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Abstract The rapid development of microscopic imaging
techniques has greatly facilitated time-lapse imaging of neu-
ronal morphology. However, analysis of structural dynamics
in the vast amount of 4-Dimensional data generated by in vivo
or ex vivo time-lapse imaging still relies heavily on manual
comparison, which is not only laborious, but also introduces
errors and discrepancies between individual researchers and
greatly limits the research pace. Here we present a supervised
4D Structural Plasticity Analysis (4D SPA) computer method
to align and match 3-Dimensional neuronal structures across
different time points on a semi-automated basis. We demon-
strate 2 applications of the method to analyze time-lapse data
showing gross morphological changes in dendritic arbor mor-
phology and to identify the distribution and types of branch
dynamics seen in a series of time-lapse images. Analysis of
the dynamic changes of neuronal structure can be done much
faster and with greatly improved consistency and reliability
with the 4D SPA supervised computer program. Users can

format the neuronal reconstruction data to be used for this
analysis. We provide file converters for Neurolucida and
Imaris users. The program and user manual are publically
accessible and operate through a graphical user interface on
Windows and Mac OSX.

Keywords Weighted match . Semi-automatic method .

Dynamic analysis . Structural plasticity . Neuron
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Introduction

The structures of neuronal dendrites and axons proscribe the
connectivity neurons make within circuits and are therefore
critical determinants of circuit function and plasticity (Halavi et
al. 2012). Axonal and dendritic arbor structures change dra-
matically over time under natural circumstances, for instance,
during development, aging, as a result of circuit plasticity or
disease, and under experimental conditions, such as sensory
deprivation or enhanced activity. Technical advances in vivo
neuronal labeling methods and in vivo microscopy techniques,
such as confocal and multi-photon laser scanning (Helmchen
and Denk 2005; Wilt et al. 2009), have greatly facilitated
imaging and acquisition of time-lapse data of changes in
neuronal structure over time. These data have demonstrated
that dynamic changes in neuronal structure can occur over the
time-course of minutes to days to months (Cline 1999; Chen et
al. 2011). Although 3 dimensional reconstruction of neuronal
structure can be accomplished with computer assistance, anal-
ysis of dynamic structural changes in time-lapse image data
sets remains a great challenge because of the difficulty of
comparing two complex 3D neuronal arbors required to iden-
tify structural differences between them (He and Cline 2011).

To analyze detailed changes of 3D neuronal structures over
time is a difficult task, partly because cumulative changes in the
locations of individual branches can occur as a result of modest
3D shifts in positions or orientations of lower order branches, or
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because minor differences in the position of the animal during
in vivo imaging may shift the orientation of the neuron in the
image. Most 4D analysis of neuronal structural dynamics from
time-lapse imaging data is done by manual comparison of 2D
or 3D reconstructions. To analyze the changes between two 3D
reconstructions of neurons manually takes an expert hours to
align and match the two reconstructed 3D complete dendritic
arbor structures. Manual identification of the numbers and
distribution of dynamic branches, categorized as retracted,
newly added, transient, and stable, over a set of multiple images
(Haas et al. 2006; Bestman and Cline 2009) is laborious and
greatly slows down research in the field (He and Cline 2011). A
computer method that assists in comparing 3D neuronal struc-
tures would address the weaknesses of manual analysis.

Recent work reported that computer-assisted automatic
analysis of neuronal structures from time-lapse images
could be achieved in cultured neurons (Al-Kofahi et al.
2006). This advance was facilitated by the 2D structure of
cultured neurons and their relatively simple neuronal mor-
phology. In this paper, we present a supervised 4D neuronal
Structural Plasticity Analysis (4D SPA) computer method
that computes precise changes in the positions and lengths
of all neuronal branches in the arbor between two images or
time-points and presents the data as an image superimposed
on the 3D reconstruction of the neuron. The method is based
on the identification of stable branch points, or ‘significant
points’ in a pair of images, which are used as reference
points to facilitate the alignment of the dendritic structures.
We then decompose the neuronal arbor into subsets of
branches, or subtrees, with each branch defined as the pro-
cess extending from a significant point to the branch tip.
Similarities between two branches at sequential time-points
were then calculated, generating a suggestion list of poten-
tially matching branches, which was then evaluated by the
analyst. This method takes advantage of both the computer
algorithm and human expertise to significantly reduce the
time to identify matching branches in the sequential images
and increases the reliability of the analysis results.

Methods

Data Preparation

Neurons from the optic tectum of Xenopus laevis tadpoles
were labeled by expression of GFP (green fluorescent protein)
and time-lapse images were acquired with a two-photon laser-
scanning microscope, at either 4 h or 24 h intervals. Recon-
struction of the entire dendritic arbor of the neurons was done
by the computer-aided filament tracing function in the 3D
image analysis software Imaris (Bitplane, USA) and the full
filament data set was exported and converted into a txt file for
dynamic analysis using the 4D SPA method. An example of a

3D image of a GFP-labeled neuron and the reconstructed
dendritic arbor is shown in online resource Video 1. In the
input txt file, the branches are represented as data points
defined by their 3D location (coordinates) and are organized
block-wise. Each block starts with a line defining the branch
index (P #) and the number of nodes in that branch (N #). The
first point is the starting point of the branch, either the soma or
the branching point, and the last point in the block is the tip.
The first point in the first block of the file represents the soma
position. The detailed description of the input data format can
be found in the manual of the 4D SPA (available through
supplemental online resources). To facilitate usage of the SPA
program, we made converting tools for reconstructed filament
files generated from two of the most commonly used recon-
struction software programs (Imaris and Neurolucida), which
are also available through supplemental online resources.

Computer-Aided Comparison Method

A flow diagram of the program is shown in Fig. 1. The
traced neuron, denoted N, is presented as a three-
dimensional tree rooted at the soma, s. The tree structure
data are composed of a series of vertices. The vertices in N
are categorized into 3 sets: tips, regular points and branch
points. The tips are the unbranched ends of branches in N
denoted ti, 1≤ i≤n, where n is the number of tips. The branch
points are vertices that have out degree, i.e. the number of

Fig. 1 Flow chart of the 4D SPA program
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points directly connected to this point on the path away from
the soma, greater than 1. All the other vertices are regular points
in the neuronal structure. They have out degree equal to 1.

Branches are defined as following: For a pair of points u
and v among all points in N, if there is a direct path b=< u, p1,
p2,…,pk, v >, in which p1, p2,…,pk, are points in between u and
v, the path lengthLðbÞ ¼ u; p1j j þP

1� j<k pj; pjþ1

�� ��þ pk ; vj j.
We also use <u,v> to denote the path b. If u is the soma or a
branch point and v is a tip, then the path b is called a “branch”
inN. To estimate the length of each branch, which will be used
to compute the similarity between a pair of branches in two
images, we resample points on the path between the branch
point and the branch tip by arbitrarily counting the length
between neighboring points as 1.

To facilitate comparison of the reconstructions of neuronal
trees imaged at different time points, we need to define refer-
ence points or ‘significant’ points. Within the neuronal tree,
each branch point can be considered as the root of a subtree
(Fig. 2a). The size of a subtree is defined as the number of
branch tips in that subtree. The “average tree size” of neuron N
is then calculated by dividing the sum of the size of all subtrees
within neuronN by the total number of branch points. A branch
point, v, is defined as a “significant” point if 1. The size of any
subtree, rooted at v is greater than the average tree size of the
neuron; and 2. One of the following criteria is also satisfied:

1. There are more than 2 subtrees rooted at v.
2. There are only two subtrees rooted at v and the sizes of

both subtrees are greater than 3.

Empirically, significant points, defined above, are usually
stable over time and would exist in the dendritic trees of the
same neuron at two consecutive time-points, thus can be
used as reference points for alignment of the arbors (Fig. 2).
In the following matching process, we first consider the
branches emanating from a significant branch point bi to a
tip ti where bi is the closest significant point to ti on the path
from ti to the soma. If there is no significant branch point
along the path from ti to the soma, then the soma is used as
the starting point.

Branch Attributes

Each branch b=< bi, ti>has 3 attributes, the length, L(b), the
parent, and the position. The parent is either itself (the
default value) or another branch b′=< bj, tj>that b attaches
to. The position of b is deemed as undefined if the parent is
itself. If the parent of b is b′, then the position of branch b is
defined as L < bj; bi >

� �
L b0ð Þ= . The parent and position of b

are denoted as parent (b) and position (b) respectively. As
mentioned earlier, the default parent of each branch is itself
at the beginning of the matching process. During the match-
ing process, the starting points of some branches change to
the closest branch point or the soma if no other branch point
is available along its path and their parents are revised
accordingly.

To compare a pair of branches between two images, the
attributes, branch length, parent branch and position, are
compared in a pre-screening step (the detailed pre-

Fig. 2 Application of computer assisted 4D structural plasticity anal-
ysis to evaluate changes in dendritic arbor structure in neurons in daily
time-lapse images. a Schematic drawing of the structure of a neuronal
dendritic tree to illustrate the terminology used in this report. The soma
is marked by the dark gray circle. Branch points are points where more
than one branch is rooted, such as points a and b. All of the points
along the branch path that are neither the branch point nor the branch
tip are called regular points. There are altogether 13 branch points
(including the soma) in the whole tree structure. The average tree size
of the schematic neuron is 5.25, calculated as (3+4+2+3+4+8+2+
2+3+5+13+14)/12; the tree sizes are listed in depth first traversal
order. Branch point A is a ‘significant point’ because it has a subtree
that is larger than the average tree size of the entire arbor and the size of

both of its subtrees are larger than 3. Branch point B is not a ‘signif-
icant point’ since none of its subtrees (shaded in light gray) is larger
than 5.25. b, c Reconstructions from a pair of images collected 24 h
apart (data set No 5). The soma position is marked with the grey oval.
Significant points are marked with filled red circles. To illustrate the
branch matching process between arbors of 2 consecutive time-points,
we colored one branch in the arbor from the first time-point in B in red
(an amplified image of the dendritic part in the box is shown in B′).
The five candidate matching branches provided by the algorithm in the
arbor from the second time-point in C are shown in different colors to
distinguish them from each other. Amplification of the boxed part is
shown in C′ with each individual candidate matching branch. Scale
bar: 10 μm
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screening step is depicted in the following section). The
similarity of the branches is taken into consideration only
if the pair of branches pass the pre-screening. The similarity
between two shapes is calculated by Eq. (1)

f b1; b2ð Þ ¼ minR; v
1

n

X
xi2b1;yj2b2 Rxi þ v� yj

�� ��
2

þmax
L b1ð Þ
L b2ð Þ ;

L b2ð Þ
L b1ð Þ

� �
ð1Þ

where R is a rotation matrix and v is a translation vector. The
number of points on b1 is n. The value of f(b1, b2) goes upwhen
similarity goes down. The first term of Eq. (1) can be solved by
the iterative closest pair method (Besl and MaKay 1992).

Pairwise Matching Analysis

For two reconstructions of the same neuron traced from
image stacks acquired at different time-points, the first one
is designated N1 and the second one is designated N2, in
chronological order. During the matching process, branches
in N1 are categorized into 3 types, remaining, retracted,
and undefined. A branch in N1 is remaining if there is
a matching branch in N2. A branch is retracted if there
is no matching branch in N2. An undefined branch is a
branch that has not been processed yet. Similarly, the
branches in N2 are also characterized into 3 types. The
remaining and the undefined are the same as defined in
N1. There is no retracted branch category inN2, instead, there
are newly added branches, which refer to branches in N2 that
do not have a match in N1.

Each iteration of the matching process consists of the
following steps:

1. The longest undefined branch, B in N1 is chosen.
2. For each undefined branch, eb ¼< bj; tj > in N2, we

check its attributes. eb is in the candidate short list if it
satisfied all criteria listed below:

a. Both B and eb are undefined or parent(B) and parent

(eb) are a matching pair;

b. max
L eb� �
LðBÞ ;

LðBÞ
L eb� �( )

< a;

c. position(B)—position(eb < b).
a sets the upper limit of variation allowed in the
branch length for the two branches being compared.
β accounts for the largest variation allowed in the
branch position on the parent branch. Both parame-
ters help take into account the difference in structure
caused by neuronal growth over the imaging time
interval. The values are decided empirically and
could be adjusted to optimize the program for

specific applications. In all of our experiments we
used the default setting set a=2.5 and β=0.4.

The similarity (Eq. 1) between B and all branches
in the candidate short list is calculated. The default
setting of the length of the suggested list is limited
to five, so at most, the most similar five branches
will be included in the list. An example of the
candidate branches in the suggestion list is shown
in Fig. 1B, B′, C and C′.

3. The analyst then uses the suggestion list to assign a
matching branch for B. If the analyst decides that B

has a matching branch eb in the candidate short list, B

and eb are moved into the remaining category. If the
analyst decides that there is no matching branch for B,
then B is assigned to the ‘retracted’ category. Based on
the assignment of branches to categories, the attributes
of some branches in both N1 and N2 are updated. The
following is the update procedure for the branches in N1

and N2:

a. If L(B)<γ, then the procedure stops. Here, γ stands
for the minimum length (measuring from the closest
branch point to the tip) a branch must have to be
used for morphology comparison. This is because
very short branches usually do not have many
unique morphological features and could be easily
confused with other non-matching short branches.
The value of γ was determined empirically. During
the course of our experiments, we set γ=15 μm.

b. If eb is categorized as remaining or retracted, no
further process is needed.

c. Assuming an undefined branch, eb ¼< bk ; tk > in
N1 has a common path with B and the conjunction

point of B and eb is ec, then eb0s parent and starting
point become B and ec respectively.

4. If there are no more undefined branches in N1, then all
of the remaining undefined branches in N2 are changed
to newly added and the process terminates. Otherwise,
the iteration restarts from step 1.

A graphic-user interface (GUI) software system was
implemented to help the analyst complete the matching
process. Through the GUI, the analyst can decide the type
of branch and set up parameters for the matching process.

Dynamics Branch Analysis

Pairwise analysis of sequential images in a longer time-lapse
data set requires that branches have unique identifiers that
are maintained through the image series. Initially, the
branches are assigned an identifier or an “index” according
to their length in descending order. After the analyst con-
firms all the matching branch pairs in N1 and N2, the 4D
SPA program adjusts the indices so that matching branches
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are assigned with the same identifier. To combine the mul-
tiple pairwise alignment results in data sets with more than 2
images, an extra step is added at the end of each comparison
to synchronize the branch indices. This way, we can easily
identify each individual branch in every time-point and
analyze the dynamic changes of that particular branch over
time.

Results

Ten data sets of fully reconstructed dendritic arbors were used
in our experiments. The analyst was allowed to use two data
sets to become familiar with the 4D SPA program. Then the
time to analyze the remaining eight data sets was determined.

Pairwise Analysis

In this analysis, N1 and N2 are two reconstructed neuronal
arbors imaged at consecutive time-points. Typically, for
manual evaluation of structural dynamics in two images,
the analyst identifies a branch in N1, reviews all un-
matched branches in N2, and selects the best matching
one. This process is extremely time-consuming and subjec-
tive. Our program generates a reliable short-list of suggested
matching branch candidates in N2 for every branch in N1

based on the algorithm described above, which should
greatly reduce the processing time. In addition, use of the
same algorithm to generate the short list of suggested match-
ing branch candidates helps to maintain consistent criteria to
identify candidate matches and reduce human errors.

We quantified the reliability of the algorithm by calculating
the hit ratio. For a branch in N1, the 4D SPAmethod generates
a list of suggested matching branches inN2. We get a hit if one
of the following two criteria is met.

1. The user decided there is no match, and the branch is
identified as retracted, or

2. The user selected a matching branch from the suggested
short list.

The hit ratio is calculated as the percentage of hits rela-
tive to the total number of branches in N1, which measures
the accuracy of the suggested match list. The analysis result
for each data set is listed in Table 1. The mean number of
branches on the suggested match list was 2.78 (Table 1).
The average hit ratio was 85.8±8.4 % (Table 1). Note that
dataset No5, which showed the highest hit ratio, is also the
most complicated dataset with the largest total dendritic
branch tip number. This indicates that the reliability of this
matching program is not compromised by increased com-
plexity of the neuronal structure. A pair-wise alignment
result of representative dataset number 6 is shown in online
resource Video 2. In this video, each frame displays both N1

and N2, and only one matching pair, which had been con-
firmed by the analyst, is rendered in red. Among all the data
sets, data set number 9 had the lowest hit ratio (70.3 %) and
the longest average list of the suggested matches. This is due
to the high similarity between subtrees emanating from the
same parent branch in N1 and N2 (Fig. 3). This combination
(similarity in both subtree structure and the parent branch)
tends to mislead the algorithm, thus might require more
human intervention to locate the correct matching branch.
The average time to align a pair of complete dendritic arbors
was about 43 min (Table 1). In the worst case (dataset No5),
it took 111 min to process a set of data. Given that this time
includes both the time it takes by the program to do the
calculation as well as the time it takes the analyst to validate
the matches, it is understandable that the time increases with
increased complexity of the dendritic arbor. Without the
help of 4D SPA, it usually takes hours for an expert analyst
to process a paired data set, depending on the complexity of
the arbor and the magnitude of change between the two
neuronal structures (He and Cline 2011).

Dynamic Branch Analysis

This method can be easily applied to analyze data sets
consisting of multiple time-points in which N1 is aligned

Table 1 Parameters for 4D SPA data analysis results. Each data set
contains a pair of neuronal dendritic arbors (reconstructed from the
same neuron imaged at different time point, N1 and N2). Hit ratio
measures the percentage of correct matches in the suggested list rela-
tive to the total branch number. Time records the total time taken for
the analysis of that data set. Size of N1 (or N2) shows the total branch
number of the dendritic arbor. Avg list size shows the average number
of branches in the ‘suggestion list’ for each branch in N1 during the
analysis of that data set. The first two data sets were used for the
analyst to become familiar with the program, and thus were not
included in the final calculations of the mean hit ratio, mean time,
and mean Avg. list size, which are listed at the bottom of the table

Data Hit
ratio

Time
(min.)

Size
of N1

Size
of N2

Avg.
list size

1 0.969 – 31 24 1.407

2 0.856 – 69 80 2.814

3 0.921 42 76 63 2.422

4 0.859 43 63 79 2.422

5 0.967 111 89 84 2.422

6 0.795 13 38 58 3.051

7 0.917 46 58 59 3.483

8 0.758 44 60 80 3.515

9 0.704 35 80 94 3.741

10 0.833 5 13 18 2.5

mean Hit ratio: 0.858±0.084

mean Time: 42.375 min

mean Avg. list size: 2.78
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with N2, then N2 is aligned with N3, …, and so on. Analysis
of data sets with more than 2 time-points provides detailed
analysis of branch dynamics, and often reveals important
information about the underlying mechanisms of structural
plasticity that are lost when long-interval data points are
compared (Haas et al. 2006; Bestman and Cline 2008; Chiu
et al. 2008). In the analysis of branch dynamics, branches
are categorized as stable, newly added, retracted or transient.
A stable branch is a branch that is present at all time-points.
A retracted branch is a branch that is present at the first time-
point but is lost at a later time-point. A ‘newly added’
branch is a branch that does not exist at the first time-point
but appears later and remains in place until the last time-
point. The ‘added’ branch category includes those that ap-
pear at the last time point. A transient branch is a branch that
appears at a time-point after the first time-point and is then
retracted by the last time-point. To better visualize the
alignment results and branch dynamics, we implemented a
color-coding system for the final display of the matching
results. The stable branches are coded black, the retracted
branches are blue, the transient branches are magenta, and
the newly added branches are green (Fig. 4). This imple-
mentation facilitates the identification of qualitative changes

in branch dynamics as well as possible spatial patterns of
dynamic changes in the dendritic arbor over time. The
results of the dynamic analysis can be exported as a spread-
sheet for further analysis (Table 2). In addition, the matched
neuronal filament data can be saved as txt files with the
categorization information for each branch and used for
further analysis.

Discussion

We present a method to provide computer assisted 4D
structural plasticity analysis (4D SPA) of neuronal dendritic
arbors. Here, we describe a simple but efficient algorithm
that takes advantage of the presence of relatively stable
branch points within the neuronal arbor structure combined
with their geometry to facilitate the analysis of dynamic
changes in the neuronal structure. To precisely identify
similar structures within the tree structure by computer
algorithms is a very difficult problem, given the subtle
difference the arbors could have at different time points,
and artifactual differences caused by shifts in the position
of the animal during imaging and other factors. To achieve

Fig. 3 Examples of subtree structure that is potentially confusing to
the algorithm. A-C. Reconstructions of dataset numbers 8 and 9.
Images were collected every 24 h over 3 days. The subtree structures
that caused confusion to the program were marked with red boxes. The
morphologies of these subtrees are very similar and they join the same
parent branch right next to each other. This results in very similar

attribute values for the branches and could increase the possibility of
mismatching in the candidate list provided by the algorithm. This in
turn might require more human intervention to identify the matching
branch. Significant points are marked with filled red circles, and the soma
is marked by dark grey circles. Scale bar: 10 μm

Fig. 4 Application of computer assisted 4D structural plasticity anal-
ysis to identify branch dynamics over relatively short time periods. A-
C. Reconstructions of time-lapse imaging data of a representative optic
tectal neuron imaged at 4 hour intervals. A′-C′. Computer generated
reconstructions of the neuron at the timepoints corresponding to A-C to
show the accuracy of the reconstruction generated by the 4D SPA

program. Dendritic branches are color-coded according to their dynam-
ic properties. The stable branches are black, the retracted branches are
blue, the transient branches are magenta, and the newly added
branches are green. Position of the neuronal soma is marked with the
black oval. Scale bar: 10 μm
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the most reliable result in an expeditious manner, we com-
bined the advantages of the computer algorithm and the ex-
pertise of the human analyst. Instead of having the computer
generate the final analysis, we use the computer algorithm to
effectively narrow down the candidate list of the matching
branches and let the human expert select the optimal match.

Many methods based on weighted-matching (Donte et al.
2004) and their applications to biomedical data have been
reported (Dumay et al. 1992; Haris et al. 1999). We com-
pared the performance of two automatic weighted-matching
methods, the Hungarian algorithm and the greedy method,
to our method, using the same data sets (data sets 3–10 in
Table 1). The traced neuronal arbors were decomposed into
sets of branches and Eq. (1) was used as the weighted
function.

The processing time and the accuracy are two of the most
important parameters to consider when comparing the
matching methods. The average time cost per data set using
the Hungarian algorithm was 90.4 min, which is more than
twice the average processing time with our method. In
addition, the accuracy of the Hungarian algorithm was far
from perfect, which means that human verification and
correction would be required. Online resource video 3
(Hugarian-ICP.avi) shows the matching result of data set
No 6 reported by the Hungarian algorithm. The other
automatic algorithm, the greedy method, was much faster.
The average processing time was less than a minute.
However, the accuracy of the matching results was poor.
A representative video clip of the greedy method is
shown in online resource video 4 (Greedy_ICP.avi).
These results suggest that our strategy of combining the
computer program with human supervision is indeed a
highly efficient method.

4D SPA significantly increases the rate at which structur-
al dynamics can be quantified and mapped onto the neuronal
structure, and effectively reduces errors in the analysis and
discrepancies between experimenters. As described in the
methods section, there are three parameters (α,β,γ) used in
the program that can be adjusted by the analyst to optimize

Table 2 An example of the output data spreadsheet of 4D SPA
dynamic analysis results. Each branch is identified by an index number
and categorized by its presence at a different time points of the time-
lapse series (Type). The base length depicts the length from the soma to
the branch tip at T0 (or from the soma to the last branch point in cases
of newly-added and transient branches, which do not exist at T0).
Change in the branch length, as measured from the last branch point
to each branch tip at T1 and T2, are also listed

Index Type Base T0 T1 T2

0 Retracted 108.347 0 −10.0098 −8.626

1 Retracted 100.107 0 −2.8265 b

2 Stable 96.2109 0 1.6266 0.856

3 Retracted 93.4048 0 0.1274 −3.0637

4 Stable 88.892 0 −1.2518 −10.9032

5 Stable 86.5705 0 −7.6944 13.0401

6 Stable 82.7616 0 −0.3493 −4.2367

7 Retracted 82.5884 0 −1.2502 b

8 Retracted 82.3081 0 −0.7123 −2.9365

9 Retracted 82.1164 0 −2.5229 b

10 Stable 78.0166 0 −19.886 −0.8122

11 Retracted 76.6955 0 −7.4872 −5.186

12 Retracted 69.4699 0 −4.4555 b

13 Stable 69.3531 0 0.8682 0.1089

14 Retracted 67.5669 0 −4.4827 b

15 Retracted 66.0081 0 −2.1148 b

16 Retracted 65.2153 0 −8.5441 b

17 Stable 64.1979 0 −8.8023 −0.4913

18 Retracted 63.9182 0 −11.6571 b

19 Retracted 63.2111 0 9.3652 −2.7323

20 Retracted 61.1388 0 −1.4803 b

21 Stable 59.4221 0 −2.7697 0.768

22 Stable 59.2012 0 10.917 7.5843

23 Stable 57.0635 0 −0.0772 −2.5156

24 Stable 54.485 0 1.5444 3.1327

25 Retracted 54.3478 0 −7.9197 b

26 Retracted 53.8825 0 −15.5446 b

27 Retracted 53.1091 0 −0.848 b

28 Retracted 52.8387 0 −8.7012 b

29 Stable 51.9241 0 1.8833 −5.6866

30 Retracted 49.4744 0 −1.5338 b

31 Stable 47.4518 0 0.2116 −1.0798

32 Stable 47.1564 0 −3.6643 1.3552

33 Retracted 40.5623 0 −6.8592 b

34 Retracted 36.5024 0 −9.9099 b

35 Stable 35.9169 0 0.1452 −1.761

36 Retracted 35.6123 0 −3.5941 b

37 Retracted 35.2614 0 −6.7228 b

38 Stable 35.0497 0 22.5963 −3.7935

39 Retracted 34.7067 0 −3.1454 b

40 Retracted 33.6457 0 1.4 −5.9116

41 Retracted 31.2966 0 −4.7041 b

42 Retracted 30.8287 0 −12.1339 b

Table 2 (continued)

Index Type Base T0 T1 T2

43 Retracted 30.4663 0 −2.026 b

44 Newly-Added 75.7073 a 4.0313 −2.0182

45 Newly-Added 56.5727 a 4.7453 −5.4807

46 Transient 55.471 a 3.5334 −3.5334

47 Transient 55.471 a 3.0259 −3.0259

48 Transient 52.1022 a 5.5507 −5.5507

a branch not existing at T0
b branch already retracted at T1, thus not counted at T2
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the algorithm to particular applications and cell types. For
instance, higher values of α and β can be used if the images
are taken over a longer time interval and the neuron is
expected to have grown or changed a lot by the second time
point. On the other hand, for relatively stable neuronal
structures, smaller values would be preferred to reduce false
positives on the list of suggested matching candidates. The
value of γ can also be adjusted to better fit specific types of
neurons with unique morphological features. The accuracy
of the suggestion list decreases when the morphology of the
subtrees connected to the same parent branch are highly
similar, for instance in highly symmetric neuronal struc-
tures. In this case, extra care needs to be taken using the
suggestion list. In cases where the real matching branch is
not included in the suggestion list, we have implemented a
manual assignment function in the program, which allows
the analyst to pick any branch in N2 and assign it as the
matching branch for the branch in question.

4D SPA could easily be applied to neuronal axon arbors,
which exhibit structural changes under a variety of condi-
tions (Reh and Constantine-Paton 1985; Antonini and
Stryker 1993; Cantallops et al. 2000; Cohen-Cory 2002;
Ruthazer et al. 2003; De Paola et al. 2006). Other neuronal
structures, such as the neuromuscular junction (Turney and
Lichtman 2008), of which the morphological changes under
different experimental conditions have been studied inten-
sively, could also benefit from this tool. In addition, 4D SPA
could be applied to study the structural dynamics of other
cell types, the vasculature (Zhang et al. 2005) and extracel-
lular space (Hochman 2012). In vivo time-lapse images of
Xenopus radial glial cells collected at relatively short inter-
vals have demonstrated rapid structural rearrangements of
filopodia that were modulated by visual activity, NMDA
receptor activity and nitric oxide signaling (Tremblay et al.
2009). Furthermore, images of Xenopus radial glial cells
undergo significant structural changes during proliferation
and neuronal differentiation (Bestman et al. 2012). In addi-
tion, immune cells are highly dynamic and their structural
dynamics are essential to their function. In vivo imaging
studies of microglia in rodent visual cortex demonstrate that
they exhibit dynamic morphological rearrangements in re-
sponse to visual deprivation and light exposure, suggesting
an active role of microglial cells in experience-dependent
synaptic modifications (Tremblay et al. 2010). Acute neuro-
inflamation in response to viral protein induces mobility of
both leukocytes and microglia in the CNS, resulting in
engulfment of synaptic structures and immune cells (Lu et
al. 2011). As a final example, the CNS vasculature shows
significant structural changes under healthy and diseased
conditions (Carmeliet 2003; Zhang et al. 2005; Thal et al.
2012). Similar to efforts to automate reconstruction of neuro-
nal structures, recent work has succeeded in automating re-
construction of vasculature from single time points (Zudaire et

al. 2011), suggesting that comparisons of vasculature be-
tween timepoints could benefit from the algorithm pre-
sented here. Quantitative analysis of structural dynamics
has been key to gaining insight into the mechanisms and
function of dynamics in neurons. We anticipate that appli-
cation of this algorithm to a variety of biological systems
will be valuable.
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