ

� ðZð1Þ
� þ Zð2Þ

� �0Þ��� þ � � � ; (22)

C
ð2;�QÞ
�� ðtÞ ¼ C

ð2;�Q;bwÞ
�� ðtÞ

¼ 1

2
e
�E�Q

t
Z2
�Q

½1þ �0��� þ � � � ; (23)

Cð3Þ
��ð�;p0; t; t0Þ ¼Z�Q

1

2E�

1

2
e�E�ðt�t0Þe�E�Q

t0

� ½ðZð1Þ
� þZð2Þ

� �0Þðm�þ 6p0ÞðF1þ�0F2Þ
��ð1þ�0Þ���þ��� ; (24)

Cð3;bwÞ
�� ð�;p0; t; t� t0Þ ¼Z�Q

1

2E�

1

2
e
�E�Q

ðt�t0Þ
e�E�t

0

� ½ð1þ�0Þ ��ðF1þ�0F2Þðm�þ 6p0Þ
�ðZð1Þ

� þZð2Þ
� �0Þ���þ��� ; (25)

where we have only shown the ground-state contributions,
and the ellipses denote excited-state contributions that
decay exponentially faster with the Euclidean time sepa-
rations. For the three-point functions, we have used Eq. (3)
to express the current matrix element in terms of the form
factors F1 and F2.
Using the three-point and two-point functions, we then

define the following ratio:

Rð�;p0; t; t0Þ ¼ 4Tr½Cð3Þð�;p0; t; t0ÞCð3;bwÞð�;p0; t; t� t0Þ�
Tr½Cð2;�;avÞðp0; tÞ�Tr½Cð2;�Q;avÞðtÞ� ;

(26)

where the traces are over spinor indices, and the two-point
functions in the denominator are the averages of the forward
and backward two-point functions (to increase statistics).
For the ground-state contributions, the product of forward
and backward three-point functions in the numerator of
Eq. (26) eliminates the t0 dependence, and dividing by the
two-point functions evaluated at the same t also cancels the t
dependence and Z factors. For gamma matrices � that
commute (anticommute) with �0, the ground-state contri-
bution in the ratio Rð�;p0; t; t0Þ will be proportional to
½Fþ�2 (½F��2). Thus, we form the combinations

Rþðp0; t; t0Þ ¼ 1

4
½Rð1;p0; t; t0Þ þRð�2�3;p0; t; t0Þ

þRð�3�1;p0; t; t0Þ þRð�1�2;p0; t; t0Þ�;
(27)

R�ðp0; t; t0Þ ¼ 1

4
½Rð�1;p0; t; t0Þ þRð�2;p0; t; t0Þ

þRð�3;p0; t; t0Þ þRð�5;p
0; t; t0Þ�; (28)

FIG. 1 (color online). Propagator contractions for the forward
three-point functions (left) and backward three-point functions
(right). The thick vertical line at the spatial point y indicates the
static heavy-quark propagator. The source for all light- and
strange-quark propagators is located at the fixed point ðx0;xÞ.
We sum over all points y, with the appropriate momentum
phases as in Eqs. (18) and (19).
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which are equal to

Rþðp0; t; t0Þ ¼ E� þm�

E�

½Fþ�2 þ � � � ; (29)

R�ðp0; t; t0Þ ¼ E� �m�

E�

½F��2 þ � � � ; (30)

where, as before, the ellipses denote excited-state contribu-
tions. Note that multiplying the gammamatrices in Eqs. (27)
and (28) with �0 would not give any new information,
because �0Q ¼ Q. Next, we average (27) and (28) over
momenta p0 with fixed magnitude jp0j, and replace the label
p0 by jp0j2 to denote the direction-averaged quantities,

R�ðjp0j2; t; t0Þ: (31)

Finally, we evaluate R�ðjp0j2; t; t0Þ at t0 ¼ t=2 [or average
it over ðt� aÞ=2 and ðtþ aÞ=2 for odd values of t=a] where
the excited-state contamination is smallest, rescale using
E�ðjp0j2Þ and m� obtained from fits to the two-point func-
tions, and take the square root to obtain

Rþðjp0j2; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E�

E� þm�

Rþðjp0j2; t; t=2Þ
s

; (32)

R�ðjp0j2; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E�

E� �m�

R�ðjp0j2; t; t=2Þ
s

: (33)

For t ! 1, the quantities R�ðjp0j2; tÞ become equal to the
form factors F�ðE�Þ where E� ¼ E�ðjp0j2Þ.

B. Lattice parameters

The details of the domain-wall/Iwasaki gauge field
ensembles generated by the RBC/UKQCD collaborations
can be found in Ref. [51]. In Table I, we summarize the
main properties of the subset of ensembles used here, as
well as some parameters of the domain-wall propagators
that we computed on them. There are ensembles with two

different lattice spacings a � 0:11 fm and a � 0:085 fm,
with lattice dimensions of 243 � 64 and 323 � 64, respec-
tively, so that the spatial box size is L � 2:7 fm in
both cases. We will refer to these two lattice spacings as
‘‘coarse’’ and ‘‘fine.’’ At the coarse lattice spacing, we use
only one ensemble with the lightest available up/down
sea-quark masses. At the fine lattice spacing, we use two
different ensembles.
In order to construct the correlation functions discussed

in Sec. III A, we require domain-wall propagators with
Gaussian-smeared sources at ðx0;xÞ, and with masses cor-
responding to the strange quark as well as the (degenerate)
up/down quarks. As shown in Table I, we have seven
different combinations of parameters, which we denote
as C14, C24, C54, C53, F23, F43, F63 (where C, F stand
for ‘‘coarse’’and ‘‘fine,’’ and the two digits indicate the
light and strange valence-quark masses). In four of these
combinations, the valence-quark masses are chosen to be
lighter than the sea-quark masses (‘‘partially quenched’’),
while the other three combinations have valence-quark
masses equal to the sea-quark masses (unitary case). On
each gauge configuration, we use Oð10Þ source locations
ðx0;xÞ to increase statistics. The resulting total numbers
of ‘‘measurements,’’ Nmeas, are listed in Table I. On each
configuration, we average the correlators over the source
locations prior to further analysis.
In the static heavy-quark action, we use gauge links

with one level of HYP smearing with the parameters
ð�1; �2; �3Þ ¼ ð1:0; 1:0; 0:5Þ as introduced in Ref. [62].

TABLE I. Parameters of the gauge field ensembles and quark propagators. Here, N5 is the extent of the fifth dimension of the lattice,

and am5 is the domain-wall height [51]. The sea-quark masses amðseaÞ
q were used in the generation of the ensembles, and we use the

valence-quark masses amðvalÞ
q when computing domain-wall propagators. The values for the lattice spacings, a, are taken from

Ref. [60]. We denote the valence-pion masses by mðvvÞ
� , and mðvvÞ

�s
is defined as the mass of the pseudoscalar meson with valence

strange-antistrange quarks, but without any disconnected contributions (we use mðvvÞ
�s

to tune the strange-quark mass, using the
approach of Ref. [61]). Finally, Nmeas is the number of light/strange domain-wall propagator pairs computed on each ensemble.

Set N3
s � Nt � N5 am5 amðseaÞ

s amðseaÞ
u;d a (fm) amðvalÞ

s amðvalÞ
u;d mðvvÞ

� (MeV) mðvvÞ
�s

(MeV) Nmeas

C14 243 � 64� 16 1.8 0.04 0.005 0.1119(17) 0.04 0.001 245(4) 761(12) 2705

C24 243 � 64� 16 1.8 0.04 0.005 0.1119(17) 0.04 0.002 270(4) 761(12) 2683

C54 243 � 64� 16 1.8 0.04 0.005 0.1119(17) 0.04 0.005 336(5) 761(12) 2780

C53 243 � 64� 16 1.8 0.04 0.005 0.1119(17) 0.03 0.005 336(5) 665(10) 1192

F23 323 � 64� 16 1.8 0.03 0.004 0.0849(12) 0.03 0.002 227(3) 747(10) 1918

F43 323 � 64� 16 1.8 0.03 0.004 0.0849(12) 0.03 0.004 295(4) 747(10) 1919

F63 323 � 64� 16 1.8 0.03 0.006 0.0848(17) 0.03 0.006 352(7) 749(14) 2785

TABLE II. Renormalization parameters for the matching of
LHQET to HQET in theMS scheme, from Ref. [56]. Here, G� is
defined by �0��0 ¼ G��, so that G� ¼ þ1 if � commutes with
�0, and G� ¼ �1 if � anticommutes with �0.

a (fm) Uðmb; a
�1Þ u0 Z cðmsaÞ

� cðpsaÞ
�

0.112 1.09964 0.875789 0.9383 �0:1660G� �0:1374G�

0.085 1.06213 0.885778 0.9526 �0:1482G� �0:1294G�
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The numerical values of the matching coefficients needed
for the current (11) are taken from Ref. [56] and are given
in Table II for the choice of HYP smearing parameters
used here.

C. Results for Rþ and R�
At the coarse lattice spacing, we computed the three-

point functions (18) and (19) for the source-sink separa-
tions t=a ¼ 4; 5; . . . ; 15, and at the fine lattice spacing for
t=a ¼ 5; 6; . . . ; 20. We computed these three-point
functions for lattice momenta p0 with 0 � jp0j2 �
9 � ð2�Þ2=L2. We then constructed the quantities (27) and
(28) using a statistical bootstrap with 1000 samples.
When performing the momentum direction average for
the largest momentum jp0j2 ¼ 9 � ð2�Þ2=L2, we used

only p0 ¼ ð2; 2; 1Þ � 2�=L and lattice symmetries applied
to that [for jp0j2 < 9 � ð2�Þ2=L2, all possible p0 with the
same magnitude are related by cubic rotations and reflec-
tions, and we average over all of them]. Examples of
numerical results for the quantities R�ðjp0j2; t; t0Þ defined
in Sec. III A are shown in Figs. 2–5. Except in the imme-
diate neighborhood of t0 ¼ 0 and t0 ¼ t, the results for
R�ðjp0j2; t; t0Þ show only a weak dependence on the
current-insertion time t0. However, a significant depen-
dence on the source-sink separation t is seen, in particular
forR�. Consequently, we need to extrapolate the results to
infinite source-sink separation in order to remove the
excited-state contamination. We perform these extrapola-
tions for R�ðjp0j2; tÞ [defined in Eqs. (32) and (33)], as
discussed in Sec. III E.

FIG. 2 (color online). Numerical results for R�ðjp0j2; t; t0Þ at jp0j2 ¼ 1 � ð2�=LÞ2 from the C54 data set [a ¼ 0:112 fm,

amðvalÞ
s ¼ 0:04, amðvalÞ

u;d ¼ 0:005]. The source-sink separations shown here are (from left to right) t=a ¼ 6, 8, 10.

FIG. 3 (color online). Like Fig. 2, but at jp0j2 ¼ 4 � ð2�=LÞ2.

FIG. 4 (color online). Numerical results for R�ðjp0j2; t; t0Þ at jp0j2 ¼ 1 � ð2�=LÞ2 from the F43 data set [a ¼ 0:085 fm,

amðvalÞ
s ¼ 0:03, amðvalÞ

u;d ¼ 0:004]. The source-sink separations shown here are (from left to right) t=a ¼ 8, 11, 14.
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D. Fitting the � two-point functions

In order to compute the quantities R�ðjp0j2; tÞ, which
were defined in Eqs. (32) and (33), we use the energy
E�ðjp0j2Þ and mass m� ¼ E�ð0Þ of the � baryon com-
puted on the lattice for the same data set. To this end, we

average the two-point function Tr½Cð2;�;avÞðp0; tÞ� over mo-
menta p0 with the same jp0j2, and perform correlated fits of
the form Ae�E�t for sufficiently large t so that the excited-
state contamination in the fitted E� is negligible compared
to the statistical uncertainty. To give an idea of the signal
quality, we show the effective energy ðaE�Þeff ¼
ln ½CðtÞ=Cðtþ aÞ� for selected momenta and two data
sets in Fig. 6. The complete fit results for aE� are listed

in Table III. Within the statistical uncertainties, the lattice
results are consistent with the relativistic continuum dis-
persion relation E2

� ¼ m2
� þ jp0j2.

When computing R�ðjp0j2; tÞ via Eqs. (32) and (33), we
used bootstrap to fully take into account the correlations
between E�, m�, and R�ðjp0j2; t; t=2Þ.

E. Extrapolation of Rþ and R� to infinite
source-sink separation

Using the methods outlined in the previous sections,
we have obtained numerical results for R�ðjp0j2; tÞ for
multiple momenta jp0j2, for a wide range of source-sink
separations t, and for seven different combinations of

FIG. 5 (color online). Like Fig. 4, but at jp0j2 ¼ 4 � ð2�=LÞ2.

FIG. 6 (color online). Effective-energy plots for the � two-point functions at selected momenta. The shaded bands indicate the
energies extracted from exponential fits of the two-point functions, as well as the t range used for these fits. Left panel: a ¼ 0:112 fm,

amðvalÞ
s ¼ 0:04, amðvalÞ

u;d ¼ 0:005; right panel: a ¼ 0:085 fm, amðvalÞ
s ¼ 0:03, amðvalÞ

u;d ¼ 0:004.

TABLE III. Fit results for aE�ðjp0j2Þ from the different data sets (see Table I).

jp0j2=ð2�=LÞ2 C14 C24 C54 C53 F23 F43 F63

0 0.7046(41) 0.7135(45) 0.7350(34) 0.7150(42) 0.5191(41) 0.5353(29) 0.5540(17)

1 0.7542(46) 0.7613(53) 0.7821(40) 0.7653(49) 0.5575(46) 0.5717(32) 0.5894(19)

2 0.8027(58) 0.8061(69) 0.8274(52) 0.8151(62) 0.5931(53) 0.6062(38) 0.6240(24)

3 0.8460(76) 0.8495(97) 0.8709(69) 0.8612(84) 0.6288(67) 0.6422(50) 0.6568(31)

4 0.889(10) 0.896(11) 0.9106(87) 0.892(11) 0.6652(89) 0.6727(66) 0.6892(43)

5 0.921(11) 0.929(13) 0.948(11) 0.928(13) 0.695(10) 0.7033(79) 0.7201(52)

6 0.954(16) 0.965(19) 0.989(14) 0.966(17) 0.730(13) 0.739(10) 0.7479(64)

8 1.006(27) 1.021(31) 1.051(24) 1.014(30) 0.800(23) 0.802(17) 0.804(11)

9 1.033(35) 1.066(45) 1.087(32) 1.058(40) 0.839(30) 0.837(21) 0.822(14)
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quark masses and lattice spacings. The next step is to
compute the ground-state form factors F� by extrapolating
R� to infinite source-sink separation. In the following, we

use the notation Ri;n
� ðtÞ, where i ¼ C14;C24; . . . ;F63 labels

the data set (see Table I), and n ¼ 0, 1, 2, 3, 4, 5, 6, 8, 9 labels
the momentum of the �, writing jp0j2 ¼ n � ð2�Þ2=L2.

At zero momentum, we can only compute Rþ because
R� vanishes for E� ¼ m� [see Eq. (30)]. Results for

Ri;0
þ ðtÞ from the two data sets i ¼ C54, F43 are plotted in

Fig. 7 as a function of the source-sink separation t.
Remarkably, no significant t dependence is found in this
quantity, allowing constant fits of the form

Ri;0
þ ðtÞ ¼ Fi;0

þ ; (34)

which are also shown in Fig. 7. The fits fully take into
account correlations and have �2=d:o:f: < 1, showing that
there is indeed no evidence for deviation from a constant.
Note that Rþ can be obtained from the vector current �s�0b
(in our calculation we have replaced �0 by 1 because
�0Q ¼ Q for static heavy quarks). In relativistic QCD,
neglecting mass effects, charge conservation would then
prevent any t dependence at zero momentum, because ex-
cited states have the same charge as ground states. It appears
that some remnant of this symmetry also remains in our case.

At nonzero � momentum, both Rþ and R� can be
extracted, and significant t dependence is seen. To extract
the ground-state contributions Fþ and F�, we perform fits
including an exponential correction term that describes the
leading effects of excited states,

Ri;n
� ðtÞ ¼ Fi;n

� þ Ai;n
� exp ½��i;n

� t�; (35)

where Fi;n
� , Ai;n

� , and �i;n
� are the fit parameters, which

explicitly depend on the data set i and the momentum n.

Because the energy gaps �i;n
� are positive by definition, we

write

�i;n
� =ð1 GeVÞ ¼ exp ðli;n� Þ; (36)

and use li;n� instead of �i;n
� as the fit parameters. The fits

using Eq. (36) are performed separately for eachmomentum

n, but simultaneously for the different data sets i. Note that
the size of the momentum unit, ð2�Þ=L (in GeV), is the
same at the coarse and fine lattice spacings within uncer-
tainties, because the box sizes (in physical units) are equal
within uncertainties. Performing the fits simultaneously
for the different data sets at the same momentum allows
us to use the prior knowledge that the hadron spectrum
does not change dramatically when the lattice spacing or
quark masses are varied by small amounts. To this end, we
augment the �2 function used to perform the fits to Eq. (35)
as follows:

�2 ! �2 þ ðlC14;n� � lC24;n� Þ2
½�C14;C24

m �2 þ ðlC24;n� � lC54;n� Þ2
½�C24;C54

m �2

þ ðlC54;n� � lC53;n� Þ2
½�C54;C53

m �2 þ ðlF23;n� � lF43;n� Þ2
½�F23;F43

m �2

þ ðlF43;n� � lF63;n� Þ2
½�F43;F63

m �2 þ ðlC54;n� � lF63;n� Þ2
½�C54;F63

m �2 þ �2
a

; (37)

where

½�i;j
m �2 ¼ w2

m½ðmi
�Þ2 � ðmj

�Þ2�2 þ w2
m½ðmi

�s
Þ2 � ðmj

�s
Þ2�2;
(38)

with wm ¼ 4 GeV�2, and �a ¼ 0:1. With these parame-
ters, Eq. (37) implements the constraint that the energy
gaps, at given �-momentum n, should not change by more
than 10% when going from the fine to the coarse lattice
spacing, and not more than 400% times the change in
m2

� or m2
�s

(in GeV2). Note that absolute variations of

li;n� translate to relative variations of �i;n
� , because

d½exp ðli;n� Þ�= exp ðli;n� Þ ¼ dli;n� .

Example fits of Ri;n
� ðtÞ using Eq. (35) are shown in

Fig. 8. The fits are fully correlated, using covariance matri-

ces computed from the bootstrap ensembles forRi;n
� ðtÞ. Note

that the excited-state contribution in Rþ, which is negligible
at p0 ¼ 0 (cf. Fig. 7), gradually increases with the momen-
tum. In contrast, R� shows the strongest excited-state
overlap at the smallest momentum, and this overlap de-
creases as the momentum increases. The excited-state

FIG. 7 (color online). Constant fits to the t dependence of RþðtÞ at jp0j2 ¼ 0. Left panel: a ¼ 0:112 fm, amðvalÞ
s ¼ 0:04, amðvalÞ

u;d ¼
0:005; right panel: a ¼ 0:085 fm, amðvalÞ

s ¼ 0:03, amðvalÞ
u;d ¼ 0:004. The fits have �2=d:o:f: values of 0.92 and 0.78, respectively.
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overlap is slightly stronger at the fine lattice spacing when
compared to the coarse lattice spacing. This is expected
because the quark smearing width in the baryon operators
was different for the two lattice spacings (we used the same
width in lattice units). We only computed the correlators for
t=a 	 4 at the coarse lattice spacing and t=a 	 5 at the fine
lattice spacing. At the fine lattice spacing, it was necessary
to exclude the points with t=a < 8 from the fits to R�. Once
these points were excluded, all fits had �2=d:o:f: � 1:0.
Given the limited time range and the limited statistical
precision of the available data, it was not possible (and not
necessary) to perform fits with more than one exponential.
As a check, we have also performed fits without the con-
straints (37), which give consistent results but are less
stable.

The fitted values of the energy gap parameters, �i;n
� ¼

exp ðli;n� Þ � ð1 GeVÞ, are shown as a function of the �
momentum for one ensemble in Fig. 9 (left panel).
Within uncertainties, we find that

�i;n
þ ¼ �i;n� ; (39)

for all data sets i and momenta n. The energy spectrum is
a property of the QCD Hamiltonian and is independent
of the correlation function considered, so the result (39) is
not surprising. However, one possible situation in which

�i;n
þ and �i;n� would be different is when an excited state has

negligible overlap in Rþ but significant overlap in R� (or
vice versa). Furthermore, by using only a single exponen-
tial, we may be effectively averaging over multiple excited
states which we cannot resolve individually, but which may

FIG. 8 (color online). Fits of the t dependence of R�ðtÞ using Eq. (35). Left panels: a ¼ 0:112 fm, amðvalÞ
s ¼ 0:04, amðvalÞ

u;d ¼ 0:005;

right panels: a ¼ 0:085 fm, amðvalÞ
s ¼ 0:03, amðvalÞ

u;d ¼ 0:004. At the fine lattice spacing, only the points with t > 0:6 fm are included in

the fit of R�. The maximum values of t for the data were limited by statistical noise in the two-point and three-point functions; for t
larger than the rightmost points in the plots, the statistical fluctuations were too large to compute the square roots in Eqs. (32) and (33).
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appear with different sets of weights in Rþ and R�. Having
said that, the values of �i;n

þ and �i;n� from our fits are in
complete agreement and it is evident that the separate

parameters �i;n
þ and �i;n� may be replaced by a single

parameter �i;n. Thus, we performed new, coupled fits of
Rþ and R� of the form

Ri;n
� ðtÞ ¼ Fi;n

� þ Ai;n
� exp ½��i;nt�; (40)

FIG. 9 (color online). Left: Results for the energy gap parameters from separate fits of Rþ and R� using Eq. (35). The points are
offset horizontally for clarity. Right: Results for the energy gap parameters from coupled fits of Rþ and R� using Eq. (40). The data

shown here are for a ¼ 0:112 fm, amðvalÞ
s ¼ 0:04, amðvalÞ

u;d ¼ 0:005.

FIG. 10 (color online). Fit results for the ground-state contributions Fþ and F� from separate fits of Rþ and R� using Eq. (35) vs

results from coupled fits using Eq. (40). Left panel: a ¼ 0:112 fm, amðvalÞ
s ¼ 0:04, amðvalÞ

u;d ¼ 0:005; right panel: a ¼ 0:085 fm,

amðvalÞ
s ¼ 0:03, amðvalÞ

u;d ¼ 0:004. The points are offset horizontally for clarity.

FIG. 11 (color online). Fit results for the ground-state contributions Fþ and F� from coupled fits of Rþ and R� using Eq. (40): effect

of increasing all tmin values by one unit. Left panel: a ¼ 0:112 fm, amðvalÞ
s ¼ 0:04, amðvalÞ

u;d ¼ 0:005; right panel: a ¼ 0:085 fm,

amðvalÞ
s ¼ 0:03, amðvalÞ

u;d ¼ 0:004. The points are offset horizontally for clarity.

DETMOLD et al. PHYSICAL REVIEW D 87, 074502 (2013)

074502-10



TABLE IV. Results for Fþ from the different data sets (see Table I). The uncertainties presented combine statistical and systematic
fitting uncertainties in quadrature.

jp0j2=ð2�=LÞ2 C14 C24 C54 C53 F23 F43 F63

0 0.9416(56) 0.9443(66) 0.9430(59) 0.9390(71) 0.9320(58) 0.9281(49) 0.920(13)

1 0.868(14) 0.874(27) 0.871(23) 0.873(26) 0.878(33) 0.876(18) 0.807(25)

2 0.785(15) 0.786(34) 0.788(27) 0.791(25) 0.823(25) 0.818(14) 0.738(28)

3 0.717(15) 0.705(36) 0.715(28) 0.723(24) 0.770(26) 0.763(14) 0.680(28)

4 0.671(15) 0.669(26) 0.672(22) 0.668(17) 0.697(32) 0.698(15) 0.633(28)

5 0.618(15) 0.612(26) 0.621(21) 0.622(15) 0.667(27) 0.664(16) 0.587(27)

6 0.586(16) 0.580(20) 0.576(20) 0.577(15) 0.625(30) 0.621(19) 0.554(29)

8 0.537(14) 0.545(16) 0.532(13) 0.516(24) 0.569(27) 0.563(22) 0.507(39)

9 0.508(17) 0.516(16) 0.502(15) 0.491(26) 0.546(31) 0.536(28) 0.484(40)

TABLE V. Results for F� from the different data sets (see Table I). The uncertainties presented combine statistical and systematic
fitting uncertainties in quadrature.

jp0j2=ð2�=LÞ2 C14 C24 C54 C53 F23 F43 F63

1 1.355(53) 1.422(52) 1.379(33) 1.346(41) 1.352(57) 1.339(60) 1.296(51)

2 1.233(58) 1.278(36) 1.274(26) 1.230(35) 1.241(45) 1.258(38) 1.185(49)

3 1.143(36) 1.163(43) 1.159(41) 1.135(72) 1.183(52) 1.172(42) 1.094(47)

4 1.032(51) 1.084(40) 1.089(29) 1.071(44) 1.094(81) 1.088(52) 1.004(49)

5 0.973(34) 0.990(35) 0.990(28) 0.967(49) 1.035(73) 1.029(45) 0.928(47)

6 0.904(35) 0.905(43) 0.922(42) 0.907(65) 0.938(82) 0.940(44) 0.872(45)

8 0.752(33) 0.790(42) 0.801(37) 0.820(74) 0.805(58) 0.826(33) 0.742(48)

9 0.700(43) 0.706(51) 0.719(52) 0.712(76) 0.748(58) 0.778(37) 0.707(41)

TABLE VI. Results for F1 from the different data sets (see Table I). The uncertainties presented combine statistical and systematic
fitting uncertainties in quadrature.

jp0j2=ð2�=LÞ2 C14 C24 C54 C53 F23 F43 F63

1 1.111(31) 1.148(32) 1.125(18) 1.110(23) 1.115(40) 1.107(38) 1.051(35)

2 1.009(35) 1.032(26) 1.031(23) 1.011(26) 1.032(30) 1.038(24) 0.961(37)

3 0.930(21) 0.934(35) 0.937(32) 0.929(46) 0.976(33) 0.968(25) 0.887(36)

4 0.852(29) 0.876(20) 0.881(17) 0.870(25) 0.895(50) 0.893(28) 0.818(35)

5 0.795(18) 0.801(22) 0.805(18) 0.795(27) 0.851(41) 0.846(22) 0.757(34)

6 0.745(19) 0.743(26) 0.749(26) 0.742(33) 0.782(48) 0.780(24) 0.713(34)

8 0.644(17) 0.667(24) 0.666(19) 0.668(31) 0.687(32) 0.695(17) 0.624(41)

9 0.604(23) 0.611(27) 0.611(24) 0.602(32) 0.647(35) 0.657(19) 0.595(35)

TABLE VII. Results for F2 from the different data sets (see Table I). The uncertainties presented combine statistical and systematic
fitting uncertainties in quadrature.

jp0j2=ð2�=LÞ2 C14 C24 C54 C53 F23 F43 F63

1 �0:244ð23Þ �0:274ð26Þ �0:254ð23Þ �0:236ð25Þ �0:237ð23Þ �0:232ð23Þ �0:244ð19Þ
2 �0:224ð25Þ �0:246ð23Þ �0:243ð14Þ �0:220ð16Þ �0:209ð21Þ �0:220ð16Þ �0:224ð16Þ
3 �0:213ð17Þ �0:229ð20Þ �0:222ð13Þ �0:206ð27Þ �0:207ð24Þ �0:205ð19Þ �0:207ð15Þ
4 �0:181ð24Þ �0:208ð27Þ �0:209ð19Þ �0:202ð22Þ �0:199ð35Þ �0:195ð26Þ �0:186ð18Þ
5 �0:177ð19Þ �0:189ð21Þ �0:184ð17Þ �0:173ð24Þ �0:184ð37Þ �0:183ð26Þ �0:171ð18Þ
6 �0:159ð20Þ �0:163ð21Þ �0:173ð20Þ �0:165ð34Þ �0:157ð38Þ �0:159ð24Þ �0:159ð17Þ
8 �0:108ð19Þ �0:123ð21Þ �0:135ð21Þ �0:152ð46Þ �0:118ð32Þ �0:131ð22Þ �0:118ð16Þ
9 �0:096ð23Þ �0:095ð27Þ �0:109ð29Þ �0:111ð47Þ �0:101ð30Þ �0:121ð27Þ �0:111ð20Þ
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with energy gap parameters �i;n ¼ exp ðli;nÞ � ð1 GeVÞ that
are shared between Rþ and R�. The results for
�i;n from the coupled fits are shown in the right panel of
Fig. 9. We note that the coupled fits had values of �2=d:o:f:
that were as good as or better than the values from the
separate fits, confirming that the assumption (39) is justified.

The results for the extracted ground-state form factors

Fi;n
� from separate and coupled fits are compared in

Fig. 10. As can be seen there, the results are consistent
with each other, but the coupled fits with shared energy
gap parameters give significantly smaller uncertainties, in
particular for F�. Therefore, we use the results from the
coupled fits in our further analysis.

To estimate the systematic uncertainty resulting from
the choice of the fit range in t, we computed the changes in

Fi;n
� when increasing tmin by one unit simultaneously for

all data sets, thereby removing the points with the most
contamination from additional higher excited states. As
can be seen in Fig. 11, the resulting change in the fitted

Fi;n
� is small, and in most cases consistent with zero.

Nevertheless, we add this shift in quadrature to the original

statistical uncertainty of Fi;n
� . The final results for

Fi;n
� , including this systematic uncertainty, are given in

Tables IV and V. For convenience, we also provide results

for Fi;n
1 ¼ ðFi;n

þ þ Fi;n� Þ=2 andFi;n
2 ¼ ðFi;n

þ � Fi;n� Þ=2, com-

puted using bootstrap to take into account the correlations

between Fi;n
þ and Fi;n� , in Tables VI and VII.

F. Chiral and continuum extrapolation
of the form factors

The last step in our analysis of the lattice data is to fit the

dependence of Fi;n
� on the quark masses, the lattice spacing,

and on E�. The form of the dependence is unknown;
low-energy effective field theory combining heavy-baryon
chiral perturbation theory for the� sector and heavy-hadron
chiral perturbation theory for the �Q sector may be useful

over some range ofE�, but not in the region with jp0j * ��,

where �� 
 1 GeV is the chiral symmetry-breaking scale.

We therefore use a simple ansatz that fits our data well at the
level of statistical precision thatwehave. In the following it is
advantageous to express the form factors as functions of the
energy difference E� �m� instead of E�, as this depends
less on the quarkmasses.We find that this dependence can be
described well using a dipole function of the form F� ¼
N�=ðX� þ E� �m�Þ2. We generalize this ansatz to allow
for dependence on the light- and strange-quark masses, as
well as the lattice spacing, in the following way:

Fi;n
� ¼ N�

ðXi� þ Ei;n
� �mi

�Þ2
� ½1þ d�ðaiEi;n

� Þ2�; (41)

where the functions Xi� are defined as

Xi� ¼ X� þ cl;� � ½ðmi
�Þ2 � ðmphys

� Þ2�
þ cs;� � ½ðmi

�s
Þ2 � ðmphys

�s
Þ2�: (42)

As before, we use the notation where i ¼ C14;C24; . . . ;F63
labels the data set (see Table I), and n labels the momentum
of the�. The free fit parameters in Eq. (41) areN�, X�, d�,
cl;�, and cs;�. The dependence of the form factors on the

light- and strange-quark masses is described by allowing Xi�
to depend linearly on ðmi

�Þ2 and ðmi
�s
Þ2, where mi

� andmi
�s

are thevalence� and�smasses for eachdata set i, as given in
Table I. We wrote Eq. (42) in terms of the differences
between the lattice and physical masses for convenience,

with mphys
� ¼ 138 MeV and mphys

�s
¼ 686 MeV [61]. The

leading dependence of the form factors on the lattice
spacing is expected to be quadratic in a, owing to the chiral
symmetry of the domain-wall action and the use of the
order-a-improved current (11). Discretization errors are
expected to grow as the momentum of the � increases.
We therefore incorporate the a dependence using the factor

½1þ d�ðaiEi;n
� Þ2� in Eq. (41).

In our fits, we take into account the correlations between

the results for Fi;n
� at different momenta n and different data

sets i (in the case where the data sets correspond to the same
underlying ensemble of gauge fields). The fits are performed

independently for Fi;n
þ and Fi;n� . To account for the uncer-

tainties and correlations of the � baryon energies Ei;n
�

(including the masses mi
� ¼ Ei;0

� ) in Eq. (41), we promote

Ei;n
� to additional parameters of the fit, and add the termP
i;n;i0;n0 ½CovðE�Þ�1�i;n;i0;n0 ðEi;n

� � �Ei;n
� ÞðEi0;n0

� � �Ei0;n0
� Þ to the

�2 function, where �Ei;n
� are the previous results from the

fits to the two-point functions, and the energy correlation
matrixCovðE�Þwas computed from the bootstrap ensemble
of the two-point fit results. Using a similar term, we inves-
tigated the inclusion of the further correlations between the

� energies and the form factor values Fi;n
� , but with the

current level of statistics, such fits did not converge to a
stable minimum of �2. In principle, one can also fit the
form factors as functions of jp0j2 instead of E� �m�. We
find that fits of that type give similar results but have larger
values of �2=d:o:f:.
The fits using Eq. (41) are visualized as a function of

E� �m� in Fig. 12. There, we show the results for Fi;n
�

from Tables IV and V, along with the fitted functions (41)
evaluated at the corresponding lattice spacings ai and pseu-
doscalar masses, mi

� and mi
�s
. The data are described well

by the fitted functions (the F63 set fluctuates downward,
but the overall values of �2=d:o:f: are smaller than 1). The
bottom right plot in Fig. 12 shows the fit functions evaluated
in the continuum limit (a ¼ 0) and for the physical values
of the pseudoscalar masses. By construction, in this physical
limit, Eq. (41) reduces to

F� ¼ N�
ðX� þ E� �m�Þ2

; (43)

which only depends on the parameters N� and X�.
Our results for N� and X� are given in Table VIII. The
results for the parameters describing the dependence
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on the quark masses and the lattice spacing are
cl;þ¼0:094ð32ÞGeV�1, cs;þ¼�0:019ð27ÞGeV�1, dþ ¼
0:027ð27Þ,cl;�¼ 0:04ð20ÞGeV�1,cs;�¼�0:14ð11ÞGeV�1,

and d� ¼ �0:036ð67Þ, which are all very small and mostly
consistent with zero.

Functions for the form factors F1 and F2 could be

obtained from (43) by taking the linear combinations

F1 ¼ ðFþ þ F�Þ=2 and F2 ¼ ðFþ � F�Þ=2. However,

because we use independent pole parameters Xþ and X�,
these linear combinations are no longer of the simple

dipole form. Alternatively, we can also perform new

fits to the lattice data Fi;n
1 ¼ ðFi;n

þ þ Fi;n� Þ=2 and Fi;n
2 ¼

ðFi;n
þ � Fi;n� Þ=2 using functions of the same form as in

Eq. (41), but with new parameters labeled by the subscripts

1, 2 instead of þ, �:

Fi;n
1;2 ¼

N1;2

ðXi
1;2 þ Ei;n

� �mi
�Þ2

� ½1þ d1;2ðaiEi;n
� Þ2�: (44)

These fits are visualized in Fig. 13, and the resulting
parameters N1;2, X1;2 are given in Table IX. In this case,

the results for the other fit parameters were
cl;1 ¼ 0:09ð17Þ GeV�1, cs;1 ¼ �0:067ð94Þ GeV�1, d1¼
�0:049ð53Þ, cl;2 ¼ �0:06ð38Þ GeV�1, cs;2¼�0:35ð22Þ�
GeV�1, and d2 ¼ 0:00ð15Þ.

FIG. 12 (color online). Fits of the form factor data for Fþ and F� using Eq. (41). The fit of Fþ has �2=d:o:f: ¼ 0:84, and the fit of
F� has �2=d:o:f: ¼ 0:72. The lowest right plot shows the continuum form factors for the physical light- and strange-quark masses.
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G. Estimates of systematic uncertainties

The remaining systematic uncertainties in our form factor
results include missing higher-order renormalization correc-
tions to the heavy-light current, finite-volume effects, chiral-
extrapolation errors, and residual discretization errors.

We discuss each of these below. Furthermore, for large
E� �m�, where we do not have lattice data, our assump-
tion of a dipole shape in Eqs. (41) and (44) introduces
an unknown model dependence. This is illustrated in
Fig. 14, where we compare the dipole fits to monopole

FIG. 13 (color online). Fits of the form factor data for F1 and F2 using Eq. (44). The fit of F1 has �
2=d:o:f: ¼ 0:59, and the fit of F2

has �2=d:o:f: ¼ 0:85. The lowest right plot shows the continuum form factors for the physical light- and strange-quark masses.

TABLE VIII. Fit results for N� and X� using Eq. (41). The
covariances are CovðNþ; XþÞ ¼ 0:0198 GeV3, CovðN�; X�Þ ¼
0:106 GeV3. The results are renormalized in the MS scheme at
� ¼ mb.

Parameter Result

Nþ 3:188� 0:268 GeV2

Xþ 1:852� 0:074 GeV
N� 4:124� 0:750 GeV2

X� 1:634� 0:144 GeV

TABLE IX. Fit results for N1;2 and X1;2 as discussed in the
main text. The covariances are CovðN1; X1Þ ¼ 0:0692 GeV3,
CovðN2; X2Þ ¼ �0:0256 GeV3. The results are renormalized in
the MS scheme at � ¼ mb.

Parameter Result

N1 3:975� 0:576 GeV2

X1 1:776� 0:123 GeV
N2 �0:385� 0:132 GeV2

X2 1:156� 0:200 GeV
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fits. However, we do not have confidence that this differ-
ence is a reliable estimate of a fitting form systematic
uncertainty (or indeed that such a systematic uncertainty
can be constructed) and so leave this to the judgment of
the reader.

To estimate the systematic uncertainty due to missing
higher-order renormalization corrections to the heavy-light
current (11), we vary the scale � in the matching coeffi-

cientsZð�Þ, cðmsaÞð�Þ, cðpsaÞð�Þ, and in the renormalization
group running Uðmb;�Þ. We then recompute the ratios (32)
and (33) with the modified current. Changing� from a�1 to
2a�1 results in a 7% change of bothRþ andR� at the coarse
lattice spacing and a 6% change of bothRþ anR� at the fine
lattice spacing. These relative changes are nearly indepen-
dent of the source-sink separation, the momentum, and the
quark masses. Thus, we take the renormalization uncertainty
in the final form factor results to be 6%.

Finite-volume effects in the lattice data are unknown
(as in the chiral extrapolation, no low-energy effective
theory exists to guide us over the full range of E�), but
are expected to be of order exp ð�m�LÞ. The lowest
pion mass used in our calculation is m� � 227 MeV,
corresponding to m�L � 3:1 and exp ð�m�LÞ � 0:04.
The average value of exp ð�m�LÞ for the different data
sets (see Table I) is about 0.02. Given these values, we

estimate the systematic uncertainty in our final results
due to finite-volume effects to be 3%.
The chiral extrapolations of the form factors were per-

formed quadratically in the valence pseudoscalar masses,
i.e., linearly in the valence-quark masses, ignoring that
some of the data were partially quenched and ignoring
possible nonanalytic dependence on the quark masses. To
study the effect of the quark-mass extrapolations, we per-
form new fits with either cl;� or cs;�, or both, set to zero,

and consider the changes in the extracted form factors Fþ
and F� (analogously also for F1 and F2). This corresponds
to replacing the linear fits of the quark-mass dependence by
constant fits. The resulting relative changes in Fþ, F�, F1,
and F2 when setting cl ¼ 0 are below 1% throughout the
kinematic range where we have lattice data; the biggest
relative change (5%) is seen in F2 at zero recoil when
setting cs ¼ 0. However, all of the changes are consistent
with zero within statistical uncertainties.
By ‘‘residual discretization errors’’ we mean discretiza-

tion errors that are not eliminated through the continuum

extrapolation using the factors of ½1þ d�ðaiEi;n
� Þ2� in

Eq. (41) and ½1þ d1;2ðaiEi;n
� Þ2� in Eq. (44). While we

know that the leading discretization orders are quadratic
in a, we do not know how they depend on E�. To study

the effect of the factors ½1þ d�ðaiEi;n
� Þ2� and

FIG. 14 (color online). Comparison of our results for the �Q ! � form factors from dipole fits using Eqs. (41) and (44) to results
from monopole fits (the same equations without the power of 2 in the denominator). Shown here is the entire kinematic range needed
for the decay �b ! �‘þ‘� with m‘ ¼ 0 (the point q2 ¼ 0 corresponds to E� �m� � 1:8 GeV). In the range where we have lattice
data (E� �m� & 0:7 GeV), the dipole and monopole functions are consistent with each other, but for large E� �m�, model
dependence can be seen. In our main analysis we choose the dipole fits as they have slightly lower values of �2=d:o:f:

FIG. 15 (color online). Final results for the �Q ! � form factors, given by F� ¼ N�=ðX� þ E� �m�Þ2 and F1;2 ¼ N1;2=ðX1;2 þ
E� �m�Þ2 with parameters as in Tables VIII and IX. The dark shaded bands show the statistical uncertainty, and the light shaded
bands show the total (including 8% systematic) uncertainty. The results are renormalized in the MS scheme at � ¼ mb.
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½1þ d1;2ðaiEi;n
� Þ2�, we perform new fits with d� (or d1;2)

set to zero. In this case, the resulting changes in all form
factors are less than 4% for E� �m� < 0:8 GeV, and are
consistent with zero within the statistical uncertainties.

Combining the uncertainties in the above discussion, we
estimate the total systematic uncertainty of our final results
for the form factors for E� �m� < 0:8 GeV to be 8%.
Plots of the form factors including this systematic uncer-
tainty are shown in Fig. 15. The relatively large systematic
uncertainty from the current matching cancels in ratios
such as F2=F1. This ratio is shown in Fig. 16, and
we estimate the total systematic uncertainty in F2=F1 to
be 5%.

IV. THE DECAY �b ! �‘þ‘�

As a first application of our results for the�Q ! � form

factors, we calculate the differential branching fraction for
the decays �b ! �‘þ‘� with ‘ ¼ e, �, � in the standard
model. Long-distance contributions (discussed at the end
of this section) are not included. In the following, it is
convenient to use the notation

H eff ¼ � 2GFffiffiffi
2

p VtbV
�
ts

X
i¼7;9;10

ðCV
i;effO

V
i � CA

i;effO
A
i Þ; (45)

with

OV
7 ¼ e

16�2
mb �s�

��bFðe:m:Þ
�� ;

OA
7 ¼ � e

16�2
mb �s�

���5bF
ðe:m:Þ
�� ;

OV
9 ¼ e2

16�2
�s��b�l��l;

OA
9 ¼ e2

16�2
�s���5b�l��l;

OV
10 ¼

e2

16�2
�s��b�l���5l;

OA
10 ¼

e2

16�2
�s���5b�l���5l;

(46)

and

CV
i;eff ¼ Ci;eff þ C0

i;eff ; CA
i;eff ¼ Ci;eff � C0

i;eff : (47)

The ‘‘effective’’ Wilson coefficients Ci;eff and C
0
i;eff (i ¼ 7,

9, 10), which are defined at the scale � ¼ mb, contain the
one-loop matrix elements of the four-quark operators
O1; . . . ; O6 [4].
The invariant matrix element of H eff is given by

M ¼ �h�ðp0; s0Þ‘þðpþ; sþÞ‘�ðp�; s�ÞjH effj�bðp; sÞi
¼ GF�em

2
ffiffiffi
2

p
�

VtbV
�
ts½A� �uðpþ; sþÞ��vðp�; s�Þ

þ B� �uðpþ; sþÞ���5vðp�; s�Þ�;

with the hadronic matrix elements

A� ¼ h�ðp0; s0Þj
�
CV
9;effðq2Þ �s��b� CA

9;effðq2Þ �s���5b

� CV
7;eff

2mb

q2
q� �si���b� CA

7;eff

2mb

q2
q� �si����5b

�
� j�bðp; sÞi;

B� ¼ h�ðp0; s0ÞjðCV
10;eff �s��b� CA

10;eff �s���5bÞj�bðp; sÞi:
(48)

Here we have contracted the electromagnetic field strength
tensor in OV

7 and OA
7 with a perturbative insertion of the

leptonic QED interaction term.
In order to use the HQET relation (3) to express the

hadronic matrix elements in terms of the form factors F1

and F2, we first need to match the QCD b ! s currents in
Eq. (48) to HQET currents. We use the one-loop perturba-
tive results in naive dimensional regularization from
Ref. [63]:

�s��b ¼ c� �s��Qþ cv �sv�Q;

�s���5b ¼ c� �s���5Q� cv �sv��5Q;

�s���b ¼ c� �s���Q;

�s����5b ¼ c� �s����5Q;

(49)

with

c� ¼ 1� �sð�Þ
�

�
4

3
þ ln

�
�

mb

��
;

cv ¼ 2

3

�sð�Þ
�

;

c� ¼ 1� �sð�Þ
�

�
4

3
þ 5

3
ln

�
�

mb

��
:

(50)

This gives

FIG. 16. Final results for the form factor ratio �F2=F1, given
by �ðN2=N1ÞðX1 þ E� �m�Þ2=ðX2 þ E� �m�Þ2 with pa-
rameters as in Table IX. The shaded band shows total uncer-
tainty, which is dominated by the statistical uncertainty.
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A� ¼ �uðp0; s0ÞðF1 þ 6vF2Þ
�
CV
9;effðq2Þc���

þ CV
9;effðq2Þcvv� � CA

9;effðq2Þc����5

þ CA
9;effðq2Þcvv��5 � CV

7;effc�
2mb

q2
q�i���

� CA
7;effc�

2mb

q2
q�i����5

�
uðp; sÞ;

B� ¼ �uðp0; s0ÞðF1 þ 6vF2ÞðCV
10;effc��� þ CV

10;effcvv�

� CA
10;effc����5 þ CA

10;effcvv��5Þuðp; sÞ: (51)

Note that here we use spinors with the standard relativistic
normalization for all particles, including the �b. In terms
of the HQET spinors (7), we have uðp; sÞ ¼ ffiffiffiffiffiffiffiffiffi

m�b

p Uðv; sÞ,
with p ¼ m�b

v. For a given value of q2, the form factors

F1 and F2 in Eq. (51) are evaluated at

E� ¼ p0 � v ¼ m2
�b

þm2
� � q2

2m�b

; (52)

where the masses take their physical values. The
fully differential decay rate with polarized particles is
given by

d� ¼ 1

2m�b

d3p0

ð2�Þ32E�

d3p�
ð2�Þ32E‘�

d3pþ
ð2�Þ32E‘þ

� ð2�Þ4�4ðp� p0 � p� � pþÞjMj2: (53)

For the standard model calculation, we set the right-handed
couplings to zero (C0

7;eff ¼ C0
9;eff ¼ C0

10;eff ¼ 0) and use the

following Wilson coefficients (at � ¼ 4:8 GeV), which are
of next-to-next-to-leading-logarithm accuracy [64]:

C7;eff ¼ �0:304;

C9;effðq2Þ ¼ 4:211þ Yðq2Þ;
C10;eff ¼ �4:103:

(54)

The function Yðq2Þ is defined as in Ref. [64]; note that it has
a cusp at q2 ¼ 4m2

c that will be visible in the differential

branching fraction. We use the MS masses mbðmbÞ ¼
4:2 GeV and mcðmcÞ ¼ 1:3 GeV. Furthermore, we take
jVtsj ¼ 0:04002 and jVtbj ¼ 0:999142 from Ref. [65].
To calculate d�=dq2, we integrate (53) over the lepton

momenta and the direction of the �, sum over the spins of
the �, ‘þ, ‘�, and average over the �b spin (because
d�=dq2 is rotationally symmetric, it has to be independent
of the�b polarization, and therefore we can treat the�b as
unpolarized here). The result is given by

d�

dq2
¼ �2

emG
2
FjVtbV

�
tsj2

6144�5q4m5
�b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

l

q2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððm�b

�m�Þ2 � q2Þððm�b
þm�Þ2 � q2Þ

q
½q2jC10;effj2A10;10 þ 16c2�m

2
bðq2 þ 2m2

l Þ

� jC7;effj2A7;7 þ q2ðq2 þ 2m2
l ÞjC9;effðq2Þj2A9;9 þ 8q2c�mbðq2 þ 2m2

l Þm�b
<½C7;effC9;effðq2Þ�A7;9�; (55)

with

A10;10 ¼ ½ð2c2� þ 2c�cv þ c2vÞð2m2
l þ q2Þðm4

�b
� 2m2

�b
m2

� þ ðq2 �m2
�Þ2Þ þ 2m2

�b
q2ð4c2�ðq2 � 4m2

l Þ
� ð2c�cv þ c2vÞðq2 � 10m2

l ÞÞ�F þ 4c�ðc� þ cvÞð2m2
l þ q2ÞGFþF�; (56)

A7;7 ¼ ðm4
�b

þm2
�b
ðq2 � 2m2

�Þ þ ðq2 �m2
�Þ2ÞF þ 2GFþF�; (57)

A9;9 ¼ ½ð2c2� þ 2c�cv þ c2vÞðm4
�b

þ ðq2 �m2
�Þ2Þ � 2m2

�b
ð2c2�ðm2

� � 2q2Þ þ ð2c�cv þ c2vÞðm2
� þ q2ÞÞ�F

þ 4c�ðc� þ cvÞGFþF�; (58)

A7;9 ¼ 3c�ðm2
�b

�m2
� þ q2ÞF þ 2ð3c� þ cvÞðm4

� � 2m2
�ðm2

�b
þ q2Þ þ ðq2 �m2

�b
Þ2ÞFþF�; (59)

where

F ¼ ððm�b
�m�Þ2 � q2ÞF2� þ ððm�b

þm�Þ2 � q2ÞF2þ; (60)

G ¼ m6
�b

�m4
�b
ð3m2

� þ q2Þ �m2
�b
ðq2 �m2

�Þð3m2
� þ q2Þ þ ðq2 �m2

�Þ3: (61)

To obtain the differential branching fraction dB=dq2 ¼
��b

d�=dq2, we use the experimental value of the �b life-
time, ��b

¼ 1:425� 10�12 s [66]. The form factors Fþ
and F� are given by the functions (43) with parameters N�
and X� as in Table VIII, and with additional systematic

uncertainties of 8% included (see Fig. 15). The resulting
differential branching fraction for �b ! ��þ�� is
shown in Fig. 17, along with recent experimental results
from CDF [67]. The agreement of the standard model with
the experimental data is clear, with no evidence for physics
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beyond the standard model. Further predictions for �b !
�‘þ‘� with ‘ ¼ e, � are shown in Fig. 18.

In Figs. 17 and 18, the inner shaded bands around the
curves correspond to the statistical plus systematic uncer-
tainty in the form factors F�. However, note that we have
lattice data only in the region q2 * 13 GeV2, as indicated
by the vertical dashed lines in Figs. 17 and 18. Below that
region, we rely on extrapolations of the form factors, which
are model dependent. This was shown in Fig. 14, where we
compared the form factors from dipole and monopole fits.
Our main results for the differential branching fractions are
based on the dipole form factors. To illustrate the model
dependence, the dashed curves in Figs. 17 and 18 give the
differential branching fractions calculated with the mono-
pole form factors (the uncertainties of the dashed curves
are not shown for clarity, but are of similar size as with the

dipole form factors). In the large-q2 region, both curves are
consistent with each other. At low q2, model dependence
can be seen, but as already discussed in Sec. III G, a
comparison between any two fit models can only give a
qualitative picture of the model dependence.
The outer shaded bands in Figs. 17 and 18 include an

estimate of the systematic uncertainty in dB=dq2 which
arises from the use of the static approximation (i.e.,
leading-order HQET) for the b quark. In general, the
uncertainty associated with this approximation is of order
�QCD=mb. However, the nonzero momentum p0 of the �
baryon in the �b rest frame is an additional relevant scale,
which may lead to errors of order jp0j=mb. Thus, we add
these two errors in quadrature and estimate the relative
systematic uncertainty in dB=dq2 due to the use of
HQET to be

FIG. 17 (color online). Left panel: Differential branching fraction for �b ! ��þ��. The solid curve is our prediction using the
form factors from lattice QCD. Long-distance effects are not included in the calculation. The inner, dark shaded band around the curve
indicates the uncertainty in dB=dq2 that results from the statistical plus systematic uncertainties in the form factors F�. The outer,
light shaded band additionally includes an estimate of the systematic uncertainty in dB=dq2 that results from our use of the static
approximation for the b quark. The vertical dashed line indicates the lowest value of q2 where we have lattice data; to the left of that
line the form factors are extrapolated. To illustrate the model dependence resulting from the extrapolation of the form factors to low q2,
the dashed curve shows dB=dq2 computed with form factors extrapolated using a different ansatz (monopole instead of dipole, see
Fig. 14; the uncertainty for the dashed curve is not shown for clarity). The experimental data are from Ref. [67], which is an update of
Ref. [10]. The error bars shown for the experimental data include systematic uncertainties. The vertical shaded bands indicate the
charmonium veto regions, where long-distance effects are large. Right panel: With binning applied to the theory prediction.

FIG. 18 (color online). Differential branching fractions for �b ! �eþe� (left) and �b ! ��þ�� (right). See the caption of Fig. 17
for explanations.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

QCD

m2
b

þ jp0j2
m2

b

vuut ; (62)

where we take �QCD ¼ 500 MeV.
Another major cause of systematic uncertainty in the

branching fraction is that we have neglected long-distance
effects. The most important type of long-distance effect is
associated with photon exchange between the lepton and
quark electromagnetic currents, where the quark electro-
magnetic current combines with the four-quark operators
O1 to O6 in the effective Hamiltonian (1). The resulting
contribution to the decay amplitude is described by non-
local hadronic matrix elements of the form

1

q2

Z
d4xeiq�xh�ðp0; s0ÞjTOið0Þj�e:m:ðxÞj�bðp; sÞi; (63)

where j
�
e:m:ðxÞ is the quark electromagnetic current (see for

example Refs. [68,69]). These are challenging matrix
elements to compute from lattice QCD, but may give

large contributions when
ffiffiffiffiffi
q2

p
coincides with the mass of

a hadronic resonance with JPC ¼ 1��. Of the four-quark
operators, O1 ¼ ð �cb��PLb

aÞð�sa��PLc
bÞ and O2 ¼

ð �ca��PLb
aÞð�sb��PLc

bÞ (where the superscripts a and b

are color indices) have the largest Wilson coefficients, and
at q2 ¼ m2

J=c , m
2
c 0 the decay amplitude is dominated by

the nonlocal matrix elements of O1 and O2 [70]. The
experimental analysis of Ref. [67] excludes these q2 re-
gions, as shown by the vertical shaded bands in Fig. 17.
Away from these resonances, however, we expect the
short distance contributions from O7;9;10 to be the most

important. Several approaches show that for large q2, these
and other long-distance effects can be treated as small
corrections to the leading-order behavior given by matrix
elements of O7;9;10 [68,69,71]. Although these papers

discuss B ! Kð�Þ‘þ‘�, the same principles apply to �b!
�‘þ‘�.

V. CONCLUSIONS

Theoretical studies of the rare baryon decays �b !
�‘þ‘� and �b ! �� require knowledge of the hadronic
matrix elements h�j�s�bj�bi in nonperturbative QCD.
At leading order in heavy-quark effective theory, these
matrix elements are given by two independent form
factors, F1 and F2 (or, equivalently, Fþ¼F1þF2 and
F�¼F1�F2), which are functions of the energy of the
� baryon in the �b rest frame [33–35]. Here, we have
performed the first lattice QCD calculation of these form
factors. Our final results for F� and F1;2, in the continuum

limit and for the physical values of the up-, down-, and
strange-quark masses, are shown in Fig. 15. High preci-
sion determinations were achieved by analyzing the ratios
Rþðjp0j2; tÞ and R�ðjp0j2; tÞ, defined in Eqs. (32) and (33),
for a wide range of source-sink separations t, and by using

multiple light-quark masses as well as two different
lattice spacings. Systematic uncertainties in the form
factors are estimated to be 
8%. A further reduction in
systematic uncertainties would require two-loop or non-
perturbative current matching, finer lattice spacings, and
light-quark masses at or very close to the physical values
(which would also require increased lattice sizes).
However, already at our current level of uncertainty in
the form factors, the precision in phenomenological ap-
plications is primarily limited by the use of leading-order
HQET for the heavy quark.
To compare our form factor results to the literature, let us

first consider the zero recoil point (E� ¼ m�, orq
2 ¼ q2max ).

There we obtain (matched to theMS scheme at �¼mb)

F1ðq2max Þ ¼ 1:26ð4Þð10Þ;
F2ðq2max Þ ¼ �0:288ð25Þð23Þ;

F2ðq2max Þ=F1ðq2max Þ ¼ �0:229ð21Þð11Þ;
(64)

where the first uncertainty is statistical/fitting, and the second
uncertainty is systematic. The ratio F2=F1 has previously
been estimated by the CLEO Collaboration using experi-
mental data for the semileptonic �c ! �eþ�e decay, as-
suming the same shape forF1 andF2 and ignoring�QCD=mc

corrections, to be F2=F1 ¼ �0:31ð5Þð4Þ [45]. This is con-
sistent with our results, given the expected size of�QCD=mc

corrections, but significantly less precise. In Ref. [38], an
earlier CLEO extraction of F2=F1 [44] was combined
with the MIT bag model bag model to obtain F1ðq2max Þ ¼
1:02,F2ðq2max Þ ¼ �0:34. The authors of Ref. [23] combined
the CLEO data fromRef. [44] with themeasured�c lifetime
to get F1ðq2max Þ ¼ 1:21, F2ðq2maxÞ¼�0:30, which happen
to be quite close to our results. The sum rule calculation
of Ref. [25] gave F1ðq2max Þ � 0:81, F2ðq2maxÞ��0:34,
and F2ðq2maxÞ=F1ðq2maxÞ��0:42, in marked disagreement
with (64).
At large recoil, leading-order soft-collinear effective

theory predicts that F1 becomes equal to a soft form factor
�, while F2 vanishes [27,36,37]. Using light-cone sum
rules, the authors of Ref. [36] obtained �ðq2¼0Þ�0:38.
This is rather close to our results for F1 at that point
(q2 ¼ 0 corresponds to E� �m� � 1:8 GeV), as can be
seen in Fig. 14. However, we stress that our results are not
reliable at such large values of E� �m�, where we do
not have lattice data and rely on extrapolation.
Our form factor results can be used to make theoretical

predictions for several observables in �b ! �‘þ‘� de-
cays. As a first example, here we have calculated the
differential branching fractions of these decays in the
standard model. For ‘ ¼ �, experimental data are already
available from CDF [67], and our calculation agrees
with the data within uncertainties (see Fig. 17). The theo-
retical uncertainties in the branching fraction are domi-
nated by errors of order �QCD=mb and jp0j=mb associated

with the use of leading-order HQET for the heavy quark,
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and by missing long-distance contributions to the decay
amplitudes. At high recoil, there is also an unknown un-
certainty associated with the extrapolation of the form
factors. The long-distance contributions have not been
calculated in lattice QCD, and need to be estimated using
other approaches. The HQET uncertainties could be re-
duced by using higher-order lattice HQET, lattice non-
relativistic QCD, or a relativistic action for the b quarks.
In such calculations one would have to deal with more
complicated current matching and the full set of ten
�b ! � form factors.

Another possible application of our form factor results
to the phenomenology of �b ! �‘þ‘� decays is to
study various angular distributions which depend on the
baryon polarization and probe the helicity structure of
the effective weak Hamiltonian. In particular, one should
compute the angular distribution of the two-stage decay
�b ! ð� ! p��Þ‘þ‘� for partially polarized �b bary-
ons. To make numerical predictions of these angular dis-
tributions for the LHC, the polarization of the �b baryons
produced in proton-proton collisions needs to be deter-
mined, for example using the method discussed in
Ref. [20]. It remains to be seen whether the decay

�b ! ð� ! p��Þ‘þ‘� will be competitive with B !
K�ð! K�Þ‘þ‘� [64] in constraining new-physics models.
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