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Calculation of spontaneous emission from a V-type three-level atom in photonic crystals
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Fractional time derivative, an abstract mathematical operator of fractional calculus, is used to describe the
real optical system of a V-type three-level atom embedded in a photonic crystal. A fractional kinetic equation
governing the dynamics of the spontaneous emission from this optical system is obtained as a fractional Langevin
equation. Solving this fractional kinetic equation by fractional calculus leads to the analytical solutions expressed
in terms of fractional exponential functions. The accuracy of the obtained solutions is verified through reducing
the system into the special cases whose results are consistent with the experimental observation. With accurate
physical results and avoiding the complex integration for solving this optical system, we propose fractional
calculus with fractional time derivative as a better mathematical method to study spontaneous emission dynamics

from the optical system with non-Markovian dynamics.
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I. INTRODUCTION

Fractional calculus, the differentiation of noninteger order,
has attracted increasing attention in physical systems such
as physical kinetics [1], quantum theory [2,3], and thermo-
dynamics [4] this decade because this approach is suitable
to depict the dynamics with nonlocal quantum phenomena
[5,6]. Recently, Iomin interpreted the physical meaning of
the fractional time derivative as an operator describing an
effective interaction of a quantum system with its environment
which leads to the non-Markovian dynamics of the system [7].
The spontaneous emission (SE) of excited atoms embedded in
nonlinear dispersive media, such as photonic crystals (PCs),
would survive the non-Markovian dynamics in the evolution
of the excited-state population, which can be well described
by the fractional calculus.

PCs are periodic dielectric structures [8] providing a
photonic band gap (PBG) and redistribution of photon density
of state (DOS) to control the SE [9-15]. Within the PBG,
light is forbidden to propagate in a PC so that the SE is
depressed. Near the PBG, however, the anomalous photon
DOS makes the Markovian approximation of SE invalid.
The non-Markovian photon-atom interaction gives rise to
rapid multiatom switch with low quantum noise and laserlike
collective atomic emission [16,17]. It also offers the key
technology for manipulating light, such as light emitting
devices [18] and solar cells [19].

The SE in three-level atom systems, including V-type
[20-22], cascade-type [23], and A-type arrangements [11,12,
24,25], is of particular interest due to the quantum interference
between two allowed transitions. The quantum interference
between different atomic transitions or atomic coherence in the
V-type system can lead to population trapping, phase-sensitive
amplification, and lasers without inversion [21,26,27].
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The study of V-type atom systems embedded in PCs was
focused mainly on their emission spectra [22,28,29], but
rarely on the evolution of the excited-state population due
to the requirement for dealing with complex integration in the
inverse Laplace transformation [21,30]. In order to simplify
the computation, the band-edge frequency of the PC was
usually assumed midway between two excited levels of the
V-type atom [31] in the isotropic models [30]. However,
the band structures of PCs are quite anisotropic in general,
and the band-edge frequencies lying exactly between two
excited levels are far from a generalized case. In addition, the
analytical expression of the excited-state population is hard to
obtain through the complex integral due to the calculation of
inverse Laplace transformation. The results of the anisotropic
model even conflict with the experimental results [32] in the
system of a two-level atom [13]. Therefore, a more precise
approach with analytical results [33] is needed to deal with the
quantum interference between the excited-state populations of
a three-level atom embedded in a PC. Fractional calculus not
only provides a good approach to solving such a problem but
can be also extended to deal with the SE of the atom placed in
the microcavity in which the photon DOS exhibits threshold
cutoff.

In this paper, we use the fractional calculus with fractional
time derivatives to analytically solve the kinetic equations
governing the time evolution of the excited states in a V-type
three-level atom embedded in a PC. The results reveal that
the population of excited states is a linear combination of four
dressed states (DSs) in the anisotropic model. By analyzing
the properties of four DSs, the dynamical behavior of the
excited atom is discussed. In order to verify the accuracy
of our derivation, we reduce the system into special cases,
whose results can be compared with the experiments. Our
analytical results obtained from the fractional calculus agree
well with the experimental observation, while a contradiction
exists between the results from the complex integral method
and the observation.
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II. THE FRACTIONAL CALCULUS APPROACH TO
DESCRIBE THE DYNAMICS OF QUANTUM
INTERFERENCE

We consider a three-level atom with a ground state |b)
and two excited states |a;) and |ay) (shown in Fig. 1) that
is embedded inside a PC. The allowed transitions from
the two excited states |a;) and |a,) to the ground state |b)
have transition frequencies w; and w,, respectively, lying near
the PC band-edge frequency w,. The total Hamiltonian of the
system is H = Hy + H;, with the noninteraction term

I:IO =hw\04a, +10204,4, + Zha)ka;&ak

()
Kk
and the interaction Hamiltonian
H; = ih |:Z (glkalioba] + g2kalaba2
k
—81k%0ap — gzkak%zb):|. 2
Here, o;; = |i){j|, where i, j = ay, a, or b are the atomic

operators; wy, a,, and ay are the radiative frequency, creation,
and annihilation operators of mode k of the reservoir; and the

coupling coefficients between the two transitions and the PC
reservoir, g1k and gk, are [34]
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We have assumed a fixed atomic dipole moment d,, = d,uy
which is independent of the atomic position; the field has a
quantization volume V; ey is the unit vector of the electric field.
The dispersion relation of an anisotropic PC near the band edge
w, can be approximately expressed as wyx = w, + D(k — k),
where D ~ fx(w./ kcz) is the curvature near w, with the scaling
factor fi for the different k directions.

We now consider the two dipoles with vectors parallel
to each other because the interference between these two
dipoles is similar to that of the parallel and antiparallel dipoles,
while that of the two orthogonal dipoles does not deliver

important results because no interaction exists between the
two transitions [21]. Havingw; — o, = Ajand w; — w, = A,
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FIG. 1. (Color online) Frequency diagram of a three-level atom
placed in a photonic band-gap structure. The two excited states, |a;)
and |a,), detune from the photonic band edge (w.) with A; and A,.
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From the definition of the Riemann-Liouville fractional
differentiation operator [33]
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with IALIA,] <« ., we can further assume gix = gk = Zk-
The state vector |1 (¢)) at a time instant ¢ thus can be expressed

as the superposition of bare states |a; »,0) and |b,1) of the
one-photon sector,

[ (@) = Ai(H)e ""a1,0) + Ax(t)e "' |a,0)

+ ) Bu(e M|b, 1), )
k

Here |a; »,0) describes the atom in its excited state |a;) or |az)
with no photon present and |b, 1) represents the atom in its
ground state |b) with a single photon in mode k.

From the time-dependent Schrédinger equation, we obtain
Aty == gkBi(t)e ), ©)
Kk

Bi(1) = gk[A1(D)e™ ™ + Ax(n)e™ ], (6)
with n = 1 or 2. Integrating Eq. (6), we obtain
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Substituting Eq. (7) into Eq. (5), we have
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where g(t—r) is the memory kernel given by
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In the continuum limit, one can replace the discrete

summation ), by the continuous one V fooo p(w)dw [17] so
that the memory kernel for the anisotropic PC is
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with the coupling constant r; = w?d? /(8heow,D/*1). Here
we have applied the photon DOS of the anisotropic model,
p(w) =/ o — ©0w-w.)/@Ex*D¥?), with O(u) being the Heavi-
side step function, to the memory kernel.

By substituting Eq. (10) into Eq. (8) and making a

transformation of A(z) = €!2''C(¢) and A,(t) = /22! C,(¢)
to simplify the derivation, we have
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Eq. (11) can be expressed as a fractional calculus form:

—1/2
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13)

where I'(x) is the gamma function. Here o can be any real
number and d*/dt* becomes an integral operator with negative
o. We further apply the integral operator d~'/dt~" followed
by the differential operator d'/?/dt'/? to Eq. (13) to get the
fractional quantum Langevin equation,
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This fractional Langevin equation with the presence of the
fractional time derivative indicates a subordinated stochastic
process directing to a stable probability distribution. This
equation governs the SE dynamics of the current optical system
and appears as a form of the Langevin equation because of the
existence of non-Markovian dynamics in the system.

Taking the Laplace transform of these two fractional
Langevin equations for n = 1 and 2,
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With X = 5'/2, we can then rewrite Eq. (16) as a sum of partial fractions,
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Note that the parameters X, (m = 1, 2, 3, 4) of Eq. (17) are the roots of
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From the formula of the inverse fractional Laplace trans-
formation [33]
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we can obtain the probability amplitudes of two excited states
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where E;(y,a) is the fractional exponential function of order
y and is defined as

Epay = Lo =y @

Ty +n+1)

Mg

(23)

The fractional calculus provides an analytic solution in the
inverse fractional Laplace transformation, while the complex
integration method only gives an integral formula and has to
solve it by the numerical method. The fractional calculus can
deal with arealistic or generalized case to give a more complete
conclusion as a result of its analytic form.

III. THE PROPERTIES OF DRESSED STATES AND THE
EVOLUTION OF SPONTANEOUS EMISSION

In the previous section, the population amplitudes of the
two excited states in an anisotropic PC contributed from four
DSs have been expressed as analytical forms, such as Egs. (21)
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and (22), by the fractional calculus. These two equations can
be further written as [33]

4
A1) = €AY 1Y, Brf (Y, /1) + Xle™ (24)

m=1

4
Ax(t) = €2 o, [V Brf (¥, /D) + Xl (25)

m=1

with Y, being the square root of X2 in the first or sec-

ond quadrant and E,(1/2,X) = exp(Xt)Erf(\/E)/«/Y. Here
Erf(7) is the error function. Substituting Eqgs. (24) and (25)
into Eq. (4), it is obvious that the wave function possesses
four DSs with their frequencies equal to w. — Im(X ,zn), where
Im represents the imaginary part. When X2 is a complex
number, the population of the excited state contributed from
the DS characterized by X,, will behave as decaying. On the
other hand, when X2 is a pure positive imaginary number,
the population contributed from the DS of X,, may oscillate
initially due to the error function term and then the oscillation
decreases as time passes due to Erf(Y,+/1) =1 as t — 0.
Under this circumstance, the amplitude of the atomic excited
state contributed from the mth dressed state of X,, is equal to
20t X, exp(X ,znt) att — oo as X,, locates in the first quadrant,
but is equal to 0 as X,, locates in the third quadrant. There-
fore, only the DS with X,, having amplitude P,, exp(iw/4)
(P,, > 0) contributes a bound state to the |a;,0) or |a,,0) state,
otherwise, the DSs are the decaying states. The magnitude of
the amplitude of the excited state |a;,0) or |ay,0) contributed
from the mth bound DS is 2¢,, X,,,.

Therefore, the time evolution of the excited state of a three-
level atom in an anisotropic PC would behave differently as a
result of different numbers of contributed bound DSs and can
be categorized into three regimes, as shown in Fig. 2.

A. Non-Markovian decay regime with no bound DS

When the excited states of the atom are both in the
photonic allowed band, the DSs are all unbound. It behaves
as spontaneous non-Markovian decay with some oscillation

+
Damped quantum| Non-Markovian

interference decay

=

AN

Q_O

Quantum |Damped quantum
interference interference
Ay

FIG. 2. (Color online) Regions of SE dynamics in the anisotropic
model with the detuning frequencies of atom 1 and 2 being A; and
A, with respect to the photonic band edge in the unit of coupling
coefficient r,.
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FIG. 3. (Color online) Dynamics of SE in anisotropic PC systems
with initial conditions A,(0) = 1 and A,(0) = 0. P, = |A,I> and
P, = IA,1* are the populations of excited states 1 and 2 with
(a) Allrd = 0.5 and Az/"d = 025, (b) Al/rd = 0.5 and Az/rd =
—0.5; and (c) Ay/ry = —0.5 and A,/ry; = —0.25. Py is equal
to P] + Pz.

initially contributed from either the exponential terms or the
interference of four unbound DSs. The atom transfers all its
stored energy to the SE propagating field in the PC; therefore,
it shows decaying excited-state populations for A;/r; = 0.5
and A,/ry; = 0.25 in Fig. 3(a). It is worth mentioning that
the total decay rate depends on the probabilities of participant
decay channels, ly,, and 2w, which are determined by initial
conditions so that the total decay rate will slow down as the
probability of fast decay channels approaches zero. Therefore,
the decay rates in Fig. 3(a) show non-Markovian fast decay at
the beginning but become slower after evolving a certain time.
Such phenomena can also be observed in the carrier relaxation
in semiconductor materials [35,36].
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B. Damped quantum interference regime with one bound DS

When one excited state is above the band edge and the
other is below the band edge in the gap, one bound DS exists.
The excited-state populations will oscillate initially because
of the strong interaction between the photon and the PC
reservoir. This oscillation will diminish and finally reach a
steady (bound) state, as shown in Fig. 3(b), with A;/r; = 0.5
and A,/ry; = —0.5. Although the state |a;) is in the allowed
band, its population does not completely decay to zero due to
the existence of one bound DS and it is much smaller than that
of the state |ay) lying within the gap. The initial fast damped
quantum interference occurring in the time interval having
rqt = 0 — 25 is caused by energy transfer between the atom
and the PC reservoir through interference of two excited
states before relaxing the decaying DS population to a
photon.

C. Quantum interference regime with two bound DSs

The populations will always oscillate due to the interference
of two bound DSs as the energies of excited states are both
within the band gap. The energy would transfer between these
two DSs so the population of two excited states will oscillate
periodically after the decaying DSs are diminished, as shown
in Fig. 3(c), with A /r; = —0.5 and A,/r; = —0.25. The Rabi
frequency is equal to the frequency difference of these two
bound DSs, i.e., |Im(Xl.2 — X?)|.

IV. SPECIAL CASES: ASYMPTOTIC TWO-LEVEL ATOM

When one of the unperturbed atom states, e.g., the state
|az), locates far above the band edge of the PC, it should
hardly interact with the other state and act as in the free space.
Therefore, let A, be equal to infinite in Eq. (18); we can rewrite
this equation as

X2 416X 1A, = 0. (26)

The dynamical solution of this anisotropic PC system is

A(t) = &NV P2 — AN [XTE(1/2,X7)

— X2E(1/2,X3) + XM — X,eX]  27)
for rﬁ # 4Aq, and

Ar(t) = e 0] — r3 /46N E, (172,03 /4)
—ra/2¢E,(1/2,ir3/4) + (1 + irjt/2)e"a!/*
—rae™ ') /] (28)

for rd2 =4A,, with X,, being the roots of the characteristic
equation (26) [13]. This equation possesses one bound DS
when A; < 0 and no bound DS when A; > 0. That is,
as the atomic transition frequency lies within the allowed
band (A = w; — w. > 0), the anisotropic system shows
no photon-atom bound state. The absence of the bound state
leads to the appearance of a SE image which is consistent with
experimental observations by Barth ef al. They found that
the anisotropic band structure of the artificial colloidal opals
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(PCs) brought an extra angular anisotropy of fluorescence (SE)
image as the emission frequency w; of the embedded quantum
dots (two-level atoms) lay near the band edge (w.). The
consistency between our analytical result and that of the exper-
imental observation illustrates the accuracy of our calculation
results.

This fractional calculus approach is also suitable to de-
scribe the atoms or other active materials embedded in the
microcavity [37,38] with the width of one (or two) dimension
comparable to the wavelength of the emitting photon, and
the others” widths are much larger than the wavelength in
which the dispersion relation of the cavity can be expressed as
wy = we + Dk%. In such a case, the memory kernel is not
exactly equal to Eq. (9) because the summation of the k
points is no longer satisfying the continuum limit in three
dimensions, which makes the photon DOS in microcavity
different from that of the PC case. However, when the DOS
can be treated accurately, the spontaneous emission of atoms
in the microcavity can also be well described by the fractional
calculus approach via similar processes.

V. CONCLUSION

The fractional calculus is used to study the spontaneous
emission dynamics of a V-type atom embedded in a PC
in which the evolution functions are expressed by a linear
combination of four DSs. With different detuning of excited
states with respect to the photonic band edge, the dynamic
behavior can be classified into three regions: non-Markovian
decay, damped quantum interference, and quantum interfer-
ence. When two excited states are above the band edge,
the decay rates of the excited-state populations appear as
non-Markovian with fast decay at the beginning, but become
slow after evolving for a certain time, which is observed in the
relaxation of excited-state electrons in the semiconductor. As
only one excited state is within the band gap, the population
reveals fast damped quantum interference initially, caused
by the interference of decaying states, and finally reaches a
stationary bound state in both excited states. In the quantum
interference regime, with both of the excited states within the
band gap, energy will be exchanged between two excited states
due to the interference of two bound dressed states.

By reducing our system into a two-level atom system to
compare it with the experimental results and the theoreti-
cal results obtained by the complex integral approach, we
found that the photon-atom bound state existed only when
the excited-state energy was located within the photonic
band gap, which corresponds to the experimental results
in which the quantum dots are embedded in the photonic
crystal.
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