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A w-container Cðu;vÞ of a graph G is a set of w-disjoint paths joining u to v. A w-container
of G is a w�-container if it contains all the nodes of VðGÞ. A bipartite graph G is w�-laceable if
there exists a w�-container between any two nodes from different parts of G. Let n and k be
any two positive integers with n P 2 and k 6 n. In this paper, we prove that n-dimensional
bipartite hypercube-like graphs are f-edge fault k�-laceable for every f 6 n� 2 and
f þ k 6 n.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Basic graph definitions and notations

The research about interconnection networks is important for parallel and distributed computer systems. The layouts of
processors and links in distributed computer systems are usually represented by a network structure. Computer network
topologies are usually represented by graphs where nodes represent processors and edges represent links between proces-
sors. The containers of graphs do exist in information engineering design, telecommunication networks, and biological neu-
ral systems ([1,2] and its references). The study of w-container, w-wide distance, and their w�-versions play a pivotal role in
the design and the implementation of parallel routing and efficient information transmission in large scale networking sys-
tems. In bioinformatics and neuroinformatics, the existence as well as the structure of a w�-container signifies the cascade
effect in the signal transduction system and the reaction in a metabolic pathway.

For graph definitions and notations, we follow [3,4]. Let G ¼ ðV ; EÞ be a graph where V is a finite set and E is a subset of
fðu;vÞjðu;vÞ is an unordered pair of Vg. We say that V is the node set and E is the edge set. We use nðGÞ to denote jV j. Two
nodes u and v are adjacent if ðu;vÞ 2 E. For a node u, we use NGðuÞ to denote the neighborhood of u which is the set
fv jðu;vÞ 2 Eg. For any node u of V, we denote the degree of u by degGðuÞ ¼ jNGðuÞj. A graph G is k-regular if degGðuÞ ¼ k for
every node u in G. A path P between nodes v1 and vk is a sequence of adjacent nodes, hv1;v2; . . . ;vki, in which the nodes
v1;v2; . . . ;vk are distinct except that possibly v1 ¼ vk. We use P�1 to denote the path hvk;vk�1; . . . ;v1i. The length of
P; lðPÞ, is the number of edges in P. We also write the path P as hv1;v2; . . . ;v i;Q ;v j;v jþ1; . . . ;vki, where Q is the path
hv i;v iþ1; . . . ; v ji. Hence, it is possible to write a path as hv1;v2;Q ;v2;v3; . . . ; vki if lðQÞ ¼ 0. Let IðPÞ ¼ VðPÞ � fv1;vkg be the
set of the internal nodes of P. A set of paths fP1; P2; . . . ; Pkg are internally node-disjoint (abbreviated as disjoint) if
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IðPiÞ \ IðPjÞ ¼ ; for any i – j. A path is a hamiltonian path if it contains all nodes of G. A graph G is hamiltonian connected if
there exists a hamiltonian path joining any two distinct nodes of G [5]. A cycle is a path with at least three nodes such that
the first node is the same as the last one. A hamiltonian cycle of G is a cycle that traverses every node of G. A graph is ham-
iltonian if it has a hamiltonian cycle. A graph G is bipartite if its node set can be partitioned into two subsets V1 and V2 such
that every edge connects nodes between V1 and V2. A bipartite graph G is hamiltonian laceable if there is a hamiltonian path
of G joining any two nodes from distinct bipartition [6]. A bipartite graph G is k-edge fault hamiltonian laceable if G� F is ham-
iltonian laceable for any edge subset F of G with jFj 6 k.

A graph G is k-connected if there exists a set of k internally disjoint paths fP1; P2; . . . ; Pkg between any two distinct nodes u
and v. A subset S of VðGÞ is a cut set if G� S is disconnected. A container Cðu;vÞ between two distinct nodes u and v in G is a set
of disjoint paths between u and v. A w-container Cwðu;vÞ in a graph G is a set of w internally node-disjoint paths between u
and v. The concepts of a container and of a wide distance were proposed by Hsu [2] to evaluate the performance of commu-
nication for an interconnection network. The connectivity of G, jðGÞ, is the minimum number of nodes whose removal leaves
the remaining graph disconnected or trivial. Hence, a graph G is k-connected if jðGÞP k. It follows from Menger’s Theorem
[7] that there is a w-container for w 6 k between any two distinct nodes of G if G is k-connected.

1.2. w�-connected graphs and w�-laceable graphs

In this paper, we are interested in a specific type of container. A w�-container Cw� ðu;vÞ in a graph G is a w-container such
that every node of G is on some path in Cwðu;vÞ. A graph G is w�-connected if there exists a w�-container between any two
distinct nodes in G. Obviously, we have the following remark.

Remark 1. ð1:aÞ a graph G is 1�-connected if and only if it is hamiltonian connected [5], ð1:bÞ a graph G is 2�-connected if it is
hamiltonian, and ð1:cÞ an 1�-connected graph except K1 and K2 is 2�-connected.

The study of w�-connected graph is motivated by the 3�-connected graphs proposed by Albert et al. [8]. Some related
works have appeared in [8,9]. Assume that the graph G is w�-connected with w 6 jðGÞ. The spanning connectivity of a graph
G;j�ðGÞ, is the largest integer k such that G is i�-connected for every i with 1 6 i 6 k. A graph G is super spanning connected if
j�ðGÞ ¼ jðGÞ. In such case, the number j�ðGÞ ¼ jðGÞ is called the super spanning connectivity of G. In [10–13], some families
of graphs are proved to be super spanning connected.

A bipartite graph is said to be w�-laceable if there exists a w�-container between any two nodes from different partite sets
for some w with 1 6 w 6 jðGÞ. Any bipartite w�-laceable graph with w P 2 has the equal size of bipartition. We have the
following remark.

Remark 2. ð2:aÞ an 1�-laceable graph is also known as hamiltonian laceable graph [6], ð2:bÞ a graph G is 2�-laceable if and
only if it is hamiltonian, and ð2:cÞ an 1�-laceable graph except K1 and K2 are 2�-laceable.

The spanning laceability of a bipartite graph G;j�L ðGÞ, is the largest integer k such that G is i�-laceable for every i with
1 6 i 6 k. A graph G is super spanning laceable if j�L ðGÞ ¼ jðGÞ. Recently, Chang et al. [14] proved that the n-dimensional
hypercube Qn is super spanning laceable for every positive integer n. It was proved in [11] that the n-dimensional star graph
Sn is super spanning laceable if and only if n – 3.

1.3. Hypercube-like graphs H0n

Among all interconnection networks proposed in the literature, the hypercube Q n is one of the most popular topologies
[14–17]. However, the hypercube does not have the smallest diameter for its resources. Various networks are proposed by
twisting some pairs of links in hypercubes [18–21]. Because of the lack of the unified perspective on these variants, results of
one topology are hard to be extended to others. To make a unified study of these variants, Vaidya et al. introduced the class of
hypercube-like graphs [22]. We denote these graphs as H0-graphs. The class of H0-graphs, consisting of simple, connected,
and undirected graphs, contains most of the hypercube variants.

Let G0 ¼ ðV0; E0Þ and G1 ¼ ðV1; E1Þ be two disjoint graphs with the same number of nodes. A 1–1 connection between G0

and G1 is defined as E ¼ fðv;/ðvÞÞjv 2 V0;/ðvÞ 2 V1, and / : V0 ! V1 is a bijectiong. We use G0 � G1 to denote
G ¼ ðV0 [ V1; E0 [ E1 [ EÞ. The operation ‘‘�’’ may generate different graphs depending on the bijection /. There are some
studies on the operation ‘‘�’’ [23,24]. Let G ¼ G0 � G1, and let x be any node in G. We use �x to denote the unique node
matched under /.

Now, we can define the set of n-dimensional H0-graph, H0n, as follows:

(1) H01 ¼ fK2g, where K2 is the complete graph with two nodes.
(2) Assume that G0;G1 2 H0n. Then G ¼ G0 � G1 is a graph in H0nþ1.

We can define the set of bipartite n-dimensional H0-graph, B0n, as follows:
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(1) B01 ¼ fK2g, where K2 is the complete graph defined on fa; bg with bipartition V0 ¼ fag and V1 ¼ fbg.
(2) For i ¼ 0;1, let Gi be a graph in B0n with bipartition Vi

0 and Vi
1. Let / be a bijection between V0

0 [ V0
1 and V1

0 [ V1
1 such that

/ðvÞ 2 V1
1�i if v 2 V0

i . Then G ¼ G0 � G1 is a graph in B0nþ1.

Every graph in H0n is an n-regular graph with 2n nodes, and every graph in B0n contains 2n�1 nodes in each bipartition. Note
that the n-dimensional hypercube Qn 2 B0n.

Let G be a graph in H0nþ1. Then G ¼ G0 � G1 with both G0 and G1 in H0n. Let u be a node in VðGÞ. Then u is a node in VðGiÞ for
some i ¼ 0;1. We use �u to denote the node in VðG1�iÞ matched under /. So u ¼ �v if �u ¼ v .

In the following section, we give some properties about the bipartite n-dimensional hypercube-like graphs B0n. Let n and k
be any two positive integers with n P 2 and k 6 n. In Section 3 and Section 4, we prove that every B0n is f-edge fault k�-lace-
able for every f 6 n� 2 and f þ k 6 n. We give our conclusion in the final section.

2. Preliminaries

Park and Chwa [25] studied the hamiltonian laceability properties of the bipartite hypercube-like networks. Some results
are listed as follows.

Theorem 1 [25]. Every graph in B0n is hamiltonian laceable, and every graph in B0n is hamiltonian if n P 2.
Theorem 2 [25]. Suppose that n P 2; i 2 f0;1g, and G is a graph in B0n with bipartition G0 and G1. Let fu1;u2g# VðGiÞ with
u1 – u2, and fv1;v2g# VðG1�iÞ with v1 – v2. Then there are two disjoint paths P1 and P2 of G such that (1) P1 joins u1 to v1,
(2) P2 joins u2 to v2, and (3) P1 [ P2 spans G.

The fault-tolerance hamiltonian laceability of the bipartite hypercube-like networks is studied by Lin et al. in [26].

Theorem 3 [26]. Let n P 2. Every graph in B0n is ðn� 2Þ-edge fault hamiltonian laceable.
Theorem 4 [26]. Suppose that n P 2; i 2 f0;1g, and G is a graph in B0n with bipartition G0 and G1. Let z 2 VðGiÞ, and
fu;vg# VðG1�iÞ with u – v . Then there is a hamiltonian path of G� fzg joining u to v.

3. The super spanning laceability of the graph in B0n

Let n and k be any two positive integers with n P 2 and k 6 n. In this section, we show that every graph in B0n is f-edge
fault k�-laceable for every f 6 n� 2 and f þ k 6 n. We give the concept of the spanning fan first. We note that there is another
Menger-type Theorem. Let u be a node of G and S ¼ fv1;v2; . . . ;vkg be a subset of VðGÞ not including u. An ðu; SÞ-fan is a set of
disjoint paths fP1; P2; . . . ; Pkg of G such that Pi joins u to v i for every 1 6 i 6 k [27]. It is proved that a graph G is k-connected if
and only if there exists an ðu; SÞ-fan between any node u and any k-subset S of VðGÞ such that u R S. With this observation,
we define a spanning fan is a fan that spans a graph G. Naturally, we can study j�fanðGÞ as the largest integer k such that there
exists a spanning ðu; SÞ-fan between any node u and any k-node subset S with u R S. However, we defer such a study for the
following reasons.

First, let S be a cut set of a graph G. Let u be any node of VðGÞ � S. It is easy to see that there is no spanning ðu; SÞ-fan in G.
Thus, j�fanðGÞ < jðGÞ if G is not a complete graph.

Second, let G be a bipartite graph with bipartition G0 ¼ ðV0; E0Þ and G1 ¼ ðV1; E1Þ such that jV0j ¼ jV1j. Let u be a node in Vi

with i 2 f0;1g; S ¼ fv1;v2; . . . ;vkg# VðGÞ � fug, and k 6 jðGÞ. Suppose that jS \ V1�ij ¼ r. Without loss of generality, we as-
sume that fv1;v2; . . . ;v rg � V1�i. Let fP1; P2; . . . ; Pkg be any spanning ðu; SÞ-fan of G. Then lðPiÞ is odd if i 6 r, and lðPiÞ is even if
r < i 6 k. Let lðPiÞ ¼ 2ti þ 1 if i 6 r and lðPiÞ ¼ 2ti if i > r. For i 6 r, there are ti � 1 nodes of Pi in Vi other than u, and there are ti

nodes of Pi in V1�i. For i > r, there are ti nodes of Pi in Vi other than u, and there are ti nodes of Pi in V1�i. Thus, we have
jVij ¼ 1� r þ

Pk
i¼1ti and jV1�ij ¼

Pk
i¼1ti. Since jVij ¼ jV1�ij; r ¼ 1. Thus, r ¼ 1 is a natural requirement as we study the span-

ning fan of bipartite graphs with equal size of bipartition.

Theorem 5 [12]. Suppose that n and k are two positive integers with k 6 n. Let G be a graph in B0n with bipartition G0 and G1.
There exists a spanning ðu; SÞ-fan in G for any node u in VðGiÞ and any node subset S with jSj ¼ k 6 n such that u R S, and
jS \ VðG1�iÞj ¼ 1 with i 2 f0;1g.

Lemma 1. Suppose that

1. n P 2; f ¼ n� 2, and i 2 f0;1g,
2. G is a graph in B0n with bipartition G0 and G1, and
3. F � EðGÞ with jFj ¼ f .

Then, for any fu; yg# VðGiÞ and x 2 VðG1�iÞ with u – y, there exists a spanning ðu; fx; ygÞ-fan in G� F.



Proof. By Theorem 3, there is a hamiltonian path P ¼ hx; P1;u; P2; yi of G� F joining x to y. Then fP1; P2g is the spanning
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ðu; fx; ygÞ-fan of G� F. h

The following are the main results.

Theorem 6. Suppose that

1. n P 2; k 6 n, and i 2 f0;1g,
2. G is a graph in B0n with bipartition G0 ¼ ðV0; E0Þ and G1 ¼ ðV1; E1Þ, and
3. F � EðGÞ with jFj þ k 6 n and jFj 6 n� 2.

Then, for any u 2 Vi and S # VðGÞ � fug with jSj ¼ k and jS \ V1�ij ¼ 1, there exists a spanning ðu; SÞ-fan in G� F.
We prove the theorem by induction. However, the proof of the theorem is rather long. We prove it in the following

section.

Theorem 7. The bipartite n-dimensional hypercube-like graph B0n is f-edge fault k�-laceable for f 6 n� 2 and f þ k 6 n.
Proof. Let G be a graph in B0n with bipartition G0 and G1. Assume that x 2 VðGiÞ and y 2 VðG1�iÞ for some i 2 f0;1g. Suppose
that F � EðGÞ with jFj ¼ f and f 6 n� 2. Let S # VðGiÞ � fxg adjacent to y in G� F with jSj ¼ k� 1 and k 6 n� f . We assume
that S ¼ fy1; y2; . . . ; yk�1g. By Theorem 6, there exists a spanning ðx; S [ fygÞ-fan fP1; P2; . . . ; Pkg in G� F such that Pk joins x to
y, and Pi joins x to yi for 1 6 i 6 k� 1. Let Q i ¼ hx; Pi; yi; yi for 1 6 i 6 k� 1. Thus, fPk;Q 1;Q 2; . . . ;Qk�1g forms a k�-container
between x and y in G� F. The theorem is proved. h
4. Proof of Theorem 6

Let G ¼ G0 � G1 in B0n with bipartition Vj
0 and Vj

1 for j 2 f0;1g. Thus, V0
0 [ V1

0 and V0
1 [ V1

1 form the bipartition of G. Assume
that jFj ¼ f . Let u be any node in V0

0 [ V1
0 and S ¼ fv1;v2; . . . ;vkg be any node subset in G� fugwith v1 being the unique node

in ðV0
1 [ V1

1Þ \ S. Without loss of generality, we assume that u 2 V0
0. For n ¼ 2, we have G is isomorphic to a cycle with four

nodes. Thus, this statement holds on n ¼ 2. By Lemma 1, Theorem 3, and Theorem 5, this statement holds on n ¼ 3. Thus, we
assume that n P 4. By Lemma 1 and Theorem 3, this statement holds on k 2 f1;2g and f ¼ n� 2. By Theorem 5, this
statement holds on k 6 n and f ¼ 0. Thus, we assume that k P 3 and 1 6 f 6 n� 3 with kþ f 6 n. We set
T ¼ S� fv1g; Fj ¼ F \ EðGjÞ for j 2 f0;1g, and F2 ¼ F � ðF0 [ F1Þ. Note that jFj ¼ jF0j þ jF1j þ jF2j and jFj0j 6 n� 3 for every
j0 2 f0;1;2g. Now we have the following cases.

Case 1. jT \ V0
0j ¼ jTj.
v 1 v 2

u

v 3 v 4 v 5

v 6

x

G1

v 2 v 3

u

v 4 v 5 v 1

v 6

x

G1u

x x

u

v 2 v 3

u

v 4 v 5

v 1v 6

x

G
y

1

y u

x

(a) (b)

(c) (d)

v 2 v 3

u

v 4 v 5

v 1

v 6

x

y y

x

G1

G0 - F0 G0 - F0

G0 - F0
G0 - F0

Fig. 1. Case 1.1 and Case 1.2. (Suppose that k = 6.).
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Case 1.1. jF0j ¼ jFj and v1 2 V0
1. Let H ¼ S� fvkg. We have H � G0; jH \ V0

1j ¼ 1, and jHj ¼ k� 1. By induction, there is a span-
ning ðu;HÞ-fan fP1; P2; . . . ; Pk�1g of G0 � F0. Without loss of generality, we assume that Pi joins u to v i for every 1 6 i 6 k� 1.

Suppose that vk 2 VðP1Þ. Without loss of generality, we write P1 as hu;Q 1;vk; x;Q 2;v1i. Since vk 2 V0
0; x 2 V0

1. (Note that
x ¼ v1 if lðQ 2Þ ¼ 0.) By Theorem 1, there is a hamiltonian path R of G1 joining node �u 2 V1

1 to node �x 2 V1
0. We set

W1 ¼ hu; �u;R; �x; x;Q2;v1i;Wi ¼ Pi for every 2 6 i 6 k� 1, and Wk ¼ hu;Q1;vki. Then fW1;W2; . . . ;Wkg forms the spanning
ðu; SÞ-fan of G� F. See Fig. 1(a) for an illustration. Suppose that vk 2 VðPiÞ for some 2 6 i 6 k� 1. Without loss of generality,
we assume that vk 2 VðPk�1Þ and write Pk�1 as hu;Q 1;vk; x;Q 2;vk�1i. Since vk 2 V0

0; x 2 V0
1. By Theorem 1, there is a hamilto-

nian path R of G1 joining node �u 2 V1
1 to node �x 2 V1

0. We set Wi ¼ Pi for every 1 6 i 6 k� 2;Wk�1 ¼ hu; �u;R; �x; x;Q2;vk�1i, and
Wk ¼ hu;Q1;vki. Then fW1;W2; . . . ;Wkg forms the spanning ðu; SÞ-fan of G� F. See Fig. 1(b) for an illustration.

Case 1.2. jF0j ¼ jFj and v1 2 V1
1. We choose a node x in V0

1. Let H ¼ ðT [ fxgÞ � fvkg. We have H � G0; jH \ V0
1j ¼ 1, and

jHj ¼ k� 1. By induction, there is a spanning ðu;HÞ-fan fP1; P2; . . . ; Pk�1g of G0 � F0 such that P1 joins u to x, and Pi joins u to
v i for every 2 6 i 6 k� 1. Note that �u 2 V1

1 and �x 2 V1
0. Without loss of generality, we assume that vk 2 VðP1Þ. Let

P1 ¼ hu;Q1; y;vk;Q2; xi. Since vk 2 V0
0, we have y 2 V0

1 and �y 2 V1
0.

Suppose that v1 – �u. By Theorem 2, there are two disjoint paths R1 and R2 in G1 such that ð1Þ R1 joins �y to v1; ð2Þ R2 joins �u
to �x, and ð3Þ R1 [ R2 spans G1. We set W1 ¼ hu;Q1; y; �y;R1;v1i;Wi ¼ Pi for every 2 6 i 6 k� 1, and Wk ¼ hu; �u;R2; �x; x;Q

�1
2 ;vki.

Then fW1;W2; . . . ;Wkg forms the spanning ðu; SÞ-fan of G� F. See Fig. 1(c) for an illustration.
Suppose that v1 ¼ �u. By Theorem 4, there is a hamiltonian path R of G1 � fv1g joining �y to �x. We set

W1 ¼ hu; �u ¼ v1i;Wi ¼ Pi for every 2 6 i 6 k� 1, and Wk ¼ hu;Q 1; y; �y;R; �x; x;Q
�1
2 ;vki. Then fW1;W2; . . . ;Wkg forms the span-

ning ðu; SÞ-fan of G� F. See Fig. 1(d) for an illustration.

Case 1.3. jF0j < jFj and v1 2 V0
1. Since jF0j < jFj ¼ f , we have kþ jF0j 6 kþ f � 1 6 n� 1. By induction, there is a spanning

ðu; SÞ-fan fP1; P2; . . . ; Pkg of G0 � F0. Without loss of generality, we assume that Pi joins u to v i for every 1 6 i 6 k. Since
jVðG0Þj ¼ 2n�1 and [k

i¼1Pi span G0, we have
Pk

i¼1jEðPiÞj ¼ 2n�1 � 1. Since 2n�1 � 1 > 3n� 8 > 2ðf � 1Þ þ k if n P 3, there exists
an edge ðx; yÞ in [k

i¼1EðPiÞ such that ðx; �xÞ R F2 and ðy; �yÞ R F2. Without loss of generality, we assume that ðx; yÞ 2 EðPjÞ for
some 1 6 j 6 k. Let Pj ¼ hu;R1; x; y;R2;v ji. Note that u ¼ x if lðR1Þ ¼ 0 and y ¼ v j if lðR2Þ ¼ 0. Since x and y are adjacent, x and y
are in distinct bipartition of G0. Moreover, �x and �y are in distinct bipartition of G1. By Theorem 3, there is a hamiltonian path
W of G1 � F1 joining �x to �y. We set Wi ¼ Pi for every i 2 f1;2; . . . ; kg � fjg and set Wj ¼ hu;R1; x; �x;W; �y; y;R2;v ji. Then
fW1;W2; . . . ;Wkg forms the spanning ðu; SÞ-fan of G� F.

Case 1.4. jF0j < jFj and v1 2 V1
1. Since jV0

1j ¼ 2n�2 > n� 3 if n P 3, there exists a node x 2 V0
1 such that ðx; �xÞ R F2. Let

H ¼ T [ fxg. Since jF0j < jFj ¼ f , we have kþ jF0j 6 kþ f � 1 6 n� 1. By induction, there is a spanning ðu;HÞ-fan
fP1; P2; . . . ; Pkg of G0 � F0. Without loss of generality, we assume that P1 is joining u to x and Pi is joining u to v i for every
2 6 i 6 k. Since x 2 V0

1, we have �x 2 V1
0. By Theorem 3, there is a hamiltonian path R of G1 � F1 joining �x to v1. We set

W1 ¼ hu; P1; x; �x;R;v1i and Wi ¼ Pi for every 2 6 i 6 k. Then fW1;W2; . . . ;Wkg forms the spanning ðu; SÞ-fan of G� F.

Case 2. jT \ V1
0j ¼ 1. We assume that vk 2 V1

0. Note that �u 2 V1
1.
Case 2.1. jF0j ¼ jFj and v1 2 V0
1. Let H ¼ S� fvkg. We have H � G0; jH \ V0

1j ¼ 1, and jHj ¼ k� 1. By induction, there is a span-
ning ðu;HÞ-fan fW1;W2; . . . ;Wk�1g of G0 � F0. By Theorem 1, there is a hamiltonian path R of G1 joining �u to vk. We set
Wk ¼ hu; �u;R;vki. Then fW1;W2; . . . ;Wkg forms the spanning ðu; SÞ-fan of G� F. See Fig. 2(a) for an illustration.

Case 2.2. jF0j ¼ jFj and v1 2 V1
1. By Theorem 1, there is a hamiltonian path R of G1 joining v1 to vk. We write R as

hv1;R1; �u; x;R2;vki. Note that v1 ¼ �u if lðR1Þ ¼ 0 and x ¼ vk if lðR2Þ ¼ 0. Since �u 2 V1
1, we have x 2 V1

0 and �x 2 V0
1. Let

H ¼ ðT [ f�xgÞ � fvkg. Thus H � G0; jH \ V0
1j ¼ 1, and jHj ¼ k� 1. By induction, there is a spanning ðu;HÞ-fan

fP1; P2; . . . ; Pk�1g of G0 � F0 such that P1 joins u to �x, and Pi joins u to v i for every 2 6 i 6 k� 1. We set
v 1 v 2

u

v 3 v 4 v 5 v 6

G

v 2 v 3

u

v 4 v 5 v 1v 6

x
G

(a) (b)

x
uu 1 1G0 - F0 G0 - F0

Fig. 2. Case 2.1 and Case 3.2. (Suppose that k = 6.).
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W1 ¼ hu; �u;R�1
1 ;v1i;Wi ¼ Pi for every 2 6 i 6 k� 1, and Wk ¼ hu; P1; �x; x;R2;vki. Then fW1;W2; . . . ;Wkg forms the ðu; SÞ-fan of

G� F. See Fig. 2(b) for an illustration.
Case 2.3. jF0j < jFj and v1 2 V0
1. Since jV0

0j ¼ 2n�2 > n > kþ f � 1 if n P 4, there exists a node x in V0
0 � ðT [ fugÞ such that

ðx; �xÞ R F2. Let H ¼ ðS [ fxgÞ � fvkg. Obviously, H � G0; jH \ V1
0j ¼ 1, and jHj ¼ k. Since jF0j < jFj ¼ f , we have

kþ jF0j 6 kþ f � 1 6 n� 1. By induction, there is a spanning ðu;HÞ-fan fP1; P2; . . . ; Pkg of G0 � F0 such that Pi joins u to v i

for every 1 6 i 6 k� 1 and Pk joins u to x. By Theorem 1, there is a hamiltonian path R of G1 � F1 joining �x to vk. We set
Wi ¼ Pi for every 1 6 i 6 k� 1 and Wk ¼ hu; Pk; x; �x;R;vki. Then fW1;W2; . . . ;Wkg forms the spanning ðu; SÞ-fan of G� F.
Case 2.4. jF0j < jFj and v1 2 V1
1. Since jV0

0j ¼ 2n�2 > n > kþ f � 1 if n P 4, there exists a node x in V0
0 � ðT [ fugÞ such that

ðx; �xÞ R F2. Let F 0 ¼ fðy; �xÞjy 2 G1 and ðy; �yÞ 2 F2g. We have jF1 [ F 0j 6 jF1j þ jF2j 6 jFj ¼ f < n� 3. By Theorem 1, there is a
hamiltonian path R of G1 � ðF1 [ F 0Þ joining v1 to vk. Without loss of generality, we write R as hv1;R1; �x; z;R2;vki. Note that
v1 ¼ �x if lðR1Þ ¼ 0 and z ¼ vk if lðR2Þ ¼ 0. Since x 2 V0

0, we have �x 2 V1
1; z 2 V1

0, and �z 2 V0
1. Let H ¼ ðT [ fx;�zgÞ � fvkg. Obvi-

ously, H � G0; jH \ V0
1j ¼ 1, and jHj ¼ k. Since jF0j < jFj ¼ f , we have kþ jF0j 6 kþ f � 1 6 n� 1. By induction, there is a span-

ning ðu;HÞ-fan fP1; P2; . . . ; Pkg of G0 � F0. Without loss of generality, we assume that P1 joins u to x; P2 joins u to �z, and Pi joins
u to v i�1 for every 3 6 i 6 k. We set W1 ¼ hu; P1; x; �x;R

�1
1 ;v1i;Wi ¼ Piþ1 for every 2 6 i 6 k� 1, and Wk ¼ hu; P2;�z; z;R2; vki.

Then fW1;W2; . . . ;Wkg forms the ðu; SÞ-fan of G� F.
Case 3. jT \ V1
0jP 2 and jT \ V0

0jP 1. We have n P kþ 1 ¼ jSj þ 1 P 5. Assume that A ¼ T \ V0
0 ¼ fv2;v3; . . . ;v tg and

B ¼ T \ V1
0 ¼ fv tþ1; v tþ2; . . . ;vkg for some 2 6 t 6 k� 2.
Case 3.1. jF0j ¼ jFj. Since ðn� 1ÞjAj 6 ðn� 1Þðn� 3Þ < 2nn�2 if n P 5, there exists a node x in V1
0 such that v1 R NG1 ðxÞ and

�v i R NG1 ðxÞ for 2 6 i 6 t. By induction, there is a spanning ðx;B [ f�ugÞ-fan fP1; P2; . . . ; Pk�tþ1g of G1 such that
P1 ¼ hx; x1; P

0
1; �ui joins x to �u, and Pi ¼ hx; xi; P

0
i;v tþi�1i joins x to v tþi�1 for every 2 6 i 6 k� t þ 1.
Case 3.1.1. v1 2 V0
1. We set H ¼ A [ fv1g [ f�xij2 6 i 6 k� tg. Let fQ1;Q2; . . . ;Q k�1g be a spanning ðu;HÞ-fan of G0 � F0 such

that Q i joins u to v i for every 1 6 i 6 t, and Q j joins u to �xj�tþ1 for every t þ 1 6 j 6 k� 1. We set
Wi ¼ Q i;Wj ¼ hu;Q j; �xj�tþ1; xj�tþ1; P

0
j�tþ1;v ji, and Wk ¼ hu; �u; P�1

1 ; x; Pk�tþ1;vki. Then fW1;W2; . . . ;Wkg forms a spanning
ðu; SÞ-fan of G� F.
Case 3.1.2. v1 2 V1
1 and v1 2 VðP1Þ. We write P1 ¼ hx;R1; y;v1;R2; �ui. We set H ¼ A [ f�xij2 6 i 6 k� tg [ f�yg. Let

fQ1;Q2; . . . ;Q k�1g be a spanning ðu;HÞ-fan of G0 � F0 such that Q1 joins u to �y;Q j joins u to v j for every 2 6 j 6 t, and Qj0 joins
u to �xj0�tþ1 for every t þ 1 6 j0 6 k� 1. We set W1 ¼ hu; �u;R�1

2 ;v1i;Wj ¼ Qj, Wj0 ¼ hu;Qj0; �xj0�tþ1; xj0�tþ1; P
0
j0�tþ1;v j0i, and

Wk ¼ hu;Q1; �y; y;R
�1
1 ; x; Pk�tþ1;vki. Then fW1;W2; . . . ;Wkg forms a spanning ðu; SÞ-fan of G� F.
Case 3.1.3. v1 2 V1
1 and v1 2 VðPiÞ for some 2 6 i 6 k� t þ 1. Without loss of generality, we assume that v1 2 VðP2Þ. Let

P2 ¼ hx;R1;v1; y;R2; v tþ1i. We set H ¼ A [ f�xij3 6 i 6 k� t þ 1g [ f�yg. Let fQ1;Q2; . . . ;Q k�1g be a spanning ðu;HÞ-fan of
G0 � F0 such that Q 1 joins u to �y, Q j joins u to v j for every 2 6 j 6 t, and Qj0 joins u to �xj0�tþ1 for every t þ 2 6 j0 6 k. We
set W1 ¼ hu; �u; P�1

1 ; x;R1; v1i;Wj ¼ Qj, Wtþ1 ¼ hu;Q1; �y; y;R2;v tþ1i, and Wj0 ¼ hu;Qj0; �xj0�tþ1; xj0�tþ1; P
0
j0�tþ1;v j0i. Then

fW1;W2; . . . ;Wkg forms a spanning ðu; SÞ-fan of G� F.
Case 3.2. jF0j < jFj and n ¼ 5. We have jFj ¼ 1 and k ¼ 4. Thus, jF0j = 0 and jF1j þ jF2j ¼ 1. Moreover, A ¼ fv2g and
B ¼ fv3;v4g.
Case 3.2.1. jF1j ¼ 0 and v1 2 V0
1. Since jV1

1j ¼ 8 > 3, there exist two distinct nodes x1 and x2 in V1
1 � f�u; �v2g such that

ðx1; �x1Þ R F2 and ðx2; �x2Þ R F2. By Theorem 2, there are two disjoint paths P1 and P2 in G1 such that Pi joins xi to v iþ2 for
i 2 f1;2g, and P1 [ P2 spans G1. Let fQ1;Q2;Q3;Q4g be a spanning ðu; fv1;v2; �x1; �x2gÞ-fan of G0 such that Qi joins u to v i for
1 6 i 6 2, and Qj joins u to �xj�2 for 3 6 j 6 4. We set Wi ¼ hu;Qiþ2; �xi; xi; Pi;v iþ2i for every 1 6 i 6 2. Then fQ 1;Q 2;W1;W2g
forms a spanning ðu; SÞ-fan of G� F.
Case 3.2.2. jF1j ¼ 0 and v1 2 V1
1. Since jV1

0j ¼ 8, there exists a node x in V1
0 � fv3;v4g such that �v2 R NG1 ðxÞ and ðx; �xÞ R F2.

We set F0 ¼ fðx; yÞjy 2 NG1 ðxÞ and ðy; �yÞ 2 F2g. We have jF0j 6 1. By induction, there is a spanning ðx; fv1;v3;v4gÞ-fan
fP1; P2; P3g of G1 such that P1 joins x to v1 and Pi joins x to v iþ1 for 2 6 i 6 3. We set P1 ¼ hx; x1;R1;v1i and
Pi ¼ hx; xi;Ri;v iþ1i for every 2 6 i 6 3. Let fQ 1;Q 2;Q 3;Q 4g be a spanning ðu; fv2; �x; �x2; �x3gÞ-fan of G0 such that Q1 joins u to
�x;Q 2 joins u to v2, and Qi joins u to �xi�1 for 3 6 i 6 4. We set W1 ¼ hu;Q1; �x; x; P1;v1i;W2 ¼ Q 2, and
Wi ¼ hu;Q i; �xi�1; xi�1;Ri�1;v ii for every 3 6 i 6 4. Then fW1;W2;W3;W4g forms a spanning ðu; SÞ-fan of G� F.
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Case 3.2.3. jF1j ¼ 1 and v1 2 V0
1. We have jF2j ¼ 0. By Theorem 3, there is a hamiltonian path P of G1 � ðF1 [ fðv3; �v2ÞgÞ join-

ing �u to v4. We set P ¼ h�u; P1;v3; x; P2;v4i. Let fQ1;Q2;Q3g be a spanning ðu; fv1;v2; �xgÞ-fan of G0 such that Q i joins u to v i for
1 6 i 6 2 and Q 3 joins u to �x. Let W1 ¼ hu; �u; P1;v3i and W2 ¼ hu;Q3; �x; x; P2;v4i. Then fQ1;Q2;W1;W2g forms a spanning
ðu; SÞ-fan of G� F.
Case 3.2.4. jF1j ¼ 1 and v1 2 V1
1. Since jV1

0j ¼ 8 > 6, there exists a node x in V1
0 � fv3;v4g such that �v2 R NG1 ðxÞ. By induction,

there exists a ðx; fv1;v3;v4gÞ-fan fP1; P2; P3g of G1 � F1 such that P1 joins x to v1, and Pi joins x to v iþ1 for 2 6 i 6 3. Without
loss of generality, we write Pi ¼ hx; yi�1;Ri�1;v i�1i for 2 6 i 6 3. Let fQ1;Q2;Q3;Q4g be a ðu; f�x;v2; �y1; �y2gÞ-fan of G0 such that
Q 1 joins u to �x;Q2 joins u to v2, and Qi joins u to �yi�2 for 3 6 i 6 4. We set W1 ¼ hu;Q1; �x; x; P1;v1i;W2 ¼ Q 2, and
Wi ¼ hu;Qi; �yi�2; yi�2;Ri�2;v ii for 3 6 i 6 4. Then fW1;W2;W3;W4g forms a spanning ðu; SÞ-fan of G� F.
Case 3.3. jF0j < jFj and n P 6. Since ðn� 1Þðf þ jAjÞ 6 ðn� 1Þðf þ k� 3Þ 6 ðn� 1Þðn� 3Þ < 2n�2 if n P 6, there exists a node x
in V1

0 such that ðx; �xÞ R F2; �v i R NG1 ðxÞ for every 2 6 i 6 t, and ðy; �yÞ R F2 for every y 2 NG1 ðxÞ.
Case 3.3.1. v1 2 V0
1. Since jAj þ f < 2n�2 if n P 6, there exists a node y in V1

1 such that ðy; �yÞ R F2 and �y R A.

Suppose that x R B. By induction, there is a spanning ðx; B [ fygÞ-fan fP1; P2; . . . ; Pk�tþ1g of G1 � F1 such that Pi joins x to v tþi

for every 1 6 i 6 k� t and Pk�tþ1 joins x to y. Without loss of generality, we set Pi ¼ hx; xi;Ri;v tþii for every 1 6 i 6 k� t � 1.
We set H ¼ A [ f�xij1 6 i 6 k� t � 1g [ f�yg. Let fQ1;Q2; . . . ;Q kg be a spanning ðu;HÞ-fan of G0 � F0 such that Qi joins u to v i

for every 1 6 i 6 t;Qj joins u to �xi�t for every t þ 1 6 j 6 k� 1, and Q k joins u to �y. We set Wi ¼ Q i for every
1 6 i 6 t;Wj ¼ hu;Q j; �xj�t ; xj�t ;Rj�t ;v jg for every t þ 1 6 j 6 k� 1, and Wk ¼ hu;Qk; �y; y; P

�1
k�tþ1; x; Pk�t ;vki. Then

fW1;W2; . . . ;Wkg forms a spanning ðu; SÞ-fan of G� F.
Suppose that x 2 B. We assume that x ¼ vk. This case is similar to the above.

Case 3.3.2. v1 2 V1
1. Suppose that x R B. By induction, there is a spanning ðx; B [ fv1gÞ-fan fP1; P2; . . . ; Pk�tþ1g of G1 � F1 such

that Pi joins x to v tþi for every 1 6 i 6 k� t and Pk�tþ1 joins x to v1. Without loss of generality, we set Pi ¼ hx; xi;Ri; v tþii for
every 1 6 i 6 k� t. We set H ¼ A [ f�xij1 6 i 6 k� tg [ f�xg. Let fQ1;Q2; . . . ;Qkg be a spanning ðu;HÞ-fan of G0 � F0 such that
Q1 joins u to �x;Qi joins u to v i for every 2 6 i 6 t, and Qj joins u to �xi�t for every t þ 1 6 j 6 k. We set
W1 ¼ hu;Q1; �x; x; Pk�tþ1;v1i;Wi ¼ Qi for every 2 6 i 6 t, and Wj ¼ hu;Qj; �xj�t; xj�t ;Rj�t ;v ji for every t þ 1 6 j 6 k. Then
fW1;W2; . . . ;Wkg forms a spanning ðu; SÞ-fan of G� F.

Suppose that x 2 B. We assume that x ¼ vk. The case is similar to the above.
Case 4. jT \ V1
0j ¼ k� 1. With Case 2, we consider that jTjP 2.
Case 4.1. jF0j ¼ jFj. We have jF1j ¼ 0 and jF2j ¼ 0. Let x be a node in V1
0 � T . By induction, there exists a spanning ðx; T [ f�ugÞ-

fan fP1; P2; . . . ; Pkg of G1 such that P1 joins x to �u, and Pi joins x to v i for every 2 6 i 6 k. We set Pi ¼ hx; xi;Ri;v ii for every
2 6 i 6 k.

Case 4.1.1. v1 2 V0
1. We set H ¼ fv1g [ f�xij2 6 i 6 k� 1g. Let fQ1;Q2; . . . ;Q k�1g be a spanning ðu;HÞ-fan of G0 � F0 such that

Q 1 joins u to v1, and Q i joins u to �xi for every 2 6 i 6 k� 1. We set W1 ¼ Q 1;Wi ¼ hu;Qi; �xi; xi;Ri;v ii for every 2 6 i 6 k� 1,
and Wk ¼ hu; �u; P�1

1 ; x; Pk;vki. Then fW1;W2; . . . ;Wkg forms a spanning ðu; SÞ-fan of G� F.
Case 4.1.2. v1 2 V1
1 and v1 2 VðP1Þ. We set P1 ¼ hx; Z1; y; v1; Z2; �ui. Let H ¼ f�yg [ f�xij2 6 i 6 k� 1g. Thus, there exists a span-

ning ðu;HÞ-fan fQ 1;Q 2; . . . ;Qk�1g in G0 � F0 such that Q 1 joins u to �y, and Qi joins u to �xi for every 2 6 i 6 k� 1. We set
W1 ¼ hu; �u; Z�1

2 ; v1i;Wi ¼ hu;Qi; �xi; xi;Ri;v ii for every 2 6 i 6 k� 1, and Wk ¼ hu;Q1; �y; y; Z
�1
1 ; x; Pk;vki. Then

fW1;W2; . . . ;Wkg forms a spanning ðu; SÞ-fan of G� F.
Case 4.1.3. v1 2 V1
1 and v1 2 VðPiÞ for some 2 6 i 6 k. Without loss of generality, we assume that v1 2 VðPkÞ. We set

Pk ¼ hx; Z1;v1; y; Z2;vki. Let H ¼ f�yg [ f�xij2 6 i 6 k� 1g. Thus, there exists a spanning ðu;HÞ-fan fQ 1;Q 2; . . . ;Qk�1g in
G0 � F0 such that Q1 joins u to �y, and Qi joins u to �xi for every 2 6 i 6 k� 1. We set
W1 ¼ hu; �u; P�1

1 ; x; Z1;v1i;Wi ¼ hu;Q i; �xi; xi;Ri;v ii for every 2 6 i 6 k� 1, and Wk ¼ hu;Q1; �y; y; Z2;vki. Then fW1;W2; . . . ;Wkg
forms a spanning ðu; SÞ-fan of G� F.
Case 4.2. jF0j < jFj and jF1j < jFj. Since jV1
0j ¼ 2n�2 > ðn� 1Þðn� 4Þ þ ðn� 2ÞP ðn� 1ÞjFj þ ðk� 2Þ if n P 4, there exists a

node x in V1
0 such that ðx; �xÞ R F2 and jfðz;�zÞjz 2 NG1 ðxÞg \ F2j 6 1.
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Case 4.2.1. v1 2 V0
1. There exists a node y 2 V1

1 � fx; �ug such that ðy; �yÞ R F2. Let fP1; P2; . . . ; Pkg be a spanning ðx; T [ fygÞ-fan
of G1 � F1 such that P1 joins x to y and Pi joins x to v i for every 2 6 i 6 k. We set Pi ¼ hx; xi;Ri;v ii for every 2 6 i 6 k. Since
jfðz;�zÞjz 2 NG1 ðxÞg \ F2j 6 1, we assume that ðxi; �xiÞ R F2 for every 2 6 i 6 k� 1. We set H ¼ fv1; �yg [ f�xij2 6 i 6 k� 1g. By
induction, there is a spanning ðu;HÞ-fan fQ1;Q2; . . . ;Qkg of G0 � F0 such that Q 1 joins u to v1, Qi joins u to �xi for every
2 6 i 6 k� 1, and Qk joins u to �y. Let W1 ¼ Q 1;Wi ¼ hu;Qi; �xi; xi;Ri;v ii for every 2 6 i 6 k� 1, and
Wk ¼ hu;Qk; �y; y; P

�1
1 ; x; Pk;vki. Then fW1;W2; . . . ;Wkg forms a spanning ðu; SÞ-fan of G� F.
Case 4.2.2. v1 2 V1
1. Let fP1; P2; . . . ; Pkg be a spanning ðx; SÞ-fan of G1 � F1 such that Pi joins x to v i for every 1 6 i 6 k. We set

Pi ¼ hx; xi;Ri;v ii for every 1 6 i 6 k. We choose an index r in f1;2; . . . ; k� 1g such that ðxi; �xiÞ R F2 for every
i 2 f1;2; . . . ; k� 1g � frg. We set H ¼ f�xiji 2 f1;2; . . . ; k� 1g � frgg [ f�xg. By induction, there is a spanning ðu;HÞ-fan
fQ1;Q2; . . . ;Q kg of G0 � F0 such that Q i joins u to �xi for every i 2 f1;2; . . . ; kg � frg, and Qr joins u to �x. Let
Wi ¼ hu;Q i; �xi; xi;Ri;v ii for every i 2 f1;2; . . . ; kg � frg and Wr ¼ hu;Qr ; �x; x; Pr;v ri. Then fW1;W2; . . . ;Wkg forms a spanning
ðu; SÞ-fan of G� F.
Case 4.3. jF1j ¼ jFj. We have jF0j ¼ 0 and jF2j ¼ 0. Let x1 be a node in V1
1 � f�u;v1g. By Theorem 3, there is a hamiltonian path P

of G1 � F1 joining x1 to vk. We set P ¼ hx1; P1;v2; x2; P3;v3; . . . ; xk�1; Pk�1;vki. Note that xi 2 V1
1 for every 1 6 i 6 k� 1.
Case 4.3.1. v1 2 V0
1. We set H ¼ fv1g [ f�xij1 6 i 6 k� 1g. By induction, there is a spanning ðu;HÞ-fan fQ1;Q2; . . . ;Qkg of G0

suck that Q1 joins u to v1 and Q i joins u to �xi�1 for every 2 6 i 6 k. We set W1 ¼ Q 1 and Wi ¼ hu;Qi; �xi�1; xi�1; Pi�1;v ii for every
2 6 i 6 k. Then fW1;W2; . . . ;Wkg forms a spanning ðu; SÞ-fan of G� F.
Case 4.3.2. v1 2 V1
1. Suppose that v1 is a node in VðPtÞ for some 1 6 t 6 k. We write Pt ¼ hxt;R1;v1; xk;R2;v ti. Let

H ¼ f�xij1 6 i 6 kg. By induction, there exists a spanning ðu;HÞ-fan fQ 1;Q 2; . . . ;Qkg of G0 where Q i joins u to �xi�1 for every
1 6 i 6 k. For every j 2 f1;2; . . . ; k� 1g � ftg, we set Wj ¼ hu;Q j; �xj; xj; Pj;v jþ1i. Let Wt ¼ hu;Q t; �xt ; xt;R1;v1i and
Wk ¼ hu;Qk; �xk; xk;R2;v ti. Thus, fW1;W2; . . . ;Wkg forms a spanning ðu; SÞ-fan of G� F.
5. Conclusion

Computer network topologies are usually represented by graphs where nodes represent processors and edges represent
links between processors [28]. In practice, the processors or links in a network may be failure. Thus the fault-tolerant prop-
erty become an important issue on network topologies. Many results have been proposed in literature [29–32,26]. In this
paper, we have shown that n-dimensional bipartite hypercube-like graphs are f-edge fault k�-laceable for every f 6 n� 2
and f þ k 6 n. Future work will try to study the fault-tolerant k�-connectivity and k�-laceability for some super spanning con-
nected graphs and super spanning laceable graphs, respectively.
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