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Abstract: We demonstrate planar Si3N4 ring resonators with ultra-high 

quality factors (Q) of 19 million, 28 million, and 7 million at 1060 nm, 1310 

nm, and 1550 nm, respectively. By integrating the ultra-low-loss Si3N4 ring 

resonators with laterally offset planar waveguide directional couplers, 

optical add-drop and notch filters are demonstrated to have ultra-narrow 

bandwidths of 16 MHz, 38 MHz, and 300 MHz at 1060 nm, 1310 nm, and 

1550 nm, respectively. These are the highest Qs reported for ring resonators 

with planar directional couplers, and ultra-narrowband microwave photonic 

filters can be realized based on these high-Q ring resonators. 
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1. Introduction 

Ultra-high-Q optical resonators are crucial to an assortment of applications including cavity 

quantum electrodynamics [1,2], nonlinear optics [3], bio-sensing [4], telecommunications [5–

7], and microwave photonic filters [8,9]. Most ultra-high-Q resonators use tapered fiber 

coupling to a dielectric toroid or sphere. The wafer-scale production of our planar coupled 

resonators through standard processing techniques offers greater fabrication control while also 

opening up the possibility of integration. Indeed, an ideal platform for these resonators-on-a-

chip would combine ultra-high-Q with planar processing capability, lasers, photodetectors and 

other photonic components for integration, and transparency across a wide range of 

wavelengths. Integration allows for increased functionality along with lower cost, while 

transparency permits resonator operation in the wavelength regime most suitable to the 

application. 

Of the various materials available for fabricating a resonator-on-a-chip, SiO2, silicon-on-

insulator (SOI), and Si3N4 are good candidates because of their use in low-loss planar optical 

waveguides. Whispering-gallery-mode (WGM) resonators with ultra-high quality factor (Q) 

of 100 million have been demonstrated in microtoroidal structures made from thermally 

grown silica [10]. However, due to their nonplanar structure, it is difficult to integrate such 

resonators with other optical devices for complex functionality. Planar silicon microdisk 

resonators integrated with in-plane waveguides were reported to have Qs of 3 million at 1550 

nm [11]; however, the resonance is in a high-order mode, and silicon is not transparent in the 

750~1000 nm wavelength regime, which is important for some applications such as bio-

sensing due to the low optical absorption in water and the transparency of proteins in this 

wavelength range [12]. In the Si3N4 on SiO2 platform, microring resonators with integrated 

directional couplers were demonstrated to have Qs up to 3 million at 1550 nm [13], while 

microdisk resonators have Qs of 3.4 million at 652-660 nm [14]. Though transparent and 

planar, the quality factor of such Si3N4 on SiO2 resonators must be increased to meet the 

performance demands of many applications. 

In this paper, we demonstrate planar Si3N4 ring resonators with record-high Qs in the 

1060, 1310, and 1550 nm wavelength regimes. The resonators are fabricated with recently 

demonstrated ultra-low-loss high-aspect-ratio waveguide technology [15] and have integrated 

directional couplers. Additional photonic components for integration, including multi-mode 

interferometers, Mach-Zehnder interferometers, polarizers, and arrayed-waveguide gratings 

[15–18], have been demonstrated on this platform. We begin with a review of the ring 

resonator design (Section 2). We then describe the characterization method used to obtain the 

transmission spectrum of the resonators with adequate resolution (Section 3). Finally, we 

discuss the suitability of these ultra-high-Q resonators with planar directional couplers for a 

specific application, namely ultra-narrowband filters (Section 4). 

2. Design of high-Q ring resonators 

The design of high-aspect-ratio Si3N4-core and SiO2-cladding waveguides is discussed in [15]. 

A general rule to reduce the scattering loss is to expand the effective optical mode by reducing 

the core thickness and thus decrease the overlap between the mode and the core-cladding 

interface. We have demonstrated 2.9 dB/m of propagation loss for 2.8-μm-wide and 80-nm-
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thick Si3N4 waveguides at 1550 nm. Using this type of waveguide to construct ring resonators, 

ultra-high-Q can be achieved. 

Figure 1 shows the theoretical Si3N4 waveguide loss including the scattering and bending 

loss contributions for different bend radii at different wavelengths. The rms sidewall and 

surface roughness used for the calculations are 4.75 nm and 0.175 nm, while the correlation 

lengths are 50 nm and 30 nm, respectively. The surface and sidewall roughness parameters are 

measured using an atomic force microscope (AFM) and a scanning electron microscope 

(SEM), respectively. In order to realize high-Q ring resonators, the bend radii of the ring 

resonators have to be large enough to avoid the dominant bending loss. The model shows that 

the optical mode is better confined at shorter wavelengths and thus allows smaller bend radius 

without bending loss; however, the scattering loss at shorter wavelengths is higher [19]. For 

5.3-μm-wide and 50-nm-thick Si3N4 waveguides, the radii have to be larger than 7 mm, 3 mm, 

and 2 mm in 1550nm, 1310nm, and 1060nm wavelength regimes to have negligible bending 

loss, and their corresponding scattering-limited losses are 0.4 dB/m, 0.8 dB/m, and 2.1 dB/m. 

In order to reduce the size of the ring resonators at 1550 nm, 2.8-μm-wide and 80-nm-thick 

waveguides (the black line in Fig. 1) are used to provide better optical confinement, resulting 

in negligible bending loss for radii larger than 1.5 mm. The experimental data points, which 

will be described in the next section, are also indicated as circles for 5.3-μm-wide and 50-nm-

thick Si3N4 waveguides and as crosses for 2.8-μm-wide and 80-nm-thick waveguides. 
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Fig. 1. Waveguide loss for different waveguide geometries in different wavelength regimes. 

Solid lines represent theoretical loss values while the circles and crosses indicate the 

experimental data. The rms deviation of sidewall and surface roughness used for calculation are 
4.75 nm and 0.175 nm, while the correlation lengths are 50 nm and 30 nm, respectively [15]. 

3. Optical characterization of high-Q ring resonators 

3.1 Measurement setup 

The high-Q ring resonators are characterized by measuring the transmission spectra in three 

different wavelength regimes to understand the sources of loss. In order to resolve the 

transmission spectrum of such high-Q ring resonators, a low-linewidth laser source capable of 

continuous wavelength scanning and a synchronized oscilloscope are used, as shown in Fig. 2. 

A tunable laser is used as a laser source, followed by a polarization controller and a lensed 

fiber to couple the light into the waveguide. The input polarization is set at the transverse 

electric (TE) mode because the ring resonator is designed to have high polarization extinction 

ratio, and the transverse magnetic (TM) mode has much higher loss than the TE mode [17]. 

Another lensed fiber is used to collect the transmission power from the waveguide output and 
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send it to a photodetector attached to the oscilloscope. The photodetector then converts the 

transmission spectrum from the wavelength to the time domain, and the spectrum is displayed 

on the oscilloscope. By adjusting the wavelength scanning speed and oscilloscope sampling 

rate, a high-resolution spectrum can be achieved, and it is only limited by the laser linewidth. 

The tunable laser used in the 1550 nm regime is an Agilent 81600B laser module, which has a 

laser linewidth of 100 kHz. In the 1060 and 1310 nm regimes, we use Thorlabs external cavity 

tunable lasers. Because of the long external cavity, the lasers have linewidths less than 130 

kHz. 
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Fig. 2. A measurement setup for high-Q ring resonators. Different tunable lasers are used for 

measurement in the 1060 nm, 1310 nm, and 1550 nm wavelength regimes. PC: polarization 

controller; DUT: device under test. 

3.2 Characterization of ring resonators at 1060 nm, 1310 nm, and 1550 nm 

In order to find out the optimal waveguide geometry for different wavelengths, ring resonators 

with different bend radii (1 mm, 1.5 mm, 2 mm, 4 mm, and 5 mm) and Si3N4 core thicknesses 

(40 nm, 50 nm, and 80 nm) were fabricated. The ring resonators have 15-μm-thick SiO2 

cladding for 40- and 50-nm-thick Si3N4 cores, and 8-μm-thick cladding for 80-nm-thick cores 

to prevent optical leakage to the silicon substrate. Bending loss of the ring resonators is 

reduced with larger radius while the scattering loss is reduced with thinner waveguide cores. 

With measured transmission spectra of the ring resonators, waveguide losses and Qs of 

different ring resonators can be extracted by curve fitting. The intrinsic Q is obtained by 

comparing the spectra of similar resonator structures with various power coupling ratios as in 

[15]. 

Table 1 summarizes the waveguide losses and the intrinsic Qs of the different ring 

resonator designs. The waveguide width for the 40 and 50-nm-thick waveguide designs is 5.3 

μm. At 1060 nm, the optimal waveguide thickness for 5-mm-radius ring resonators is between 

40 and 50 nm where the bending loss and scattering loss are comparable. 4-mm-radius ring 

resonators have higher bend radiation and bend-mode scattering loss contributions due to the 

tighter bend. At 1310 nm, the optical mode confinement is rather poor in the 40-nm-thick ring 

resonators and thus the loss is much larger than our designed power coupling from a straight 

waveguide to the ring resonator. As a result, no resonance dip is observed in the transmission 

spectra. For 50-nm-thick ring resonators, 5-mm-radius rings show higher Q than the 4-mm-

radius rings due to smaller bend-associated losses. At 1550 nm, no transmitted power is 

observed in the 40-nm-thick waveguide due to large optical leakage to the substrate. For the 

50-nm-thick ring resonators, the loss is larger than that at shorter wavelengths because of 

larger bending loss contribution due to lower optical confinement. Figure 1 indicates that the 

radius should be larger than 7 mm to eliminate the bending loss. In order to make more 

compact high-Q ring resonators at 1550 nm, waveguides are fabricated to be 2.8 μm wide and 

80 nm thick. The increased mode confinement of these structures allows bend radii as small as 

1.5 mm with negligible bending loss, as shown in Fig. 1. 
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Table 1. Summary of Intrinsic Qs and Waveguide Losses of Different Rings 

 1550 nm 1310 nm 1060 nm 

R=5mm, t=40nm, 
w=5.3μm 

No transmitted 
power * 

High loss ** Q=18 million 

2.1 dB/m 

R=5mm, t=50nm, 

w=5.3μm 

Q=1 million Q=28 million Q=19 million 

20.8 dB/m 1.1 dB/m 2.0 dB/m 

R=4mm,t=50nm, 
w=5.3μm 

High loss ** Q=21 million Q=11 million 

1.5 dB/m 3.5 dB/m 

R=2mm,t=80nm, 

w=2.8μm 

Q=7 million Multi-mode *** Multi-mode *** 

2.9 dB/m 

*No transmitted power was observed through a straight waveguide due to large optical leakage to the 

substrate. 
**The loss is too large to be extracted by ring resonance spectra. No resonance spectra are observed. 

***The waveguide dimensions cause the waveguide to be strongly multi-mode at the given wavelength. 

4. Ultra-high Q ring resonators as ultra-narrowband filters 

These ultra-high Q ring resonators are integrated with laterally offset planar directional 

couplers to construct optical notch and add-drop filters with ultra-narrow bandwidths for 

microwave photonic filter and high-sensitivity sensor applications. As described in the 

previous section, the highest-Q ring resonators measured in the 1060 nm wavelength regime 

are 5 mm in radius and 40-50 nm in thickness. These ring resonators have Qs of 18-19 

million, the highest reported for planar ring resonators at 1060 nm. Figure 3(a) shows the 

transmission spectrum of an optical notch filter made by a coupled waveguide and ring 

resonator with a thickness of 40 nm. With a power coupling of 0.8% from the waveguide to 

the resonator, the filter shows an ultra-narrow bandwidth of 16 MHz. In order to be used as a 

biosensor, a large fraction of the 15 μm upper cladding would have to be replaced with a low-

refractive-index fluid. If such a structural modification does not greatly diminish the 

performance of these resonators, the high-Q can dramatically enhance the sensitivity of ring 

resonator-based sensors. 

In the 1310 nm wavelength regime, the dimension of the ring resonator is chosen to be 5 

mm in radius and 50 nm in thickness according to Table 1. The transmission spectrum of an 

optical notch filter made by this ring resonator is shown in Fig. 3(b). By curve-fitting the 

spectrum, the intrinsic Q of the resonator is ~28 million with corresponding propagation loss 

of 1.1 dB/m. The resonator is operated in the under-coupled regime with the power coupling 

ratio of 0.55%. As a result, the bandwidth of the filter is as narrow as 38 MHz. 

In the 1550 nm wavelength regime, the ring resonators are made up of 2.8-μm-wide and 

80-nm-thick waveguides, which have propagation loss as low as 2.9 dB/m [15]. The thicker 

waveguide core allows tighter bending to reduce the footprint of devices. Utilizing such low-

loss waveguides to make a 2-mm-radius ring resonator, we achieved an intrinsic Q of 7 

million. An optical add-drop filter is constructed with two waveguides coupled to the ring 

resonator. Figure 3(c) shows the measured transmission spectra at the through and drop ports. 

The resonator is operated in the over-coupled regime to reduce the insertion loss (1.2 dB in 

this design) at the drop port. By fitting the transmission spectra, the power coupling ratio from 

the waveguide to the ring resonator is estimated to be ~5% while the round-trip loss in the 

ring is ~1%. The resulting 3dB bandwidth of the filter is approximately 300 MHz. This 

passband can be used as a microwave photonic filter for channel selection. 
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Fig. 3. (a) Transmission spectrum of an optical notch filter at 1060 nm. The radius of the ring is 

5 mm with waveguide width of 5.3 μm and thickness of 40 nm (b) Transmission spectrum of 

an optical notch filter at 1310 nm. The radius of the ring is 5 mm with waveguide width of 5.3 
μm and thickness of 50 nm (c) Transmission spectrum of an optical add-drop filter at 1550 nm. 

The radius of the ring is 1.5 mm with waveguide width of 2.8 μm and thickness of 80 nm. 

5. Conclusions 

We have demonstrated ultra-high Q ring resonators with planar directional couplers in 

different wavelength regimes. The intrinsic Qs of the ring resonators are 19 million, 28 

million and 7 million at 1060 nm, 1310 nm, and 1550 nm, respectively. To the best of our 

knowledge, these are the highest Qs reported for planar ring resonators with laterally offset 

coupled input and output waveguides. With different integrated waveguide configurations, the 

rings can construct optical add-drop, optical bandpass, and optical notch filters. We 

demonstrated optical add-drop filters in the 1550 nm regime with a narrow bandwidth of 300 

MHz and optical notch filters in the 1310 and 1060 nm regimes with ultra-narrow bandwidths 

of 38 MHz and 16 MHz. These ultra-high-Q planar ring resonators can be integrated with 

other photonic devices for complex functionality in ultra-narrowband microwave photonic 

filters, optical signal processing, and highly sensitive biosensor applications. 
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