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A VOF-BASED CONSERVATIVE INTERPOLATION
SCHEME FOR INTERFACE TRACKING (CISIT) OF
TWO-FLUID FLOWS

Yeng-Yung Tsui and Shi-Wen Lin
Department of Mechanical Engineering, National Chiao Tung University,
Hsinchu, Taiwan, Republic of China

A simple interface-reconstruction scheme (CISIT), based on the volume-of-fluid (VOF)

formulation and applicable to unstructured grids with arbitrary topology, is developed to

track the interface in free-surface flows. The interface is represented by the contour surface

of VOF value f¼ 0.5, which is constructed simply by interpolation. The advancing of the

interface is made by imposing mass conservation in the cells containing the interface. How-

ever, problems arise when the interface moves across the cell face and into another cell. The

cell originally occupied by the interface may be overfilled (f> 1) or underfilled (f< 1) as

the interface advances (moving in the positive direction of the interface) to leave the cell. In

contrast, the cell may be overdepleted (f< 0) or underdepleted (f> 0) as the interface

retreats (moving in the negative direction of the interface) to move out of the cell. These

situations are remedied via adjusting the transported volume of fluid across the cell face

by following the conservation law so that the VOF becomes 1 or 0 in these cells, depending

on advancing or retreating of the interface. The resulting VOF distribution is uniform,

either in 1 or 0, in the region outside the interface cells, and the interface occupies only

one cell in its width. To smooth the fluid properties across the interface region in the velocity

calculation, an average smoothing technique is adopted. Application to a number of test

cases, including model cases with known velocities and a number of real flows, reveal that

this method is accurate and robust.

INTRODUCTION

Multifluid or multiphase flow features an interface separating fluids with differ-
ent fluid properties. Accurate prediction of this interfacial flow presents a challenging
task in numerical simulation because there exists a jump in fluid density and viscosity
across the interface. This jump phenomenon can be identified as a Heaviside (step)
function in theory. Different from the high-speed compressible flow, in which the
flow velocity, pressure, and temperature present a discontinuity across the shock
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wave, these variables are continuous in interfacial flows. Direct employment of
shock-capturing schemes may not be appropriate for these flows.

The geometric shape of the interface continues to change during fluid flow. The
large surface distortion and surface breaking and merging rule out the use of
Lagragian-grid methods in which grids are attached to the interface. An alternative
is to adopt Eulerian grids (fixed grids) with a method to track the movement of the
interface. Tryggvason and co-workers [1, 2] developed a front-tracking method to
fulfill this job. A fixed grid is assigned to the velocity field and a grid of lower dimen-
sion to the fluid front, or the interface. The interface grid is composed of triangular
elements for a 3-D surface or line segments for a 2-D curve. The fluid front moves in
a Lagrangian manner, with the propagating velocity obtained by interpolation from
the velocities on the Eulerian mesh. Since the interface grid may be greatly distorted
in the front movement, re-meshing is required from time to time. An obvious short-
coming is that the masses of the fluids are not conserved during front propagation.
In general, the coding of the method is rather complicated due to the interaction
between the interface grid and the Eulerian grid, along with the requirement of
re-meshing for the former.

Another method to track the interface movement is based on the use of a level
function defined as a signed distance away from the interface. The interface is repre-
sented by the set of zero-level value points. Therefore, it was called the level set
method by Osher and Sethian [3]. Different from the above front-tracking method,
the advancing of the interface is made by solving the advection equation for the level
set function U on an Eulerian grid as

NOMENCLATURE

C volumetric fluid flux

Cn Courant number

Eo Eotvos number

f volume fraction

F flux

Fr Froude number

gi gravitational acceleration

Mo Morton number

P pressure

r gradient ratio

Re Reynolds number

S surface area
~SS surface vector
~TT ; Ti surface tension force
~VV ; Vj flow velocity vector

w weighting factor

c(r) flux limiter function
~dd distance vector

Dt time-step size

Dv cell volume

m fluid viscosity

q fluid density

r surface tension coefficient

sij viscous stress

/ Cartesian velocity

components

U level set function

Subscripts

D downstream cell

f cell face

fi ith cell face

g gas

l liquid

Ni ith neighboring cell

P primary cell

U upstream cell

UU far upstream cell

v vertex of the primary cell

vi ith vertex

Superscripts

c convection

d diffusion

n new time step

o old time step

w wetted area of the face
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qU
qt

þ ~VV � rU ¼ 0 ð1Þ

where ~VV is the velocity of the flow. Hence, it is much easier to implement than the
former one. A drawback is that it is prone to numerical errors in solving the hyper-
bolic equation when the interface experiences severe stretching or tearing. Similar to
the explicit tracking method described above, the major weakness of the method lies
in the lack of mass conservation, especially when the interface is highly distorted.
One of the sources that cause mass nonconservation is that the level set function will
no longer be a distance function after some period of time [4]. Therefore, a redistan-
cing or reinitialization becomes necessary to maintain it as a distance function after
each time step. It has been shown that after the reinitialization process is done, the
error of mass loss or gain is largely reduced [5, 6]. Another tactic to reduce the mass
conservation problem is to reduce spatial discretization errors using high-order
schemes together with adaptive grid technology [7].

Another class of methods using Eulerian grids is based on the volume-of-fluid
(VOF) function, which is defined as the fraction of volume in the mesh cell occupied
by one of the two fluids. The VOF function f is either unity or zero in the cells con-
taining a single fluid and less than 1 and greater than 0 in the cells where the interface
is located. Its evolution follows the same form given in Eq. (1).

qf
qt

þ ~VV � rf ¼ 0 ð2Þ

Introducing the continuity equation, it can be cast into a conservation form.

qf
qt

þr � ð~VVf Þ ¼ 0 ð3Þ

Although eqs. (1) and (2) are of the same form, it is more difficult to solve the
equation for the VOF function than that for the level set function due to the former
being a step function while the latter is continuous and smooth. A variety of schemes
have been developed in the past, which, in general, can be classified into two cate-
gories. One is to solve the VOF in a way similar to the shock capturing for super-
sonic flows. It is essential for this kind of method to limit numerical diffusion and
dispersion which occur in the region near the jump. It is known that the first-order
upwind scheme is most stable but causes large diffusion, while the first-order down-
wind scheme has negative artificial viscosity. Although the downwind scheme is
unstable, the antidiffusive character tends to compress the jump region to make it
sharp. Hirt and Nichols [8] were the first to combine the upwind and downwind
schemes in such a way as to minimize diffusion in interfacial flow calculations.
Rudman [9] adopted a method based on the flux-corrected transport algorithm
[10]. It consists of two stages. In the first stage, the VOF value is calculated using
the upwind scheme. This is followed by a correction stage in which the downwind
scheme is used to reduce the diffusion generated in the first stage. High-order
schemes have also been introduced, including the HRIC of Muzaferija and Peric
[11], CICSAM of Ubbink and Issa [12], STACS of Darwish and Moukalled [13],
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and the latest FBICS of Tsui and Wu [14]. These schemes are based on the NVD
formulation and satisfy the convection boundedness criteria [15]. They blend
a high-resolution (bounded high-order) scheme with a compressive (bounded-
downwind) scheme. The blending strategy is to switch from the high-resolution
scheme to the compressive scheme in a continuous manner, depending on the angle
between the interface and the grid lines. Another merit of these schemes is that they
are developed with the aim of application to unstructured grids. The width of the
resulting interface can be restricted to a region of several mesh sizes.

In another category of VOF method, the interface is approximately recon-
structed using VOF information in local cells. The fluid fluxes crossing the faces
of these cells are then determined with the help of the interface geometry in the cells.
A simple way is to reconstruct the interface such that it is aligned with the grid line.
In the SLIC algorithm of Noh and Woodward [16], this approximate interface is
assumed to be vertical or horizontal, depending on the sweep direction of the
direction-splitting solution method employed in this algorithm. A higher-order rep-
resentation, introduced by Young as PLIC [17], is to approximate it by an oblique
line segment. Comparing with the SLIC, the PLIC is more accurate, but more diffi-
cult to implement. To construct the surface using the available volume fraction and
its gradient (surface normal vector) in local cells, the use of iterative procedures is
most common [18, 19]. It is further complicated by having a large number of possible
interface configurations that need to be considered for determination of fluid fluxes
through the cell faces. Different from the PLIC, in which the interface is fitted inside
the cell, the interface represented by a line segment is drawn across the face boundary
in the FLAIR algorithm [20]. The linear equation of the approximate surface is
determined by the volume fractions of the two cells on either side of the face. The
fluid flux through this face during a time step can then easily be obtained by inte-
gration. This algorithm was successfully applied to 2-D and axisymmetric flow prob-
lems [21, 22]. The major limitation of this technique is that it cannot be extended to
be applicable to 3-D problems.

The above volume-tracking methods have become widely used, partly due to
their capability to handle complex free-surface flow problems in a relatively easy
way. The accuracy of the interface-reconstruction VOF methods is highly dependent
on the calculation of the interface normal and curvature from volume fractions,
which is difficult to compute accurately because of the discontinuity property of this
function. In contrast, the level set function is continuous and smooth. The deriva-
tives of this smooth function can be easily calculated with high-order accuracy. How-
ever, as noted, the fluid mass is not conserved. To take advantage of the merits of the
VOF and level set methods, it is natural to combine the two to form a coupled
method [23–27]. In these kinds of methods, the interface normal and curvature are
evaluated from the level set function and the evolution of the surface is made using
the VOF to enforce mass conservation.

The PLIC algorithm is one of the most popular methods used in many applica-
tions. However, the rebuilding of the interface from the VOF is not straightforward
even for rectangular grids. In addition, as required for the fluxing across cell faces, it
is necessary to consider 16 interface configurations for 2-D flows and 64 configura-
tions for 3-D flows, though these numbers of configurations can be reduced after reg-
ulating the cell geometry [28]. The extension of the method for unstructured meshes
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with irregular cell geometry is not easy, partly due to the increased difficulty in
reconstructing the interface and also due to the increased complexity in estimating
the flow fluxes. To circumvent the latter problem, a Lagrangian-Eulerian advection
algorithm was introduced by Mosso et al. [29]. In this method, the Eulerian grid cells
containing the interface are moved in the Lagrangian sense. This is followed by
reconstructing the interface in these cells because they are deformed during advec-
tion. The last step is to remap the volume fraction from the Lagrangian cells to
the original Eulerian cells. This method has been applied to triangular grids by
Shahbazi et al. [30] and Yang et al. [26]. Instead of the mesh cell, it is the fluid
portion in the cell being advected in the study by Ashgriz et al. [31].

In view of the above survey, methods that are more accurate or more robust
become more complicated. In this study, a simple method, within the framework
of the VOF, is developed. It is robust because it is applicable to unstructured grids
with arbitrary geometry and equally applicable to 3-D problems without causing any
further complication. The interface is based on the contour surface of volume
fraction 0.5, which can be easily constructed by interpolation. The advection step
is fulfilled in a prediction-and-correction way. In the following, details of this
solution method are described first. This is followed by a brief description of the
method for the velocity field. Then, fidelity of the algorithm and verification of
the accuracy are presented. Finally, concluding remarks are given.

SOLUTION METHOD FOR VOF

The present solution method is inspired by the work of Yeh [32, 33], in which
the interface is represented by the contour line f¼ 0.5. In Yeh’s study, the VOF value
is originally stored at the centroid of each mesh cell. To calculate the fluid flux, the
VOF is sought on grid nodes where velocities are located. The VOF on the grid node
is first obtained using interpolation from the surrounding cells which share this node
as a common vertex. The nodal value is then reset to 1 if the volume fraction is great-
er than 0.5 and to 0 if it is less than 0.5. The advection equation is solved using the
finite-element method. An obvious shortcoming of this method is that the VOF is
not conserved. A conservative algorithm is proposed in the following.

Interface Reconstruction

In the solution, the contour surface, or contour line in 2-D problems, of f¼ 0.5
is used as an indicator of the interface. It can easily be reconstructed by an interp-
olation practice. The original values of f are stored at the centroid of each grid cell.
A linear weighting is employed to find fv at each cell vertex,

fv ¼
P

j wjfjP
j wj

ð4Þ

where the subscript j denotes the cells surrounding the grid node and wj is the weight-
ing factor corresponding to the cell j. The calculation of the weighting factor can be
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based on either the inverse of the volumes of the surrounding cells or the inverse of
the distances between this node and those cell centroids.

After the nodal VOFs are obtained for the two end vertices of each edge of a
cell, it is checked whether one of them is less than and the other greater than the
value 0.5. If this is true, the interface intersects with this edge. The intersecting point,
at which the VOF is 0.5, can then be determined by linear interpolation from the two
nodes. After examining all the edges, the interface in the cell can be determined. This
procedure proceeds in each cell of the mesh. In the end, a continuous piecewise-linear
interface is constructed. This process is equally applicable to 2-D and 3-D cells.

Time Advancing

For a cell in a Eulerian mesh, the VOF Eq. (3) in the conservation form can be
discretized using the finite-volume method as

DV
Dt

ðf nP � f oPÞ þ
X
j

Ffj ¼ 0 ð5Þ

Here the superscripts n and o denote the new and old time steps, respectively, the
subscript P designates the considered cell, the subscript f indicates a face of the cell,
Ff is the flux through this face, and the subscript j denotes the face number. The
summation is over all the surrounding faces of the cell. The scheme being explicit
or implicit depends on whether the fluxes are evaluated using new time-level or
old time-level values. In the following, the explicit scheme is employed. It is noted
that the advection Eq. (2) rewritten in the following form was used for discretization
in some studies.

qf
qt

þr � ð~VVf Þ ¼ ðr � ~VVÞf ð6Þ

The reason for using this nonconservation expression is that the velocities on the cell
faces do not satisfy the continuity constraint in these methods. The term on the
right-hand side simply eliminates this error. For the method employed in this study,
mass conservation is strictly obeyed in each cell.

In interface-capturing methods, the VOF flux is approximated as

Ff ¼ Cf ff ¼ ð~VVf �~SSf Þff ð7Þ

where ~VVf and~SSf are the velocity and surface vectors at the face, respectively, Cf is the
volumetric fluid flux, and ff is the fluxing value of the VOF. By these algorithms, the
issue of controlling numerical diffusion and dispersion becomes most important,
which depends on the approximate estimation of the fluxing value ff using the VOFs
of neighboring cells [11–14].

In the present interface-reconstruction method, the face flux is the volumetric
flux through the portion of the face wetted by the fluid:
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Ff ¼ ~VVf �~SSw
f ð8Þ

where ~SSw
f represents the wetted area on the face. As an illustration, a 2-D cell is

shown in Figure 1. The intersecting of the interface with the edges of the cell leads
to three wetted areas. These wetted areas function as inlets or outlets to the cell
for the fluid. The conservation law applied to this control volume results in the
following equation:

DV
Dt

ðf nP � f oPÞ þ
X
j

~VVfj �~SSw
fj ¼ 0 ð9Þ

It can be seen that there is no need to estimate the face value ff, as required in Eq. (7),
and the calculation is undertaken only in the cells where the interface is located.
Thus, numerical diffusion does not prevail in this method.

Cell Adjustment

It is ideal for a simulation based on VOF methods that the interface region
covers a cell width and the VOF is either zero or one in the rest of the regions.
The solution of the above time-marching step does not meet this ideal situation.
In general, four kinds of problems may be encountered which occur when the inter-
face leaves a cell and moves into another cell.

Figure 1. A control volume partially filled with fluid (color figure available online).
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1. Overfilling (fp> 1). After solving Eq. (9), it is possible for the value of f nP
to be greater than 1. This situation can be identified from Figure 2a, in which the inter-
face is advancing to the right in a 1-D flow. In the beginning, the VOF value in the
cell increases with the advancement of the interface, because fluid flows into the cell
from the left face and no fluid leaves from the right face. By the time the interface
crosses the right face, the VOF becomes greater than 1 because the wetted area on
the right face remains zero. To force the interface to move across the cell face, the
excessive fluidDf(¼ fP� 1)must be reallocated to the downstream cell N1. For a multi-
dimensional flow, as shown in Figure 2b, the excess must be portioned and assigned
to the two downstream cells N1and N2. The weighting factor wNi for the portioning
is based on the ratio of the efflux through the corresponding face to the total efflux:

wN1 ¼
Cf 1

Cf 1 þ Cf 2
wN2 ¼

Cf 2

Cf 1 þ Cf 2
ð10Þ

where Cfi ð¼~VVfi �~SSfiÞ is the volumetric fluid flux through the face fi. The formulation
for the weighting factor can be written in a general form, which can be applied to all
neighboring cells:

wNi ¼
maxðCfi; 0ÞP
j maxðCfj; 0Þ

ð11Þ

Here the sum is over all the faces. It is obvious that the weighting factor is zero for
upstream cells. The VOFs for the downstream cells are corrected by

fNi ¼ fNi þ wNiðfP � 1Þ DvP
DvNi

ð12Þ

Figure 2. Advancing of interface through the face of a control volume (color figure available online).
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After the neighboring cells are adjusted, the VOF for this overfilling cell is reset to 1.

2. Overdepleting (fp< 0). When the interface retreats from a cell, as seen in
Figure 3a in a 1-D flow, the VOF becomes less than zero at the time of crossing the
right face. The overdepleted volume of fluid must be retrieved from the downstream
cell N1. Similar to the overfilling situation, the overdepleted volume needs to be
portioned and reallocated for multidimensional problems such as the one shown
in Figure 3b. The weighting factor is given by Eq. (11). The VOFs for the neigh-
boring cells are adjusted in the following way:

fNi ¼ fNi þ wNifP
DvP
DvNi

ð13Þ

Afterwards, zero value is assigned to fP.

3. Underfilling (fp< 1). A shear flow has large velocity gradients in the trans-
verse direction. In such flows, different from overfilling, the value of VOF may
become less than 1 when the interface advances to leave the cell (Figure 2b). Since
the interface does not lie in this cell any more, the VOF value remains less than 1
in later time. Hence, whenever it is found that fP< 1 while the interface moves out
of this cell, i.e., fvi> 0.5 (fvi represents the VOFs of all the cell vertices), fluid must
be retrieved from the downstream cells to fill this cell so that fP is equal to 1. The
weighting factor and the adjustment of the VOF are the same as those shown in
Eqs. (11) and (12).

4. Underdepleting (fp> 0). Another situation encountered in high-shear
flows is that the VOF may remain greater than zero when the interface retreats to
leave the cell (Figure 3b). Similar to the underfilling cell, the volume of fluid remains
unchanged and the fluid in the cell becomes stagnant. Therefore, whenever it is found
that fP> 0 and the interface is not situated in this cell any more (fvi< 0.5 for all cell
vertices), fluid in this cell must be allocated to the downstream cells so that

Figure 3. Retreating of interface through the face of a control volume (color figure available online).
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fP becomes zero. The weighting factor and the adjustment are given by Eqs. (11)
and (13).

The solution procedure described above is summarized as follows.

1. The interface is reconstructed first using the VOF from the last time step.
2. New values of VOF are sought via conserving fluid mass in interface cells.
3. The VOFs are adjusted to ensure that no cells are overfilled, underfilled,

overdepleted, or underdepleted. It is noted that after the correction process for
underfilling and underdepleting cells, it is possible for some of the neighboring
cells to be overfilled or overdepleted. More similar correction steps can then be
undertaken. Usually, two sweeps of such adjustment are enough to wipe out this
problem.

This completes the calculation of the VOF in one time step. It can be seen that
the conservation law is obeyed in each of the predictor and corrector steps. The
resulting interface region is sharp and lies in one cell only.

SOLUTION METHOD FOR VELOCITY FIELD

In each time step of calculation, the VOF is obtained first, followed by solving
for the velocity field. The flow in both fluids is assumed to be laminar and incom-
pressible. The conservation of mass and momentum for the two fluids can be written
in one set of equations:

qVj

qxj
¼ 0 ð14Þ

qqVi

qt
þ q
qxj

ðqVjViÞ ¼ � qP
qxi

þ qsij
qxj

þ qgi þ Ti ð15Þ

where Vj is the velocity, q the density, P the pressure, sij the viscous stress, gi the
gravitational acceleration, and Ti the force due to surface tension. Surface tension
is a surface force at the free interface in two-phase flows. With the CSF (continuum
surface force) formulation [34], it can be modeled as a body force:

~TT ¼ �rr � rf

rfj j

� �
rf ð16Þ

where r is the surface tension coefficient.

Smoothing of Fluid Properties

In the one-equation model for two-fluid flows, the fluid properties, such as
density and viscosity, are expressed as functions of the local volume fraction:

q ¼ f q1 þ ð1� f Þq2 ð17aÞ
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m ¼ f m1 þ ð1� f Þm2 ð17bÞ

where the subscripts 1 and 2 denote the two fluids. When the difference between the
fluid properties, especially the density, of the two fluids is large, the sharp gradient
across the interface region may cause numerical instability. To alleviate this problem,
the gradient of the properties needs to be smeared artificially. Various smoothing
techniques can be found in [5, 35, 36]. In this study, an averaging smoother is used.
First, the property values at all cell vertices are calculated using the interpolation
method given by Eq. (4). A new value at the cell centroid is then obtained by aver-
aging over these vertices. In this manner, the interface region is expanded to the two
adjacent cells on either side of the interface cell. This smoothing process can be
repeated to enhance the smearing effects. In our calculations, no more than two such
smoothing steps are taken.

Numerical Method

Discretization of the equations is performed using the finite-volume method.
The convective momentum flux is expressed as

Fc ¼ ðqf ~VVf �~SSf Þ/f ð18Þ

where / designates the Cartesian velocity components. The face flux value /f is
approximated using neighboring nodal values,

/f ¼ /U þ cðrÞ
2

/D � /Uð Þ ð19Þ

where, as seen in Figure 4, the subscript U denotes the cell node upstream of the
considered face and the subscript D is the one downstream. The symbol c represents
the flux limiter, which depends on the gradient ratio r defined by

r ¼ /U � /UU

/D � /U

ð20Þ

Figure 4. Illustration for determination of the far upstream node UU.
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Here /UU is the value at a node far upstream (see Figure 4), estimated by

/UU ¼ /D � 2 r/ð ÞU �~ddUD ð21Þ

where (r/)U denotes the gradient at the upstream node U and ~ddUD is the distance
vector directing from U to D. A number of TVD and NVD schemes are available
by assigning different expressions to the function c(r) [37, 38]. In the following cal-
culations, the Van Leer scheme is adopted, which is given by

cðrÞ ¼ rþ rj j
rþ 1

ð22Þ

The diffusivemomentum flux, suitable for unstructured grids, is approximated by

Fd ¼
mS2

f

~ddPN �~SSf

ð/N � /PÞ þ m r/ð Þf ~SSf �
S2
f

~ddPN �~SSf

~ddPN

 !
ð23Þ

where the subscripts P and N denote the considered cell and neighboring cell,
respectively,~ddPN is the vector connecting nodes P and N, and (r/)f is the gradient
at the face.

All variables, including all velocity components and pressure, are stored at the
centroid of each grid cell. The coupling between momentum equations and the con-
tinuity equation is tackled using the noniterative technique of the PISO algorithm
[39]. This is a kind of predictor-corrector method. First, the momentum equations
are solved to obtain velocities at cell centroids in the predictor step using the prevail-
ing velocity and pressure fields. A momentum interpolation method is then employed
to find the velocities on the cell face and the mass flux through the face. A
pressure-correction equation can be obtained by forcing the corrected mass flux to
obey the conservation law in each cell. After the pressure correction is solved for,
the pressure and velocity are upgraded accordingly. This adjustment procedure takes
place in two corrector steps, after which both the momentum and continuity equa-
tions are better satisfied. The way to derive the face mass flux and the pressure-
correction equation can be found in [40].

RESULTS AND DISCUSSION

The solution method for the VOF is first tested in two model problems with
given velocities. One is the advection of a square or a circular cylinder in a uniform
velocity field and the other is the advection of a circular cylinder in a shear flow. Real
flows are then considered. The realistic flows selected for testing include collapse of
a water column, rising of a gas bubble, and the Rayleigh-Taylor instability problem.

Advection of Cylinders in a Uniform Velocity Field

The computational domain is a unit square with a constant velocity
~VV ¼ u~ii þ v~jj being imposed. Either a square cylinder or a circular cylinder is initially
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placed at a position x¼ 0.25 and y¼ 0.25. The cylinder has a side of length (or diam-
eter for the circle) 0.3. It is moved to the position corresponding to x¼ 0.75. The
domain is partitioned into various rectangular and triangular grids. Theoretically,
the geometry of the cylinders remains unchanged during translation by the uniform
velocity field. To quantify the error caused by the numerical method, the normalized
L1 norm is used.

E ¼

P
f nj Dv� f ej Dv
��� ���P

f ij Dv
ð24Þ

where the superscript n designates the numerical solution, the superscript e the exact
solution, and the superscript i the initial condition. The sum is over all the cells in the
domain.

The L1 errors for the case u¼ v¼ 1 calculated by using rectangular grids with
50 � 50, 100 � 100, and 200 � 200 cells and various sizes of time step, corresponding to
Courant numbers 0.1, 0.25, 0.5, and 0.75, are shown in Figure 5 for the square and
circle translations. The Courant number is defined as

Cn ¼
P

maxðCfj; 0ÞDt
Dv

ð25Þ

where Cfj is the volumetric flux through the face fj and the sum is taken over all the
faces of the cell. It is obvious that the error decreases as the grid size or time interval
is reduced. In view of the figure, the accuracy of the calculation for the transport of
the circle is generally higher than that for the square. Comparing the resulting shapes
of the two cylinders given in Figure 6a (for Cn¼ 0.5) and Figure 6b (for Cn¼ 0.1)
demonstrates this point. Large errors occur at the corners of the square where the
slope is discontinuous. Wavy forms appear at the two corners on the upper left
and lower right. This situation can be soothed by reducing the Courant number
and grid spacing. For the case of circle the interface is much smoother. However,

Figure 5. Numerical error against grid number for advection of cylinders in uniform flow.
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as seen from Figure 6a (Cn¼ 0.5), nonsmoothness still can be identified when the
Courant number is large. It was mentioned that the present method is applicable
to grids of arbitrary geometry. Figure 6c presents the results using a grid with
22,474 triangular cells.

Advection of a Circle in a Shear Flow

In real flows, the flow velocity is nonuniform. The interface is subject to strain-
ing and, thus, deforms continuously. To mimic this situation, the following velocities
are assumed:

~VV ¼ sin x � cos y~ii � cos x � sin y~jj ð26Þ

A circle of diameter 0.4p is placed in a square with side length p. The initial
center of the circle is located at (p=2, (1þ p)=5). It is advected by the shear flow in
16 units of time first, followed by reversing the velocity field for another 16 units
of time. The circle will be stretched and deformed by the flow straining in the for-
ward step and recovers its original shape at the end of the backward step.

In the calculation, the time step is determined in the way that the maximum cell
Courant number is less than 0.1. The resulting geometries after the forward and
backward steps are given in Figure 7. The circle is gradually stretched to become
serpentine-like during the forward stage. With low grid densities the tail is shortened.
It is broken and separated form the main body for the 50 � 50 grid. It can also be seen
that the recovered circle becomes irregular for the lowest level of grid by the end of
the backward stage. The prediction accuracy deteriorates by using triangular grids.

Figure 6. Resulting cylinders in uniform flow (color figure available online).
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The tail of the serpentine becomes shorter and the circle is not so round even for the
grid with 89,776 cells. The same flow problem has been tested by the present authors
in [14] using the flux blending schemes FBICS and CICSAM along with a 100 � 100
rectangular grid. Comparing the results indicates that the recovered shape obtained
by the present method is closer to a round circle.

Collapse of a Water Column

This case becomes a classical problem to test numerical methods for tracing
a water front because experimental data are available in [41]. A water column
0.146m in width and 0.292m in height is initially placed at the left corner if a tank
of size 0.584m � 0.340m. The large density difference between the two phases often
causes computational instability. Without a smoothing activity, calculations simply
fail unless the highly diffusive, first-order upwind difference scheme is used. Figure 8
presents the flow field obtained by using the smoothing procedure described in
Section 3.1. It is clear that with only one smoothing sweep the flow on the gas side

Figure 7. Advection in shear flow. The results in the first row are obtained after the forward stage and

those in the second row after the backward stage.

Figure 8. Flow field for the collapse of water column: (a) with one smoothing step; (b) with two smoothing

steps (color figure available online).

VOF-BASED CISIT FOR TWO-FLUID FLOWS 277

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 2

3:
59

 2
5 

A
pr

il 
20

14
 



of the interface is unstable. The velocities vary in an irregular manner on the part
of the interface where the water front is retreating and the gas flows toward it.
A secondary vortex appears near the left boundary. These oscillating phenomena
can be suppressed when one more smoothing step is taken, as seen in Figure 8b.

Comparison of the predicted interface position with experiments [41] is made in
Figure 9. The one shown in Figure 9a is the edge position of the advancing leading
front along the floor, which is slightly overpredicted. This may be attributed to the
uncertainties in determining the exact location of the front edge in experiments. Such
an overprediction can also be found in other studies [11, 14]. The agreement in terms
of the height of the collapsing column along the side wall shown in Figure 9b is good.
However, as is not surprising, the curve obtained by one smoothing step exhibits
oscillating behavior.

Rising of a Gas Bubble

A circular gas bubble of diameter 0.01m is released in a chamber of size
0.05m � 0.15m. The densities of the gas and liquid phases are assumed to be 1,000
and 1kg=m3 and the viscosities to be 5.56e-1 and 5.56e-4Ns=m2. Three different
values of surface tension coefficient are under consideration: 9.79e-01, 9.79e-2, and
9.79e-3N=m. This leads to Eotvos numbers 1, 10, and 100 and Morton numbers
0.001, 1, and 1,000. The Eotvos number is defined as Eo ¼ gd2

e ðql � qgÞ=r and the
Morton number as Mo ¼ gm4l =qlr

3, where the subscripts l and g denote the liquid
and gas phases, respectively, and de is the initial bubble diameter. The evolution of
the bubble pattern at t¼ 0.05, 0.15, and 0.25 s for the three cases is shown in
Figure 10. It is recognized that the interfacial tension force tend to minimize the
surface area of the bubble. Therefore, the bubble pattern remains nearly a circle when
the Eotvos number is sufficiently small. It is transformed into the shape of a circular
cap as Eo is enlarged. Further increase of this number brings about a crescent shape.

Figure 9. The collapse of water column: (a) position of the leading front edge along the floor; (b) height of

the retreating front along the wall.
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The time variation of the position of the bubble center is shown in Figure 11. The
relation becomes linear after a short initial stage. The uprising velocity of the bubble,
represented by the slope of the curve, is lower initially, followed by a gradual increase.

Figure 10. Evolution of the rising bubble for the three cases.

Figure 11. Center positions of rising bubbles.
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Finally, it reaches a constant value in the linear stage, which is termed terminal
velocity. The terminal velocities are 0.166, 0.12, and 0.115m=s for the three cases.
The gradual decrease of this speed with the Eotvos number is expected, because the
deformation of the bubble results in an increase of drag.

Rayleigh-Taylor Instability

The computational domain is of dimensions 1� 3. Initially, the top one-third is
filled with a heavier fluid of density 1.2 and the lower two-thirds with another fluid of
lower density 1.0. The governing equations are solved with the Froude number
[Fr¼U=(gL)1=2] set at 0.5 and the Reynolds number (Re¼ qUL=m) at 500.
Symmetric condition is specified on the left boundary, while no-slip condition on
the other boundaries. A small perturbation of the form 0.02cos(1þ x)p is imposed
on the initial interface between the two fluids. The evolution of the unstable flow
is shown in Figure 12 for times t¼ 4, 6, and 8 s. In the early stage, the perturbation
is enlarged in the linear sense. Then the nonlinear interaction of the descending
flow of the heavier layer and the ascending flow of the lighter layer results in
a mushroom-like structure when time reaches 4 s. The flow patterns are further
complicated by wrapping around the mushroom cap at t¼ 8 s. This flow field is very
similar to the calculations of Rudman [9].

CONCLUSIONS

A conservative interpolation scheme for interface tracking (CISIT), within the
framework of the VOF, has been introduced to overcome the difficulties encountered

Figure 12. Evolution of Rayleigh-Taylor flow obtained using 96 � 288 grid.
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at the interface embedded in two-fluid flows. The formulation of the method is very
simple. It is easy to code and applicable to grids of arbitrary geometry without caus-
ing any further complication. The resulting distribution of fluid fraction is a good
approximation to the Heaviside function. It has been seen from real-flow calcula-
tions that stable solutions are obtained with two sweeps of the smoothing process.
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