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Abstruct-In the framework of SQP method for OPF 
problems, we propose a new dual-type method for solving 
the QP  subproblems induced in the SQP method. Our 
method achieves some attractive features; it is compu- 
tationally efficient and numerically stable. The computa- 
tional formulae of our niet,hod are simple, concise and easy 
to be programmed. We have tested our method for OPF 
problems on several power systems including a 2500-bus 
system. 

I. INTRODUCTION 

Numerous numerical techniques [1]-[lo] have been de- 
veloped for solving optimal power flow (OPF) problems. 
These methods are hased on various mathematical pro- 
gramming techniques such as successive linear program- 
ming (SLP) method [1]-131, successive quadratic program- 
ming (SQP) method [4]-[6], Lagrangian Newton method 
[7]-[9] or the newly developed interior point (IP) method 
[lo]. Each of the above methods has its special features 
and advantages. Observing the SQP method which pos- 
sesses a quadratic convergence rate, however, the reduced 
Hessian is dense. The innovative Lagrangian Newton 
method [7], [8] successfully exploits the sparsity structure 
of the system; however, efforts are needed to cope with 
the difficulties of itlciit ifying the binding inequality con- 
straints and the possibility of singular Hessian matrix as 
pointed out by Moiiticclli and Liu in [9], and they provided 
remedied strategies to overcome those pitfalls. Nonethe- 
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less, the method in [9] as well as the method in [7] and 
require sophisticated software programming skill. 

In this paper, we use the framework of SQP method and 
propose a new dual-type method to  solve the QP sub- 
problems. Our method intends to achieve the following 
features: (i) good convergence rate, (ii) no need to iden- 
tify the binding constraints, (iii) computational efficiency, 
(iv) easy programming and (v) numerical stability. 

In the framework of SQP method, our method will in- 
herit the advantage of fast convergence as demonstrated 
in Section V. Features (ii)-(iv) will be achieved by the 
proposed dual-type method as explained in Section 111. 
To address feature (v), we provide a mathematical proof 
for the convergence of the proposed dual-type method in 
the Appendix. 

11. STATEMENT OF THE OPTIMAL POWER 
FLOW PROBLEM 

Throughout this paper, if not specifically explained, we 
assume the following notations: 

e ,  f: state variables represent the real and imaginary 
part of the complex voltage. 
u: control variables including real and reactive power 

generation, PG and QG, transformer tap ratio, switching 
capacitor banks,.. . , etc.. 
x : (u, e ,  f )  denotes the vector of all variables. 
F ( z ) :  objective function which can be total generation 

g(x): real and reactive power mismatch. 
h(e,  f): functional inequality constraints such as secu- 

V :  vector of voltage magnitude, E 
V ,  v: upper and lower limits of voltage magnitude. 
a, 3: upper and lower limits of control variables u ,  such 

h ,  b: upper and lower limits of functional inequality 

%, t : iteration index. 
a(%) ,  p(t) : step-size. 
diag[o] : a diagonal matrix formed by the diagonal 

terms of the matrix 0.  
A(.) : the increment of the vector 

cost, pollution cost,, system losses,. . . ,etc. 

rity constraints on line flows for specified lines. 
d m .  

as PG, LL ,  QG, qGl etc.. 

constraints. 
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P ( z )  : penalty function for the violations of constraints. 
w 1 penalty coefficient. 
X : the Lagrange multiplier vector. 
4(X)  : the dual function of the QP subproblem. 
4"(X) : unconstrained dual function. 
s2 : the set formed by the inequality constraints of the 

y, 7 ,  crp, u~ : positive real numbers. 
QP subproblems. 

TP,TD : E (0, 1). 

The OPF problem can be stated as follows: 

Remark 1 For the purpose of explanation, we d o  not in- 
clude the functional inepualzty constraints, < h(e,  f) < 
h,  in (l), however, this will be treated afterwards. 

111. SOLUTION METHOD 

A .  The SQP Method 

the OPF problem given in (1): 
The SQP method uses the following iterations to solve 

x(k + 1) = z ( k )  + a ( k ) A x ( k )  (2) 

where a ( k )  is a step-size, and Ax(k) is the solution of the 
following QP subproblem: 

in which the diagonal matrix H is defined by 

d Z F ( x ( k ) )  1 
H diag[ I + 5'7' 8x2 (4) 

where I is an identity matrix, and 7 is a small positive 
real number but enough to  make H positive definite. 

termination rule, a cubic fit or quadratic fit method [14] 
is popular especially for the unconstrained Lagrangian for- 
mulation in the Lagrangian Newton method [7]. However, 
in the SQP method, while reducing the value of objective 
function F ( z ) ,  we should prevent z(k + 1) being too far 
away from the nonlinear constraints in (1). Therefore, 
we employ Armijo's rule [ 111, which considers the penalty 

Step-srre de ter?ntnatron Concerning the steps& de- 

of violating constraints, for the determination of step-size 
a(k )  as follows: 

Let 0 < rp  < 1, u p  > 0,  then a(k) is set to  be r?(')op 
where m(k) ,  the power of TP,  is the smallest nonnegative 
integer m such that the following inequality holds 

F ( x ( L )  + ~ p c ~ p A ~ ( k ) )  + w P ( z ( k )  + $ u p A z ( k ) )  

2 ~ ( z ( l e ) )  + WP(+))  - : r p p ~ x T ( i l . ) ~ ~ x ( k )  (5) 

where the penalty function P ( x )  represents the penalty 
for the violations on the constraints and is defined by 

w is a weighting penalty coefficient, and y E (0, 3). Al- 
though Armijo's rule seems inefficient, in most of our test 
results, the inequality test (5) is passed for m = 0 most of 
the times. Convergence of the SQP method (2) with a ( k )  
determined according to (5) has been shown in [ll]. 

Treaimenl of dascrete control varaables. In the QP sub- 
problem (3), we treat all the incremental variables Ax as 
continuous variables. However, the updated formula (2) 
may make the updated discrete control variables not hav- 
ing the exact discrete values. To remedy this pitfall, we 
apply an approximation rule for the update of discrete 
control variables as follows: 

Let U d  be the subvector of u denote the discrete control 
variables, such as switching capacitor banks, transformer 
tap ratio, ..., etc., then the continuous-value A u d ( k )  is the 
increment of u d ( k )  obtained from solving (3). The ap- 
proximation rule for the update of ud(k  + 1) is 

W ( k  + 1) = L U d ( k )  + & ( k ) A U d ( k ) l ,  (7) 

where \(.)I denote the closest discrete-value to the value 
of (.). Then u d ( k + l )  obtained froin (7) will be the closest 
discrete-value of U d  to the value of u d ( k )  + a ( k ) A u d ( k ) .  

Cominent 1 When there exzsl znteger varaables an a non- 
lanear programmang problem, the computataon as very an- 
volved. Therefore, heurastac methods are developed to 
handle znteger varzables an most of practacal applacataon 
problems such as  the approxamataon rule presented here. 
Though our heurastac rule works well an our problem as 
s h o w n  z n  S e c t z o n  V, t h e r e  z s  no g u a r a n t e e  t h a t  thzs r u l e  
wall obtaan satasfactory solutaons an general nonlznear pro- 
grammang problems coizszstzng of anteger varaables. 

B. The Proposed Dual-type Method. 
Since in (3) ,  all variables Ax are continuous variables, 

the objective function is strictly convex, and the con- 
straints are linear, we can solve the dual problem of (3) 
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instead of solving (3) directly provided that the solutioii 
of (3) exists. This is well-known Duality Theory [14]. 

The dual problem of the QP subproblem (3) is 

max $(A) (8) x 

where the dual function 

in which the set R denotes the set of inequality coii- 
straints in (3) such that s1= {AzlE 5 V ( k )  + V A e  + 
W A f  5 V ,  g 5 u ( k )  + Au 5 U } .  

The proposed dual-type method uses the following iter- 
ations to solve (8): 

8.f 

where p(t) is a step-size, and AX(t) is obta.ined from solv- 
ing the linear equations 

in which b > 0, I is an identity matrix and the uncon- 
strained dual function $u is defined by deleting the primal- 
variable constraints A.c E R in 4(X) shown in (9) such that 

The first derivative 
matrix 
given in [14] as fo l lo~s :  

and the approximate Hessian 
can be computed based on the formula 

where AX in (13) is the solution of 4(X(t)) for a given X(t), 
that is the constrained minimization problem 011 the RHS 
of (9) with X = A(!). We will present the method using 
Projection Theory to solve AX later. 

Since +B aZ$" x t is at  least negative semidefinite, 
ax2 - SI is negative definite. This ensures that 

AX(t) = [ # - 6 1 ] - ' w  a2$* x t is an ascent direction to 
maximize $(A). However, to guarantee the updated point 
X ( t  + 1) will increase the value of q5(X), we develop an 
Armijo's rule to determine the step-size p(t) as follows: 

Let p(t) = T-;[~)CTD, where 0 < TD < 1, U D  > 0, and 
m(t) is the smallest nonnegative integer m such that 

$ ( ~ ( t ) + 6 ? ~ D A ~ ( t ) )  2 $(X(t>)+ 2 6TDmaD IlAX(t)ll; . (15) 

A sketch of the mathematical proof for the justification of 
(15) and the convergence of (10) is given in the Appendix. 

Reinark 2 Sance the objectave functaon $(A) an (8) as 
contanuous and quadratac, at as practacally suatable to  use a 
cubac fit or quadratac fit method to determane the step-saze 
p(t).  On account of gavzng a ragorous mathemalacal proof, 
we prefer t o  use Armajo's rule here. 

Ayplacabalaty of sparse matrax technaque. The non- 
zero elements of the fixed-dimension, constant matrix 

- 6 1  have the same ax2 
structure as the bus admittance matrix of the power net- 
work. Therefore, we may employ a sparse matrax tech- 
naque to solve linear equations (11). 

However, to set up in (ll), we need to compute 
AX first as shown in (13). 

Applacabilaty of Projectaon Theory. AX is the solution 
of the constrained minimization problem on the RHS of 
(9) with X = X(t) which can be solved in two phases using 
Projection Theory. 

Phase 1. Obtain the solution AP of $ u ( A ( t ) )  for a given 
A(t), that is the unconstrained minimization problem on 
the RHS of (12) with X = X(t). 

Phase 2: Project Ai? onto the constraint set 0, and the 
resulting projection is AX. 

The validity of this two-phase method is justified based 
on Projection Theory in [12] and is shown in Theorem 
1 and Theorem 2 in the Appendix. 111 the following, we 
will describe the detailed computational formulae of this 
two- phase met hod. 

From (12), the solution of the unconstrained minimiza- 
tion problem Ai? which is (AGj AZ, Af"), can be analyti- 
cally derived by 

in (14) as well as 

Since H is a diagonal positive definite matrix, no extra 
effort is needed to compute H-' in (16). 

The inequality constraints for (Ae, A f )  and Au are de- 
coupled, and these inequality constraints are also decou- 
pled for different buses; thus, the projection can be treated 
separately for each individual bus. The projection of Ail 
onto the set R is trivial and can be computed in the fol- 
lowing: Let AUa be the projection of AGi onto the subset 
( A u i ( 3  5 ui(k) + Aua 5 Ui}, then 

Ui - u i (k ) ,  

Ai&, otherwise. 

if ua(k) + Ai& > Ui, 
gz - u i ( k ) ,  if u i ( k )  + AGt < 11;, (17) 
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Though the projection of (Ai?, A?) onto the set R 
is more complicated, by simple geometric$ calculation, 
we can obtain the following: Let (A&,Afi)  be the pro- 

of a. Let 7 1  = [V,Je,(k)’+ f,(k)’ - (e,(k)’ + f2(k)2)1,  
7 2  = [V-de,(k)2 + f z ( k ) 2  - (e,(k)’ + fZ(k)’)], and 73 = 
f,(k)AE, - e,(k)Afi then 

(ez(k)r l  $- f Z ( k ) 7 3 ) / ( e ? ( k )  + f?(’)) 
A 4  = (ez(k)72 + f a ( k h ) / ( e ; ( t )  + f ? (k ) )  (18) 

if e , ( k ) A E ,  + fz(k)Afz > TI, 

if e , ( k ) A &  + fz(k)Afz < ~ 2 ,  
A & ,  otherwise, 

I Afa, otherwise. 

(fz(k)TI - e Z ( k ) T 3 ) / ( e ? ( l c _ >  + f?(‘)), 
if e,(k)A& + fz(k)Afz > TI, 

if e,(k)AE, + fz(k)Afz < n, 
( f ~ ( ~ ) ~ 2  - ez(k)r3)/(e?(lc_> + f?(’)>, (19) 

1 
Afz = 

Remark 3 The reason that we do not use polar coorda- 
nate for bus voltage as the projectaon of phase angle onto 
the range (-27r, 27r) wall lose valadaty. 

C. Summary o f  the Overall Method. 
Our method for solving OPF problem (1) is using the 

SQP method (2) where Ax(k) is the solution of the QP 
subproblem ( 3 ) .  The proposed iterative dual-type method 
uses (10) to  solve ( S ) ,  the dual problem of the QP subprob- 
lem, instead of solving ( 3 )  directly The AA(t) in (10) is 
obtained from solving (11) using sparse matrix technique, 
in which the A2  needed to set up can be computed 
using the simple two-phase method. Consequently, the it- 
erative dual-type method converges to optimal solution 
A * ,  and the solution A? of the constrained minimization 
problem on the RHS of (9) with X = A* is Ax(k), the 
solution of ( 3 ) .  
D. The Advantageous Features of the Proposed Dual-type 
Method. 

In the following, we will describe how the proposed dual- 
type method achieves the four attractive features (ii)-(v) 
we claimed in Section 1. 

In the dual function (9), we put the set of inequality 
constraints R as the domain of primal variables Ax so 
that we can apply the Projection Theory to circumvent 
the need of identifying the blnding inequality constraints. 
This address feature (ii). 

All the computational requirements of our method for 
solving OPF problems almost lie in solving the linear 
equations (11) and the calculations of AX in (16)-(19) 
Equations (16)-(19) are as simple as they show. The ap- 
proximate Hessian matrix EC.P!QU b x 2  - SI is a sparse con- 
stant matrix; then the optimal ordering for the setup of 

and guess 

I 
by (13) and (14) w 

for A W )  

P ( 0  by (15) 
and update 

Determine 

and update 

-a+ k = k + l  

Figure 1: flow chart of our method for solving OPF prob- 
lems. 

memory locations for non-zero elements and fill-ins need 
only be done once. Therefore, the computational effi- 
ciency of our method can be expected. This address fea- 
ture (iii). 

Fig. 1 shows the flow chart of our method. Since all 
the computational formulae of our method are simple and 
concise, easy to be programmed is a natural result. This 
address feature (iv). 

Convergence of the SQP method with step-size a ( k )  
determined according to (5) has been shown in [ll]. Con- 
vergence of the proposed dual-type method for solving the 
dual problem of QP subproblem is shown in the Appen- 
dix. These rigorous mathematical justifications address 
feature (v). 
E. The Incluszon of Functzonal Inequalaty Constraints. 

constraints on line flows 
For the nonlinear inequality constraints such as security 

we can convert them into equality constraints by using 
surplus variable vector z such that 
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30-bus 

57-bus 

118-bus 
244-bus 
2500-bus 

Then (21) has the same form of constraints as in (1). Al- 
though the inclusion of equality constraints in (21) will 
increase the dimension of +, in our application, 
the sparsity is still retained; thus the sparse matrix tech- 
nique can still apply. Consequently, the five attractive 
features of our method are still valid. 

Comment 2 If there are too many functional inequality 
constraints, the increase in the dimension of approximate 
Hessian matrix and the  number of surplus variables will 
cause extra computational complexity even through the f i ve  
attractive features still exist. However, the functional in- 
eqllality constraints in OPF problems are mostly the line 
flow constraints on specific transmission lines which are 
generally not too many. Therefore, our approach is suit- 
able for  the problena considered in  this paper. 

324u x t 

IV. SOME REMARKS 

41 

86 

179 
445 
3152 

A .  Remark on Our Method 
There are many dual-type methods in the literature; 

for example, the dual LP method [2], the Lagrangian re- 
laxation method [14], and the interior point method of 
primal-dual approa.ch [lo], ..., etc.. The proposed method 
for solving the dual problem of QP subproblem is also a 
dual-type method but differs from all the existing meth- 
ods. Our method has similarity with the Lagrange relax- 
ation method. However, in the dual function we defined 
in (9), we put the set of inequality constraints, a, as the 
domain of the primal variables instead of using Lagrange 
multiplier p to  associate with the inequality constraints in 
Lagrangian re1axat)iori approaches. This trick enables our 
method to  have a constant sparse approximate Hessian 
matrix and apply Projection Theory t80 deal with the 
difficulties encountered by binding inequality constraints. 
Consequently, the four attractive features can be achieved 
as described in Section 1II.D. 
B. Remark on the Objective Function of OPF 

Observing froin t,he objective function of (3), if the 
considered OPF problem is an economic dispatch control 
problem, the SQP method (2) is a Newton-type method. 
However, if the criterion is to minimize the system losses, 
the SQP method (2) is a Jacobi-type method. The Jacobi- 
type method associated with our dual-type method for 
solving the OPF problems is still very computationally ef- 
ficient as we will demonstrate by numerical examples in 
next sect ion. 
C. Remark on N o  Feasible Solution 

It is possible that the QP subproblem (3) does not 
have any feasible solution. If so, the objective value of 
the dual problem (8) will be unbounded. This is owing 
to the magnitude of some components of AA(t) increase 
as iteration t increases; in other words, the magnitude 
of some coinponent,s of e do not decrpase as t in- 
creases as can be observed from (11). Investigating fur- 

84 x t 

29 

54 
46 
124 

Table I: The final objective value and CPU time consump- 
tion of the tested OPF problems with economic criterion 
in Case (i). 

(154.000) 
4845.123 0.57 

(4845.000) 
2638.720 0.72 
36819.537 6.11 
50577.994 578.75 

I 
IEEE 1 no. of 

432.711 
(433.444) 
321.093 

(32 1.490) 
620.384 

I (620.000) I 
6 I 154.694 I 0.41 

ther, we found from (13) and (16) that components of 
IAZ - APJ with irreducible magnitude should be the ma- 
jor factor causing the above problem. This implies that if 
we push all the primal variables 2 to satisfy the inequality 
constraints in Q, the objective value of (8) will be un- 
bounded. To remedy this infeasible situation, we may re- 
lease the constraints with larger magnitude of IAZ - APJ 
or I h ( z ( k ) + A Z ) - h ( z ( k ) + A f ) l  when maxi lAAa(t)I does 
not decrease. In fact, the above reasoning is similar to the 
way of handling infeasible solution in [8]. 

V. TEST RESULTS 

We tested our method for three cases of OPF problems 
on several power systems using a Spark-10 workstation. 

Case (i): We consider the OPF with economic criterion 
with fixed transformer tap ratio, without switching capac- 
itor banks, and no security constraints on line fiows. We 
use total generation cost xi a,Pi,+biPc,+cs as the objec- 
tive fuiict,ion of the OPF problem. The coefficients ai, bi, 
and c, of the generation cost curve are various for differ- 
ent generation buses. The parameters we select are as 
follows: E = 10-3, w = 100, = U p  = I, TD = Tp = 0.9, 
6 = 11 = 1.0, and y = 0.1. We have tested the OPF 
problems in this case on eight systems. All computer runs 
begin from a flat start with initial voltages being e, = 1.0 
and fa = 0.0 for all buses i's. Table I shows the final 
objective value and the CPU times consumption of each 
OPF problem in Case (i). 

We use IMSL subroutines to verify our solution by run- 
ning the same problems with same initial guesses. IMSL 
subt.out;nes nlonlinoai programming  LOO^ implemented 
by the well-known Han-Powell algorithm [14]. The 



1672 

(I 4.6 

-----r- 

.- . 

k=3 k-4 k=5 k=6 ,. n 0 

3 6  I I 

1 5  '2 2 5  3 3 5  4 45 5 5 5  6 6 5  
CPU time (seconds) 

Figure 2(a): The detailed progression of our method for 
solving the OPF problem on IEEE 224-bus system. 

final objective values inside the parenthesis listed in Ta- 
ble I are obtained by IMSL subroutines. The verification 
cannot continue for systems with more than 60 buses, be- 
cause IMSL subroutines can not execute due to the large 
memory requirement. We observed that our method is 30 
times faster than IMSL subroutine in the case of modified 
57-bus system and experienced an exponential growth of 
speed-up ratio as system size increases. 

To appreciate more about our method, we show in Figs. 
2(a) and 2(b) the detailed progression of our method when 
solving the OPF problems on IEEE 244-bus and IEEE 
2500-bus systems. Each circle in the figures represents 
one iteration of the SQP method. Thus, from Figs. 2(a) 
and 2(b), we see that our method inherit a good conver- 
gence rate of the SQP method. The CPU time consumed 
in between circles represents the CPU time consumed by 
the proposed dual-type method for solving (3) completely. 
We also indicate in Figs. 2(a) and 2(b) the number of it- 
erations of the dual-type method used in each iteration 
of SQP method. Because of the flat start, the proposed 
dual-type method takes more iterations to solve (3) in the 
first few iterations of SQP method. We also observe that 
the number of iterations used in the dual-type method for 
solving (3) is linearly proportional with system size, and a 
reasonably good solution is already obtained in about one 
half Or  two-thirds Of the total CPU Lime listed in Table I 
As indicated in Table I, we can obtain the solution of the 
systems with size in the order of hundred buses, within 
10 seconds. In fact, for the 2500-bus system, we are actu- 
ally obtain a solution of a nonlinear programming problem 
with 5248 variables, 5000 equality constraints, and 2748 
inequality constraints in 580 seconds. This shows the com- 
putational efficiency of our method, and the numerical 

Figure 2(b): The detailed progression of our method for 
solving the OPF problem on IEEE 2500-bus system. 

Table 11: The final objective value and CPU time con- 
sumption of the tested OPF problems with system losses 
criterion in Case liil. 
l------ 

system 
no. of no. of object 
lines G-buses value time i base) 

(lOOMVA (seconds) 

11 3 9.99 0.07 
9 3 0.37 0.20 

179 54 13.35 0.67 
445 46 37.82 5.57 

I I I 

3152 I 124 1 461.50 1 441.23 

stability is manifested by the successful test results on the 
large complex 2500-bus system running from a flat start. 

Case (ii): The setup of this case is the same as Case 
(i) except for using the system losses criterion. We let 
the total active system losses X I  Pi be the objective func- 
tion, where PI denote the active loss of transmission line 1. 
From a flat start, the final objective value and CPU time 
consumpC;on ,E the OPD prohlerm on eight systems are 
listed in Table 11. Comparing with the CPU time in Table 
I ,  we see that the computational efficiency are about the 
same. These results show that the Jacobi-type method 
associated with the proposed dual-type method are still 
very efficient in solving OPF problems with system losses 
criterion. 

Case (iii): The purpose of this case is to  investigate the 
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no. of 
secur. 
constr. 
on line 

Table 111: The final objective value and CPU time con- 
sumption of the tested OPF problems with economic cri- 
terion, consisting of switch capacitor banks and security 

final CPU 
objective time 

value (seconds) 
(100 MVA 

- 
constraints on line Ac 

no. of 

system banks i installed 

1 l-bus 

30-bus 

57-bus 
118-bus 10 

620.59 
1 (620.21) (0.16) 

4 1 155.39 0.57 

4850.73 

(2638.62) (1.10) 
36819.41 

(36815.08) (11.81) 

performances of the approximation rule (7) for the update 
of discrete control variables and the way we handle func- 
tional inequality constraints described in Section 1II.E. We 
consider the OPF problem with economic criterion as in 
Case (i) but installing several switching capacitor banks 
and assuming security constraints of line flows on sev- 
eral specified lines in each tested system as indicated in 
Table 111. With the approximation rule (7) and security 
constraints, the corresponding final objective value and 
CPU time consumption for the tested OPF problems on 
eight systems are shown in Table 111. We also test all the 
OPF problems by assuming the installed switching capac- 
itor banks are continuous variables. The corresponding 
final objective values shown inside the parenthesis are also 
listed in Table 111; they are almost the same as the objec- 
tive values obtained with approximation rule. This implies 
that the approximation rule for the update of discrete con- 
trol variables is qualified for application. Furthermore, at 
the presence of the security constraints on line flows, the 
CPU time are only slightly larger than those listed in Ta- 
ble I. This indicates that our way of handling functional 
inequality constraints are suitable. 

Remark 4 Our machine is small and out of memory 
when tested the 2500-bus system with 30 switching capac- 
itor banks and 50 security constraints. 

VI. CONCLUSION 

The proposed dual-type method for solvim the QP 
subproblems in the framework of SQP method is a new 

method in OPF literature and also a new dual-type 
method in nonlinear programming methodologies. This 
method is general, theoretically sound, and computation- 
ally efficient. The exploitation of the sparsity structure of 
power system network and capability of coping with dif- 
ficulties encountered by inequality constraints make this 
method attractive for applications on other power system 
optimization problems. 

VII. APPENDIX 

The Specaal Structnre of H. 
According to [13], almost all the cost criteria can be 

formulated as a functions of real power generation. Thus, 
the diagonal terms of the diagonal positive definite matrix 
H in (4) corresponding to e and f have the same values 
as +q. 

Theorem 1 The solution A2 of the constrained mana- 
mazatzon problem on the RHS of (9) can be solved an two 
phases: 

Phase I: Compute A? = - H - ' [ W  + -A] 
which as (16). 

Phase 2: Project A2 onto fll the resultang projectaon as 
A?. 

Proof: Since the square terms of Ax contains a scaling 
matrix H, the basic idea of this proof is using a coordi- 
nate transformation to transform the minimization prob- 
lem into a projection problem as follows. 

Neglecting constant terms XTg(z(k))and letting Ay = 
H f A x ,  where the diagonal positive definite matrix H i  is 
defined by H f  H i  = W ,  we can rewrite the constrained 
minimization problem on the RHS of (9) as 

( 2 2 )  
Since the constraints H-aAy E C2 is equivalent to  Ay E 
H f Q ,  where Hffl is defined as {HiAxlAx E R}. Thus, 
we can rewrite (22) as 

(23) 
The minimization problem in (23) is simply a projection 
problem of projecting AC = H - * [ W  + *A] 
onto the set H t Q .  Let Ay be the projection of ACl then 
A2 = H-+Ay.  In fact, the above projection process is 

-A]) onto the set C2 and the projection is A i  as we 
stated in the two-phase procedures of this Theorem. In the 
following, we will prove this claim. The set R are decou- 
pled for ,-=1= kJi44ug+l bus i, and bhe simple bounded in- 
equality constraints (such as the constraints for real power 

equivalent to project AZ(= ~ - f ~ i j  = H- 1 [ a F ( z ( k ) ) T  + 
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, hz(u,(k)+ Ai$) I 
hz(u,(k) + AG,) 

u, ( k )  + A;, 
\ u , ( k )  + AG, h,,’ I 

I L l  ’ ’-, 
I I-- 

Figure 3: (hj?j is the j t h  diagonal element of Hh) 

and reactive power generations) tii 5 u z ( k )  + Ail, 5 fi, 
are decoupled from the constraints on voltage magnitude 
z z - g ( k )  5 v A e , + v A f z  5 G - - x ( k ) .  Since H* 
is diagonal, and the diagonal terms of H; corresponding 
to e, and f, are the same as L q i ,  Fig. 3 and Fig. 4 geo- 
metrically show the equivalence of projecting Ai5 onto the 
set s2 and A$ onto the set H + Q  using coordinate trans- 
formation. This proves our c la im.0 

4 

Remark 5 In  general, i f  H does not posses special struc- 
ture, more complacated formula are needed to obtain AZ 
and AX, however, the simplicity o f  the two-phase proce- 
dures still hold. 

Theorem 2 The AX obtained f rom (i7)-(i9) is the pro- 
jectaon of A2 onto the set s2, 

Proof The result is trivial by inspection from Fig. 3 
and Fig. 4.0 

Theorem 3 The dual-type method (10) wrth p(t) deter- 
maned accordang to (15) is an ascent method. 

Proof First, we can rewrite (8) as min[-+(X)]. From 
(14), -[v2$”(X(t)) - SI ]  is positive definite. Using De- 
cent Lemma in [12] and by simple calculations, we can set 
p(t) = T $ ~ ) u ~ ,  where m(t) is the smallest nonnegative 
integer m that the following inequality holds 

which is (15). We then have 

This shows that (10) is an ascent method as long as 
IlAX(t)ll # 0. In fact, the condition IlAX(t)ll = 0 implies 

= 0 which is the necessary condition when d(X) 
achieves its maximum. Thus, (10) is an ascent method to 
maximize d(X). 

Combining Theorem 3 with the two-phase method 
shown in Theorems 1 and 2, and also by Duality The- 
ory [14], we have the following theorem which is the main 
theoretical result of the proposed dual-type method.0 

V,de ,+V 4 = L $ ( Y , - V , )  [ELI 

N, 
’ a, g, 

‘ A &  

LEGEND - ye = 5, VL = -, EL Equation ofaLine 

CTM Coordinate Transformation Matnx 

LARV Linearized Adrmssible Range for Voltage 

Figure 4: ((Aye,, Ayft)  is the transformed coordinate of 
(Aez  A f t ) ) .  

Theorem 4 The dual-type method (10) converges to a 
p a n t  A* such that = 0 and maxzmzze +(A)  Fur- 
thermore, Aijl the solutzon of the constraaned mrnzmaza- 
taon problem on the RHS of (9)  wath X = A x l  equals Ax(k), 
the optamal solutron of (3). 

Proof the proof can be similarly developed from the 
proof of Proposition 2.1 of Section 3.2.2 in [12l .o  
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