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In this paper, we present an automatic foreground object detection method for videos captured by freely
moving cameras. While we focus on extracting a single foreground object of interest throughout a video
sequence, our approach does not require any training data nor the interaction by the users. Based on the
SIFT correspondence across video frames, we construct robust SIFT trajectories in terms of the calculated
foreground feature point probability. Our foreground feature point probability is able to determine can-
didate foreground feature points in each frame, without the need of user interaction such as parameter or
threshold tuning. Furthermore, we propose a probabilistic consensus foreground object template (CFOT),
which is directly applied to the input video for moving object detection via template matching. Our CFOT
can be used to detect the foreground object in videos captured by a fast moving camera, even if the con-
trast between the foreground and background regions is low. Moreover, our proposed method can be
generalized to foreground object detection in dynamic backgrounds, and is robust to viewpoint changes
across video frames. The contribution of this paper is trifold: (1) we provide a robust decision process to
detect the foreground object of interest in videos with contrast and viewpoint variations; (2) our
proposed method builds longer SIFT trajectories, and this is shown to be robust and effective for object
detection tasks; and (3) the construction of our CFOT is not sensitive to the initial estimation of the
foreground region of interest, while its use can achieve excellent foreground object detection results
on real-world video data.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Detecting moving foreground objects from a video taken by a
non-stationary camera attracts intensive attention from research-
ers and engineers in the field of image and video processing. This
is of particular interest for applications such as action and event
recognition, and automatic annotation of videos. However, moving
foreground detection has been a challenging task since the moving
foreground object in real-world videos is often highly articulated
or even non-rigid. Without prior knowledge (e.g., training data)
on the foreground object of interest, it is difficult to model the ob-
ject information even with user interaction. In practice, the camera
is not fixed and thus conventional object detection methods based
on frame differences cannot be applied, which makes background
modeling approaches fail. In [1], Patwardhan et al. pointed out
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the three scenarios which make video foreground object detection
very difficult. The first scenario is the presence of complex back-
ground which contains moving components such as water ripples
or swaying trees. The second case is background motion caused by
camera motion (e.g., shaky tripod in windy days), which rules out
the use of conventional reconstruction-based approaches for object
detection. Finally, most existing works for video object detection
require training data or user interaction (e.g., at the first frame).
This might not be practical and will result in increased processing
time.
1.1. Related work

The history of video-based object detection starts from detec-
tion of moving objects in videos captured by a stationary camera.
Jain and Nagel [2] proposed the frame difference scheme to detect
a foreground object. Wren et al. [3] proposed the use of a Gaussian
model, Stauffer and Grimson [4] proposed a GMM-based approach,
and Elgammal et al. [5] applied kernel density estimation for back-
ground modeling. Unfortunately, the above methods cannot serve
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well for scenarios in which the camera is moving (even with nom-
inal motion). Recent researchers focus more on foreground object
detection in videos captured by freely moving cameras. In [6],
Sheikh and Shah proposed to build foreground and background
models using a joint representation of pixel color and spatial struc-
tures between them. In [1], Patwardhan et al. decomposed a scene
and used maximum-likelihood estimation to assign pixels into lay-
ers. From their experimental results, only moving foreground ob-
jects with the average velocity up to 12–15 pixels per frame can
be detected. As a result, their approach is only capable of handling
videos captured by a camera with mild camera motions.

In this paper, we address automatic video foreground object
detection problems under arbitrary camera motion (e.g., panning,
tilting, zooming, and translation). Prior methods focusing on this
type of problem can be classified into two categories. The first cat-
egory (e.g., Meng and Chang’s method [7]) is to detect moving fore-
ground object as the outliers, and thus to estimate the global
motion of the camera [8]. Irani and Anandan [9] proposed a para-
metric estimation method for detecting the moving objects, and
Wang et al. [10] also approached this problem in a similar setting.
Furthermore, Bugeau and Perez [11] proposed motion and feature
clustering techniques for estimating foreground object regions. The
second category of moving object detection algorithms aims to
model the reference background image. Felip et al. [12] proposed
to estimate the dominant motion from the sampled motion vec-
tors. Zhao et al. [13] proposed to detect objects present or removed
from a non-static camera for indoor scenes based on the calcula-
tion of SIFT features [14] and homography. While it is possible to
model the scene as background information for videos captured
from an indoor scene or a closed area scene, modeling outdoor
scene or more complicated background remains a very difficult
problem.

The correspondences of feature points are widely used for link-
ing the relationship between pairs of video frames. SIFT flow is re-
cently proposed by Liu et al. [15] to determine the dense
correspondences between image pairs for the retrieval of similar
scenes. On the other hand, Sand and Teller [16] proposed a particle
video approach, which is able to construct the long trajectory
based on the optical flow correspondences, and thus provides more
chances to detect and track foreground objects. We note that,
although the method of Liu et al. [15] is able to determine dense
corresponding SIFT points, it would be impractical to enforce the
trajectory across all video frames, which results in linking SIFT
points in dissimilar pairs of video frames. While the approach of
Sand and Teller [16] better links corresponding particle points,
its high computational cost would prohibit future speed-up or
higher-level processing or learning tasks. In [17], a motion-flow
based approach was proposed to analyze MPEG bitstreams for
moving objects using the associated trajectories. Motivated by
the above methods, we advance the context and spatiotemporal
information of moving foreground objects, and we advocate the
use of the trajectories to provide rich information in detecting fore-
ground objects in videos.

1.2. Our contributions

We present a novel foreground object detection approach in
this paper. We focus on detecting and tracking a single and domi-
nant foreground object in uncontrolled videos, i.e., videos captured
by freely moving cameras or those downloaded from the Internet.
Based on the SIFT matching strategy, we calculate the foreground
feature point probability for constructing robust SIFT trajectories,
which imply the foreground candidate region across video frames
without the need of user interaction such as parameter or thresh-
old tuning. To perform foreground object detection, we propose a
consensus foreground object template (CFOT) based on the extrac-
tion and association of SIFT points with longer trajectories and
higher confidence. We note that our CFOT is not only derived by
integrating the information of the candidate foreground regions
in a probabilistic way, we also advance an adaptive re-start scheme
to handle false object detection results when tracking the fore-
ground object. This makes our CFOT more robust in detecting ob-
jects in real-world uncontrolled videos, and thus we are able to
extract and track the foreground objects even when the contrast
between the foreground and background regions is low (spatially
or temporally). This is why our proposed method can be general-
ized to videos with dynamic backgrounds, and is robust to view-
point changes across video frames.

The contribution of our proposed method is trifold: (1) we pro-
vide a probabilistic self-decision framework to determine the mov-
ing foreground objects in videos, while no user interaction or
parameter tuning is required; (2) the extracted SIFT points across
video frames allow us to associate the candidate foreground inter-
est points and to calculate the foreground feature point probability
for robust object detection; and (3) our CFOT results in a compact
representation of the foreground object of interest, while the con-
struction of CFOT is not sensitive to the initial estimation of fore-
ground region of interest due to the re-start mechanism when
necessary. From our experimental results, it can be verified that
the use of our CFOT produces excellent foreground object detection
results in real-world video data.

2. Foreground object detection

Fig. 1 shows the proposed framework for video foreground ob-
ject detection. This framework consists of two steps: the construc-
tion of CFOT and the use of CFOT for foreground object detection,
which will be discussed in Sections 2.1 and 2.2, respectively.

2.1. Construction of consensus foreground object template (CFOT)

Fig. 2 depicts the process for constructing the consensus fore-
ground object template (CFOT) for detection purposes. We now de-
tail each step in this subsection.

2.1.1. Foreground key point extraction
Scale-invariant feature transform (SIFT) [14] is a popular com-

puter vision algorithm, which can be used to detect local interest
points in an image. As an initial stage of our foreground feature
point extraction, we apply the SIFT feature detector in each frame
of a video sequence. The goal for this step is to obtain a set of fore-
ground key points which most likely belong to the foreground ob-
ject of interest, which is achieved by identifying the SIFT key points
across video frames in a probabilistic point of view, as we discuss
below.

As the initialization stage of this step, a new key point pt
i is de-

tected as a SIFT point for the first time at time t, and its correspond-
ing probability fpointði; tÞ will be set as a ¼ 0:5 since we have no
prior knowledge that whether this key point belongs to foreground
or background. The foreground point probability function is de-
fined as:

fpointði; tÞ ¼
fpointði; t � 1Þ � kþ 1 � ð1� kÞ; if pt

i – ;;
fpointði; t � 1Þ � k; if pt

i ¼ ;;

�
ð1Þ

where k is an update factor and is set to 0.95 as suggested in [18].
The above equation provides a probabilistic way to update the

probability of assigning an extracted key point as foreground,
depending on its key point matching history. To be more precise,
if a SIFT key point is consistently identified across video frames
(by SIFT matching), it is more likely to belong to the foreground ob-
ject and thus a higher probability value will be assigned. Fig. 3a



Fig. 1. Our proposed framework for video foreground object detection.

Fig. 2. The flow chart for the construction of the consensus foreground object template (CFOT).

Fig. 3. SIFT points and the foreground region example: (a) corresponding pairs of SIFT feature points between video frames t and t � 1, and (b) pink circles: foreground SIFT
points pt

FG in Rt
0; green circles: foreground SIFT points pt

FG out of Rt
0; white circles: the rest SIFT points having/without correspondence matching; blue rectangle: the

rectangular region, Rt
0 (bounded by the blue rectangle), defined by its upper-left and lower-right corners, i.e., ðx� 2rx; y� 2ryÞ and ðxþ 2rx; yþ 2ryÞ, and yellow polygon:

candidate foreground region, Rt , calculated by the convex hull operation from pt
FG locate in the region Rt

0 (pink circles). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 4. An example of foreground point probability, the SIFT point correspondence
is matched according to [14]. The pink curve is the fpointði; tÞ with SIFT point index
230. The point occurred as a foreground point at frame 15 and the initial value
a ¼ 0:5 is given. At frame 30, the corresponding point cannot be obtained to cause
the curve value decrease. After that time instant, the corresponding points
continuously occurred, keeping the curve increasing. The curve increasing and
decreasing situations can also be found from the other curves (different index i)
belonging to fpointði; tÞ.
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shows an example of SIFT point matching correspondences (by red
arrows) between two adjacent video frames.

After calculating the probability fpoint for all SIFT points across
video frames, the profile of fpoint for each SIFT key point can be de-
rived as illustrated in Fig. 4. We note that the x-axis in this figure
indicates the frame number t, the y-axis is the index i of SIFT fea-
ture points, and the vertical axis denotes the values of the calcu-
lated fpoint . From our observations, a large portion of the key
points extracted from the foreground object will be presented in
the field of view across video frames, and thus will be associated
with higher probability values. This implies that the extracted
key points belong to the foreground object of interest.

Once the foreground probability profile of each SIFT keypoint is
obtained, we collect a set pt

FG of foreground key points pt
i at time t,

which is defined as follows:

pt
FG ¼ pt

i : pt
i – ; and f pointði; tÞ > maxððlt � rtÞ;aÞ

� �
; ð2Þ

In (2), the threshold value is set to be maxððlt � rtÞ;aÞ, where lt

and rt are the mean and standard deviation of the key point distri-
bution. The use of this data-driven threshold allows us to avoid the
case of ðlt � rtÞ < a, i.e., to consider a key point whose
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fpointði; tÞ < a ¼ 0:5 and thus is likely to be considered as
background.

2.1.2. Foreground region estimation via robust SIFT trajectories
With the above probabilistic way to extract foreground feature

points in a video sequence, the set pt
FG is obtained and the location

of each foreground key point is denoted as ðxt
i ; y

t
i Þ (i is the index of

the key point, and t is the frame number). We note that, when a key
point is observed across video frames, its trajectory can be con-
structed by connecting the key points of interest. Fig. 5a shows
example foreground key points (denoted in circles), and Fig. 5b
shows the corresponding trajectories, which are generated by con-
necting corresponding foreground key points with line segments of
the same color.

We define the trajectory segment between key points pt
i and pk

i

between tth and kth frames, noted as st;k
i :¼ pt

i p
k
i , where k > t and

both pt
i and pk

i belong to the set pt
FG. When piecewise trajectory seg-

ments are established for each foreground key point, a SIFT trajec-
tory can be denoted as:

si ¼ st;k
i : 8st;k

i ; where t; k 2 1;2; . . . ; Tf g and k > t:
n o

: ð3Þ

Using this technique, we do not need to limit the length of the
constructed trajectory for a particular key point. In prior methods,
such as SIFT flow [15] and particle video [16], a trajectory will be
terminated (or a particle will be eliminated) if a corresponding
key point cannot be found across a certain time duration. Unlike
these approaches, if the correspondence between the detected
key points can be found across any number of frames (using the
probabilistic approach discussed earlier), our proposed framework
is still able to construct the trajectory segment between them. As a
result, we are able to produce long and robust trajectories due to
performing SIFT matching in our probabilistic way instead of
explicitly key point matching.

Now, to determine the candidate foreground region from the
derived trajectories, we calculate their mean location p ¼ ðx; yÞ of
the key point collection pt

FG at frame t. We further normalize the
key points in pt

FG and form a Gaussian distribution with zero mean
and standard deviations rx and ry. From the definition of standard
variation, about 95% of the normalized key points are within the
range ½�2rx;2rx� or ½�2ry;2ry�. This implies that about 90% of
Fig. 5. SIFT trajectory: (a) the detected SIFT feature points at tim
the key points lie within the rectangle defined by its upper-left
and lower-right corners, i.e., ðx� 2rx; y� 2ryÞ and ðxþ 2rx; yþ
2ryÞ, denoted by Rt

0 as a rectangular region. As a result, we use
the foreground points in pt

FG locate within the region Rt
0 to generate

a candidate foreground region

Rt ¼ Cðpt
i 2 pt

FG; and pt
i locates in the region Rt

0Þ
� �

; ð4Þ

where Cð�Þ represents the convex hull operation [19]. The corre-
sponding Rt

0 (shown in a blue rectangle) and Rt (the yellow convex
hull region) are shown in Fig. 3b.

While we aim at using these foreground regions to perform the
foreground object detection, the simple use of appearance (i.e.,
SIFT) and motion (i.e., trajectory) information along will not be
sufficient to practical foreground object detection and tracking
problems (see Fig. 6a and b for example). In the following subsec-
tion, we will explain how a consensus foreground object template
(CFOT) is constructed based on the above candidate foreground re-
gions. We will discuss why it is preferable to prior object detection
methods in real-world uncontrolled video data.

2.1.3. Consensus foreground object template
Given the candidate foreground region Rt , we define the

foreground object probability, which indicates how likely a pixel
within Rt belongs to foreground. Similar to (1), this probability
function is calculated as:

f t
objectðx;yÞ¼

f t�1
objectðx�Mxt ;y�MytÞ �kþ1 � ð1�kÞ; if ðx;yÞ in Rt ;

f t�1
objectðx;yÞ �k; otherwise;

(

ð5Þ

where ðx; yÞ is the pixel location. k ¼ 0:95 is the update factor. At the
starting frame of a video sequence, we set f t

objectðx; yÞ ¼ 0:5 for all
pixels ðx; yÞ, since we do not have any prior knowledge of the loca-
tion of the foreground object. In (5), Mxt and Myt are the x and y
components of the motion vector calculated by sum of absolute dif-
ference (SAD) [20] between Rt and Rt�1, which will be applied to
compensate the shift effects of the foreground object across frames.
In practical scenarios, both the foreground object and the camera
can move freely, and the location of the foreground candidate re-
gion Rt may shift across frames. Thus, the location information will
e t, and (b) the SIFT trajectories in a spatio-temporal space.



Fig. 6. Foreground region detection examples: (a) a satisfactory foreground region detection result, and (b) an inappropriate foreground region detection result.

Fig. 7. An image example of (a) foreground object probability model f t
objectðx; yÞ, (b–d) average foreground image Itðx; yÞ of frame 82, 84, and 86, respectively, (e) the pixels with

f t
objectðx; yÞP hT , and (f) the associated CFOT.
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be calibrated by the calculated foreground region motion vector. An
example of our foreground object probability model is shown in
Fig. 7a, where we can see that the center part of the image pixels
have larger probability values (brighter pixels) and thus are more
likely in the foreground object region.

Since our goal is to construct a foreground object template for
detection and tracking, we further utilize Rt and construct its aver-
aged foreground image model ITðx; yÞ ¼

PT
t¼1Itðx; yÞ

n o
=cT

mapðx; yÞ.
This model can be considered as an average image up to the Tth
frame that accumulates foreground object pixel information from
the starting to the current frame. For normalization purposes, a
counter map cT

mapðx; yÞ in the denominator counts the number of
frames (out of T) that a pixel belongs to the foreground region.
As a result, each foreground object pixel contributes 1

cT
mapðx;yÞ

of its
value to the final average foreground image. An example of the
derivation of such an average foreground image model is shown
in Fig. 7b–d.

After foreground object probability f T
object calculated from t ¼ 1

to t ¼ T , and the averaged foreground image IT are produced for
a given video sequence, we integrate these two models to con-
struct the CFOT for the foreground object of interest. According
to (5), the value of f t

objectðx; yÞ indicates the probability of a pixel
at ðx; yÞ belongs to foreground, an adaptive threshold
hT ¼ k � hT�1 þ ð1� kÞ � gt , is introduced to determine whether each
pixel should be included to the formulation of our CFOT. To auto-
matically determine the threshold hT , we have gt ¼ 1 for half of
(T-1) frames and gt ¼ 0 for the rest (e.g., we set gt ¼ 1 for odd
frames and gt ¼ 0 for even frames). This adaptive threshold hT only
depends on the length T of the video, and the random assignment
for gt ¼ 1 with 0 and 1 patterns would not affect the final value of
hT . As a starting condition, we set the threshold h1 ¼ 0:5 for T ¼ 1,
and k is the update factor 0.95 (same as (5)). The calculation of hT

implies that this threshold is dependent on the length of the video
sequence and the foreground object present in it.

Finally, we apply the averaged foreground image IT derived ear-
lier and use (5) to construct our CFOT as follows
CFOTðx; yÞ ¼ ITðx; yÞ : 8ðx; yÞs:t: f T
objectðx; yÞP hT

n o
: ð6Þ

From the above equation, we see that our CFOT is refined by the
foreground pixel model ITðx; yÞ with an adaptive filtering threshold
hT . Once the CFOT is constructed, it can be used for foreground ob-
ject detection and tracking, as we discuss later in Section 2.2.
Fig. 7d–f illustrate an example of Itðx; yÞ, pixels with
f t
objectðx; yÞP hT , and the resulting CFOT of a particular frame of a

video sequence.

2.1.4. Re-start mechanism for updating CFOT
In practice, the appearance, scale, and illumination of a moving

object can vary significantly throughout the video (see Fig. 8 for
example). Under these severe variations, the aforementioned fore-
ground probability models will not be sufficient to describe the ob-
ject of interest across video frames. In order to address these
problems, a re-start scheme of constructing updated CFOTs will
be necessary.

As seen in Fig. 8, poor detection result will be obtained using the
derived CFOT under significant changes in object motion, scale and
appearance, or due to insufficient resolution of the input video.
Under these circumstances, the mean location ðx; yÞ and variance
ðr2

x ;r2
yÞ of foreground pixels pt

FG in Rt (see (4)) at time t can be
calculated. The locations of the foreground object may change be-
tween adjacent frames, however, ðr2

x ;r2
yÞ should not vary too much

unless there is a significant change in scale or appearance. Based on
this observation, we use the variations ðr2

x ;r2
yÞ as one of the factors

to decide whether the generated CFOT is still suitable for object
detection in subsequent frames. Another example is that, with
insufficient video resolution, the SAD between consecutive Rt will
be large (e.g., the local maximum value shown in Fig. 9). Similarly,
if the appearance, scale, and illumination vary significantly across
some video frames, this SAD value will also be larger than those
from other consecutive frames. Therefore, we use the SAD value
as another factor to indicate the quality of our constructed CFOT
model at time t.



Fig. 8. Examples when the re-construction of CFOT is needed. The comparison from the top row to the bottom row shows the examples of: (a) too much background included
in CFOT in the top, (b) blurring effects observed in CFOT in the top, and (c) significant scale and appearance variations within CFOT from the top to the bottom.

Fig. 9. Re-start frame detection example: r2
x ðtÞ; r̂2

x ðtÞ, and jr2
x ðtÞ � r̂2

x ðtÞj are shown
as the black, red, and blue curves, respectively. The falsely detected local extremas
of r2

x ðtÞ are marked as the brown dashed line circles. The exact local extrema
position is found by the peak detection in the blue curve jr2

x ðtÞ � r̂2
x ðtÞj, and then

identify to the black curve r2
x ðtÞ position (red dashed line circle). (For interpretation

of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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To summarize the above observations, we use the local maxi-
mum values observed in r2

x ;r2
y , and SAD to determine whether

we should re-start the entire CFOT generation process, including
the reset of all probability values in each stage. In other words,
at time instant t, the observation for r2

x ;r2
y , and SAD are listed in

the following indicating vector:

½rrx ;rry ;rSAD� ¼ local argmaxtf½jr2
x ðtÞ� r̂2

x ðtÞj; jr2
y ðtÞ� r̂2

y ðtÞj; jSADðtÞ� ^SADðtÞj�: ð7Þ

In order to avoid the detection of local maximum caused by
noise, we further smooth the r2

x ;r2
y , and SAD curves with a Gaussian

kernel and obtain the smoothed versions of r̂2
x ; r̂2

y , and ^SAD. As a re-
sult, the difference between the original curves and the Gaussian
smoothed curves can be calculated, and the resulting local maxi-
mum values indicate the time instants which we have poor CFOT
results and should re-start our process accordingly, as shown in (7).

An example of the curves of r2
x ðtÞ; r̂2

x ðtÞ, and jr2
x ðtÞ � r̂2

x ðtÞj are
depicted in Fig. 9. From this figure, we see that r̂2

x ðtÞ (red curve)
is a slowly-varying version of r2
x ðtÞ (black curve), and the exact

local peak (frame 63) can be detected from jr2
x ðtÞ � r̂2

x ðtÞj to avoid
the ripple problem (frame 66 and 68 of the black curve r̂2

x ðtÞ) to
cause false peak detection. Finally, the re-start points can be
determined as the union of the peak indexes (½rrx ; rry ; rSAD�) of the
curves. This re-start mechanism will be able to handle practical
foreground object detection problems due to obvious appearance
variations, including changes in size and resolution.

2.2. Foreground object detection using CFOT

We now discuss how we apply the CFOT to perform object
matching in a video for foreground object detection and tracking.
Recall the flow chart of our proposed framework shown in Fig. 1,
the CFOT is used as a query image over a number of video frames,
and this CFOT will look for similar image patterns in each frame
within this period of time. In order to determine the most similar
image pattern, a similarity test based on SAD is performed to
exhaustively search for a region in each frame which best matches
the CFOT. We note that SAD is also commonly adopted for block
matching in MPEG standards.

The calculation of SAD between a CFOT and a video frame t is
defined as follows:

ðxc; ycÞ ¼ argminx;y

XW�1

w¼0

XH�1

h¼0

jCFOTðw;hÞ � Itðwþ x; hþ yÞj
( )

: ð8Þ

where CFOT is the average foreground pixel model calculated from
Eq. (6), the size of the CFOT is W � H (width by height). It is worth
noting that we may have multiple CFOTs generated for a given
video throughout the entire video sequence (due to the reasons
explained in the previous subsection), but there is only one CFOT
over a particular period of time. From Eq. (8), it is concluded that
the smallest SAD output indicates the best matched foreground
object region, and thus the upper-left corner of this region will be
recorded by ðxc; ycÞ. Once this foreground object region is deter-
mined, as the completion of the foreground detection process, we
also use a red masking polygon to mark the foreground region, as
shown in the output stage of Fig. 1.

3. Experimental results

To test the effectiveness of our proposed method, we collect a
set of video sequences from YouTube [21] as our video database,
which contains videos of six different object classes: airplane,



Fig. 10. Example detection results for videos captured by slow-moving cameras: (a) consecutive frames of helicopter, frame 502–526, and (b) consecutive frames in
ambulance, frame 620–644.
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ambulance, car, fire engine, helicopter, and motorbike. We have eight
videos available for each class, and each video contains a moving
object captured in a close-up scene and with significant variations
in camera motion, background, lighting, etc. In this database, we
selected total 5304 frames for evaluation. For the 48 video clips,
the average length of the selected video clips is 110.5 frames (only
the close-up video clips focusing on a moving object in a represen-
tative time period are selected for evaluation).
3.1. Example results of video object detection and tracking

To visualize the results produced by each step of our approach,
we choose two video sequences (one from ambulance and the other
from fire engine) for detailed discussions, as shown in Fig. 11. In the
first row of Fig. 11, we show the correspondence of SIFT points pt

i

by circles in white, pink, and green.1 The white circles are the SIFT
points presented in the current frame but are not considered as the
foreground points due to low probability values. The green ones are
the foreground points pt

FG out of Rt
0 (blue rectangular region, defined

in (4)). The pink circles are the final foreground points in Rt
0. In addi-

tion, the yellow polygon is the convex hull generated by the pink cir-
cles (i.e., Rt defined in (4)). With the above information, we update
the foreground object probability f t

object accordingly (see the second
row), accumulate the averaged foreground image model It (i.e., the
third row), and obtain the final CFOT (shown in the fourth row) by
(6) for detection purposes. Finally, we apply the CFOT to detect the
foreground moving objects (as discussed in Section 2.2), and the re-
sults are shown by red regions in the last row of Fig. 11. From
Fig. 11b, we see that the foreground object cannot be perfectly de-
tected. The yellow polygon in the first row of Fig. 11b excludes a ma-
jor part of the fire engine. However, our derived CFOT can recover/
compensate the foreground area and provide satisfactory foreground
object detection results, as shown by the last row of Fig. 11b.

In our experiments, some video sequences are captured by
slow-moving cameras. For example, some helicopter sequences
contain the foreground object moving slowing from the ground,
1 For interpretation of the references to colour in this figure text, the reader is
referred to the web version of this article.
and thus both foreground and background exhibit slow motion.
Some example frames and the corresponding detection results
are shown in Fig. 10a. Other example videos can be observed from
the ambulance sequences. As shown in Fig. 10b, the foreground ob-
ject just leaves the building and thus the camera does not exhibit
significant motion when capturing the video. While scale varia-
tions (and slight viewpoint changes) can be observed in this case,
our method is still able to detect the foreground object and pro-
duces satisfactory results.

In addition, the foreground object detection results in consecu-
tive video sequences are shown in Fig. 12, in which only represen-
tative frames are shown. It can be observed that both the object of
interest and the camera are moving in these test video sequences,
and thus it is very challenging to address the tasks of video object
detection and tracking. Based on the proposed probabilistic CFOT
generation and the re-start mechanism, we see that the foreground
object regions (in red) can be properly detected, even under severe
orientation and scale variations, or with blurred and fast changing
background.
3.2. Performance comparisons

We have also compared our results to state-of-the-art methods
in detecting or tracking video objects. Since our foreground object
detection method is based on a probabilistic framework using SIFT
trajectory, we first considered two trajectory-based approaches,
i.e., SIFT flow proposed by Liu et al. [15] and particle video proposed
by Sand and Teller [16]. Since the above methods focused on track-
ing moving objects and did not address the problem of object
detection, we compare our method with the CVEPS framework (a
compressed video editing and parsing system) proposed by Meng
and Chang [7] and a recent approach of Bugeau and Perez [11].
3.2.1. Detection and tracking of foreground points
We first compare our results with two trajectory-based ap-

proaches, i.e., SIFT flow and particle video. As shown in Fig. 13,
our method has the smallest number of foreground points (pink
circles) while exhibiting satisfactory representation ability in
locating the foreground object. It is worth noting that, although



Fig. 11. Example detection results for each step in our proposed framework: (a) frame 590 of Ambulance sequence, and (b) frame 2137 of FireEngine sequence.

Fig. 12. Example foreground object detection results (denoted in red regions) under different camera view angles. The frame numbers of Black Car are: 191, 206, 222, 236,
252; the frame numbers of Yellow Car are: 580, 674, 698, 722, 739; and the frame numbers of Motorbike are: 250, 293, 310, 334, 352. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. Examples of keypoint correspondence using Particle video [16], SIFT flow [15], and our method: (a) Ambulance, frame 587, and (b) Fire Fighting Car, frame 2137. Note
that the pink circles indicate foreground points with probability larger than our adaptive threshold, while our approach has the smallest number of foreground points (i.e., the
most representative ones) with the ability to describe the foreground object (depicted by yellow polygons in the first row). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 14. Comparisons of feature point detection and tracking results: (a) average trajectory length (frame), (b) average number of feature points per frame, and (c) average
computation time (in seconds).
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the number of the foreground points (according to the definition in
this paper) is larger using SIFT flow or particle video, the foreground
object (as shown by the yellow polygons at the second and third
rows) cannot be successfully detected.

Fig. 14 compares the average trajectory length, number of fea-
ture points per frame, and execution time on the video dataset con-
sidered, when using our proposed method and Particle video. We
should notice that, SIFT flow [15] enforces a correspondence for
each pixel with dense representation, providing the trajectory
length the same as the video frame length, but the found
correspondences could match uncorrelated feature points as
non-representative trajectories. Therefore, in Fig. 14, the results
of SIFT flow is not shown. We see that our approach produces a
longer average trajectory length as shown in Fig. 14a, which con-
firms that our framework is more robust in locating the foreground
object and thus is able to produce satisfactory detection results. As
shown in Fig. 14b, our method has a much smaller number of fea-
ture points, and this observation is consistent with the example
shown in Fig. 13. From Fig. 14c, it can be seen that our computation
time is slightly longer than that of Particle video, since we need to
extract and collect the SIFT points across video frames in advance
for SIFT matching purposes (which allows us to determine SIFT



Table 1
Performance summary and comparison of the proposed method and PARTICLE VIDEO
[16].

Our method Particle video [16]

Trajectory length Medium-long Short-medium
Complexity Medium–high High
Foreground point decision Yes No

Fig. 16. Receiver operating characteristic comparisons. Note that b denotes the
block size.
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correspondences under noisy condition, and produce more robust
trajectories).

We summarize the comparisons in Table 1. Comparing to this
prior method, our proposed framework is able to produce longer
feature point trajectories for the construction of the CFOT model
for detection purposes. From the above observations and compar-
isons, we confirm that our proposed method is able to determine
the most representative feature points with robust trajectories.
This is the key to the success for detecting moving foreground ob-
jects in real-world videos.

3.2.2. Foreground object detection
Next, we compare our foreground object detection results with

the CVEPS approach proposed by Meng and Chang [7], which sug-
gests the motion produced by the foreground moving object can be
considered as an outlier of the camera motion. We also consider
the method of Bugeau and Perez [11], who proposed to estimate
the sensor motion with mean shift clustering and graph cut seg-
mentation techniques to determine the foreground object region.
We implement these two methods, and the foreground object
detection is performed based on the video data ground truth la-
beled by human experts. To evaluate the performance, we consid-
ered the true positive rate tpr and false positive rate fpr in our
experiments, which are defined as follows:

tpr ¼ tp
tpþ fn

; and fpr ¼ fp
fpþ tn

; ð9Þ

The definitions of tp; tn; fp, and fn are illustrated in Fig. 15. The
black rectangle is the original image frame. The purple rectangle
indicates the detected foreground area, and the blue rectangle
shows the ground truth foreground. Their overlapped region repre-
sents the true positive (tp) area. The purple rectangle without the
tp area is the false positive fp region, and the blue rectangle with-
out the tp area is the false negative fn area. The tn area is the ori-
ginal image without the blue rectangle.

We calculate tpr and fpr at each frame, and the results using dif-
ferent parameters for the two prior methods are shown as the re-
ceiver operating characteristic (ROC) curve in Fig. 16. We note that
the block size b (in pixels) for the two methods considered are set
to 8, 16, and 32, are considered as the basic unit for camera motion
estimation (also standard settings for motion estimation in MPEG).
Fig. 15. The definitions of true positive (tp), true negative (tn), false positive (fp),
and false negative (fn).
Since our proposed method automatically selects the data-depen-
dent threshold when formulating the CFOT, only one operating
point in ROC is noted. In Fig. 16, we note that the complete ROC
curves cannot be obtained due to the existence of a much larger
background area (i.e., tn� fp and fpr ! 1 according to (9)), and
thus only representative results are shown. However, it is worth
noting that our approach results in the best performance since
our operating point is closest to the perfect point (0,1) for (fpr, tpr)
in the ROC space.

Fig. 17 shows example foreground object detection results
produced by different approaches, while both foreground and
background objects are moving. As shown in the first row of
Fig. 17, our method achieves satisfactory detection results even
the foreground object is occluded (e.g., Fig. 17c). We note that
the methods of [11,7] did not achieve comparable performance
due to poor motion estimation. While our approach also requires
the calculation and linking of SIFT points in consecutive frames,
we provide a probabilistic and data-dependent framework, which
is able to recover the missing or unstable foreground information.

In order to provide quantitative evaluation, we consider the
accuracy of the object motion vector for comparisons. More specif-
ically, the centroid ðxt ; ytÞ of the object region at frame t was calcu-
lated according to the detected binary map. The centroid difference
is determined by the current foreground object and another one at
time t0 is (Dx;DyÞ ¼ ðxt � x0t0 ; yt � y0t0 Þ. The normalized motion vec-
tor is thus calculated based on the size of the image: ð Dx

width ;
Dy

heightÞ,
whose value is between ð0;1Þ. Finally, a stability score can be de-
fined as:

S ¼
PT

t¼1ð1� jjð Dx
width ;

Dy
heightÞjjÞ

T
; ð10Þ

where �k k is the Euclidean norm that measures the length of a vec-
tor, and T is the number of frames in a video clip. The stability
scores are evaluated in two ways: Sg with ðx0t0 ; y0t0 Þ ¼ ðxg

t; yg
tÞ (cen-

troid of the ground truth at t frame) in the (Dx;DyÞ term. This term
denotes the stability score measurement, which quantifies the dif-
ference between the centroid of the detection result to that of the
ground truth. We also consider Sa with ðx0t0 ; y0t0 Þ ¼ ðxtþ1; ytþ1Þ in
the (Dx;DyÞ term, representing the stability score measurement
from consecutive frames. Comparisons results of Sg and Sa for each
video in each class are shown in Fig. 18, and it is clear that our
method achieves the highest stability scores for both cases. Finally,



Fig. 17. Example results of foreground object detection (marked as red areas): (a) frame 1140, airplane 8, (b) frame 1009, ambulance 3, (c) frame 3296, car 4, (d) frame 236,
fire engine 7, (e) frame 555, helicopter 3, and (f) frame 252, motorbike 5. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 18. Comparisons of stability scores: Sg indicating the difference between the
detected object centroid to that of the ground truth, and Sa for the detection
stability over consecutive frames.

Table 2
Summarization and comparison of detection-based methods: Bugeau and Perez [11],
and CVEPS [7], and ours. Note that FG, BG, FGP, MS, and GC represent foreground,
background, foreground point, mean-shift, and graph-cut respectively.

Our method [11] [7]

FG/BG separation FGP probability GME + MS + GC GME
Detection accuracy High Mid Low
Reference frames Multiple Adjacent Adjacent
Complexity High Mid Low
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the summarization and comparisons of different detection-based
methods are shown in Table 2.

4. Conclusions

A novel foreground object detection method was presented in
this paper. The proposed approach aims at detecting foreground
object in a close-up scene of a video captured by a freely moving
camera. By associating the SIFT motion vectors across video
frames, we calculated the foreground object probability for the
candidate foreground keypoints, and constructed a data-driven
CFOT model for foreground object detection. Our detection frame-
work does not require user interaction or parameter tuning as
some prior work did. More importantly, we do not assume that
the motion of the foreground or background is dominant across vi-
deo frames. This is why our proposed method is able to handle
uncontrolled videos, even under low contrast and viewpoint
changing conditions. From our experiments, we verified the effec-
tiveness and robustness of our method on a variety of Web-based
videos, and we also confirmed that our method outperforms sev-
eral state-of-the-art trajectory and detection-based algorithms.
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