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a b s t r a c t

The inverse problem of identifying dynamic biological networks from their time-course response data set
is a cornerstone of systems biology. Hill and Michaelis–Menten model, which is a forward approach, pro-
vides local kinetic information. However, repeated modifications and a large amount of experimental
data are necessary for the parameter identification. S-system model, which is composed of highly nonlin-
ear differential equations, provides the direct identification of an interactive network. However, the iden-
tification of skeletal-network structure is challenging. Moreover, biological systems are always subject to
uncertainty and noise. Are there suitable candidates with the potential to deal with noise-contaminated
data sets? Fuzzy set theory is developed for handing uncertainty, imprecision and complexity in the real
world; for example, we say ‘‘driving speed is high’’ wherein speed is a fuzzy variable and high is a fuzzy
set, which uses the membership function to indicate the degree of a element belonging to the set (words
in Italics to denote fuzzy variables or fuzzy sets). Neural network possesses good robustness and learning
capability. In this study we hybrid these two together into a neural-fuzzy modeling technique. A biolog-
ical system is formulated to a multi-input-multi-output (MIMO) Takagi–Sugeno (T–S) fuzzy system,
which is composed of rule-based linear subsystems. Two kinds of smooth membership functions
(MFs), Gaussian and Bell-shaped MFs, are used. The performance of the proposed method is tested with
three biological systems.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Computational systems biology is an active research area. Var-
ious modeling techniques were proposed to analyze and identify
a broad range of biological networks such as gene regulation net-
works, metabolic pathways and signal transduction cascades. The
first motivation of biological-network modeling is to get a syn-
thetic view of biological knowledge existing in a network. The sec-
ond motivation is to achieve the prediction of the dynamic
behavior of a system. However, a biological system always con-
tains many components. It is difficult to get a mathematical model
to describe the biological system. Hill and Michaelis–Menten rate
modeling is a forward approach to provide local kinetic informa-
tion. However, repeated modifications and a large amount of
experimental data are necessary for the parameter identification,
partially for the analysis of a system with many substances or
reactions. Chou and Voit [1] proposed a systematic approach of
dynamic flux estimation to achieve the parameter and function-
form identification. S-system structure is another popular
nonlinear dynamic model. The model uniquely maps the dynamic
interaction onto its parameters and possesses good generalization
ll rights reserved.
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characteristics. Wang et al. [2] considered two extreme cases and
proposed a two-step method to determine the ranges and the
mean values of the parameters. Marino and Voit [3] wrote an algo-
rithm to gradually increase the complexity of the model. Chou
et al. [4] proposed an alternating regression method. Recently,
many researchers have adopted various stochastic-search intelli-
gent technologies, such as genetic programming [5], hybrid differ-
ential evolution [6,7], hybrid genetic algorithm and simulated
annealing [8], and a neural network with particle swarm optimiza-
tion [9]. However, as the number of system states increases the
parameter identification becomes increasing difficult and finding
a solution becomes increasingly problematic. Furthermore, the
pruning of the redundant kinetic orders to infer a suitable network
structure is a large challenge. Various penalty terms were intro-
duced [10–12]. Chou et al. [13] and Sun et al. [14] provided a com-
prehensive review of various approaches that been developed for
the identification of S-system parameters. These researchers also
indicated some important issues and suggested possible search
directions.

Fuzzy-based approaches are better candidates in dealing with
uncertainty-rich and noise-contaminated systems [7]. T–S fuzzy
systems were demonstrated to be the universal approximations
of smooth nonlinear systems, and have been applied to various
physical systems. This system, which is basically a locally
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linearized fuzzy model, describes the global behavior of a
nonlinear system by fuzzily blending the linear subsystems. Two
theoretically modeling methods (locally linear approximation
and sector-nonlinearity approaches) were proposed. However,
these two approaches are only suitable for model-based systems
(systems with mathematical models). Furthermore, if the nonlin-
ear system is too complex, then theoretically converting its
mathematical model into a T–S fuzzy system is also impractical.
In our previous studies [15,16], we proposed two neural-fuzzy
modeling techniques for model-free physical systems. In this
study, a fuzzy-based neural framework, which integrates fuzzy
reasoning with neural-network learning, is used to approximate
MIMO biological systems. Noise, uncertainty and the interactive
information are all implied in fuzzy if-then rules. The rules are in-
ferred through step-wise neural learning.

In this study, an adaptive T–S type neural-fuzzy modeling
(ATNM) network is presented in Section 2. This network possesses
both fuzzy-reasoning and neural-learning abilities. Section 3 de-
scribes the performance of ATNM in the identification of parame-
ters and structure of three biological systems. The comparison of
performance for different types of MFs and different numbers of in-
put-space partition are shown in this section. Section 4 summa-
rizes the results of our research and suggests areas for future work.

2. Adaptive T–S type neural-fuzzy modeling (ATNM)

The dynamic behavior of a physical or biological system is often
described as nonlinear differential equations:

dxi

dt
¼ fiðx; pÞ x ¼ ðx1; . . . ; xnÞ; p ¼ ðp1; . . . ;pnÞ; i ¼ 1 . . . n; ð1Þ

where the state variable xi denotes the concentration or the activity
level of the ith component, fi describes how the rate change of xi re-
lates to other components, and pi, i = 1, . . .,n are the constants
denoting kinetic orders, rate constants, pH value, temperature. . .

etc. The purpose of T–S type neural-fuzzy modeling is to map the
time-series data sets onto a network in which a T–S type fuzzy sys-
tem (composed of fuzzy rules with linear state-dependent conse-
quences) is implied. After learning, the rule-based neural fuzzy
scheme is able to simulate the dynamic behavior of the real system.
The following equation describes the lth rule (the lth subsystem,
l = 1, . . ., r) of the T–S fuzzy system:

Rule Rl : IF x1 is Al; x2 is Bl; . . . ; xn is Zl;
THEN _x1 ¼ fl1 ¼ pl11x1 þ pl12x2 þ � � � þ pl1nxn þ pl10;

. . .
_xn ¼ fln ¼ pln1x1 þ pln2x2 þ � � � þ plnnxn þ pln0;

ð2Þ
Fig. 1. The adaptive T–S type neural-
where Al,Bl, . . .,Zl (e.g., high, medium,. . .,very high) are the term sets
of the linguistic variables x1,x2, . . .,xn, respectively, and plij,
i = 1, . . .,n and j = 0,1, . . .,n are the consequence parameters. The T–
S fuzzy model is basically a locally linearized fuzzy model. The dy-
namic behavior of the whole system is obtained by fuzzily blending
the rule-based linear subsystems in Eq. (2). In other words, the dy-
namic behavior of the fuzzy system is

_XðtÞ ¼
Xr

l¼1

hlðXðtÞÞ � ðPl � XðtÞ þ Pl0Þ; ð3Þ

where the normalized firing strength hl(X(t)) is the measure of the
contribution of the lth fuzzy rule to the whole system, X = [xi],
i = 1, . . .,n is the state vector, and Pl = [plij] and Pl0 = [pli0], i = 1, . . .,n,
j = 1, . . .,n denote the consequence parameters.

The learning starts at the network (system) with given connec-
tion factors and adaptively adjusts the factors such that the
inferred system exhibits the dynamic behavior of the real system.
Values of system variables (inputs, outputs or states) are real
numbers (points in a real line, xi = 0.3) for the crisp system, but
are fuzzy sets (points in a fuzzy space, xi = medium) for the fuzzy
system. The membership function of the fuzzy set medium at point
0.3 (denoting the degree of 0.3 belonging to medium) is described
as lmedium(x = 0.3) or simply lmedium(0.3). Notice that the member-
ship function values are between 0 and 1 instead of 0 or 1. In other
words, fuzzy sets introduce vagueness by eliminating the sharp
boundary, which divides members from nonmembers in a group
[17]. For the biological system subject to noise and uncertainty
the measured values of xi cannot really reflect the true concentra-
tion. Therefore, the expression of ‘‘xi = medium’’ is much more suit-
able than that of ‘‘xi = 0.3’’.

We now explain fuzzy reasoning in brief. We regard the mea-
sured crisp data (x1, . . .,xn) = (0.05, . . .,0.91) as a FACT. We then esti-
mate the matching degree of the FACT to the lth fuzzy rule; i.e., the
matching degree of (x1, . . .,xn) = (0.05, . . .,0.91) to (Al, . . .,Zl) =
(low, . . .,very high), which is the precondition of the lth fuzzy rule.
The matching degree of the FACT to the lth rule equals 0.23 implies
that the possibility of the FACT to fire the lth rule is 23%; i.e., the
normalized firing strength hi(x(t)) = 0.23. By using the Larsen-prod-
uct implication rule [17], the contribution of the lth rule to the rate
change _XðtÞ is 0.23 ðPl � XðtÞ þ Pl0Þ; where X = (0.05, . . .,0.91)T. Final-
ly, we union the contributions from all of the rules to get total con-
centration change of the state vector X.

Fig. 1 describes a five-layer neural-fuzzy inference scheme for
realizing a two-input-two-output T–S fuzzy system, wherein x1,
x2 are the input variables and f1 ¼ _x1, f2 ¼ _x2 are the output
variables. For clarity only two fuzzy rules with two input-space
partitions are shown. The crisp data are fed into the net and are
fuzzy modeling (ATNM) scheme.
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fuzzified in Layer 1. Each node in this layer denotes a fuzzy set.
In this report we adopted Gaussian- and Bell-shaped functions
as the membership functions, and compared their performance
in identifying three biological systems. Each node in Layer 2
corresponds to a fuzzy rule. All of the Layer-2 nodes form a fuz-
zy system. The signal function wi of the node corresponds the
firing strength of the rule. In Layer 3, the signal function is nor-
malized to �wi (the normalized firing strength hi(x(t)), i = 1, . . .,r,
where r is the number of fuzzy rules). The fan-in links of the
node in Layer 2 define the precondition of the rule, and the
fan-out links of the respective node in Layer 3 define the conse-
quence of the rule. Layers 4 and 5 execute, respectively, the Lar-
sen-product implication operation and the union operation (a
simply summation operation). The input signals grow forward
to generate the output signals. Conversely, the error signals
(showing the deviation of the estimated outputs from the de-
sired outputs) go backward to adjust the parameters in the net-
work (the parameters of the fuzzy rules). The least-square
method is used to identify the consequence-parameter matrices
(Pl and Pl0). The back-propagation algorithm is used to identify
the parameters of the Gaussian or the Bell-shaped membership
functions. We now describe the connected structure of ATNM
scheme in more detail. For scheme simplification, only two of
the fuzzy rules are shown in Fig. 1.

Layer 1: The input variables (x1 and x2) are fuzzified in this layer.
Each node (Ai or Bi, i = 1,2) denotes a fuzzy set. A1 and A2 are the
term sets of x1. B1 and B2 are the term sets of x2. If we choose the
Bell-shaped distribution as the membership function, then the
output of the node ji (O1

ji ¼ ljðxiÞ) is estimated by Eq. (4). ljðxiÞ is
the membership function of the jth term set of the fuzzy
variable xi; i.e., l1ðx1Þ ¼ lA1

ðx1Þ, l2ðx1Þ ¼ lA2
ðx1Þ; l1ðx2Þ ¼

lB1
ðx2Þ;l2ðx2Þ ¼ lB2

ðx2Þ. If the Gaussian distribution is used, then
the output of the node becomes Eq. (5). The unknown parameters
(aji,bji,cji) and (rji,mji) are the premise parameters of the fuzzy rules

O1
ji ¼ ljðxiÞ ¼

1

1þ xi�cji

aji

� �2bji
: ðBell� shapedÞ ð4Þ

O1
ji ¼ ljðxiÞ ¼ exp � xi �mji

rji

� �2
( )

: ðGuassianÞ ð5Þ

Layer 2: Each node in this layer denotes a fuzzy logic rule. This
layer performs the intersection operation of the fuzzy sets Ai and
Bj; i.e., Ai\Bj. We use the simple algebraic-product operation in
Eq. (6) as the intersection operation. Notice that all of the fan-in
connection weights equal to one. The node output wl denotes the
firing strength of the fuzzy rule:

O2
l ¼ wl ¼

Yn

i¼1

ljðxiÞ; l ¼ 1; . . . ; r: ð6Þ

Layer 3: Normalization is performed in this layer. The resulting
signal function of the lth node �wl is the normalized fire strength of
the lth rule hl(x(t)):

O3
l ¼ �wl ¼

wl

Rr
i¼1wi

; l ¼ 1; . . . ; r: ð7Þ

Layer 4: This layer is the consequence layer. The consequent
parameters plji, j = 1, . . .,n, i = 0,1, . . .,n are included in node param-
eters flj, which denotes the jth consequence of the lth rule. We
adopt the Larsen-product implication operation [17] to infer the
output of the rule:

O4
lj ¼ �wlflj ¼ �wlðRn

i¼1pljixi þ plj0Þ: ð8Þ

Layer 5: In this layer, the output signal of the node corresponds
to the system output; i.e., O5

j ¼ _xj, j = 1, . . .,n. This layer performs
the integration of the fan-out streams of Layer 4. We use the sum-
mation operation for the rule-union operation ðR1 [ . . . [ RrÞ:

O5
j ¼ fj ¼

Xr

l¼1

�wlflj; j ¼ 1; . . . ;n: ð9Þ

The network architecture consists of five layers in which the un-
known parameters of the node are identified through a hybrid
algorithm. The identification of parameters includes two-phase
learning: Phase one is to identify the consequence parameters of
the fuzzy rules (plij and p0ij, i = 1, . . .,n, j = 1, . . .,n). Phase two is to
identify the parameters associated with the membership functions
(aji,bji,cji) or (rji,mji). In the case of the premise parameters fixed,
the system outputs are simply a linear combination of the
consequence parameters. We can get the optimal consequent
parameters by the least-square method: Given K pairs of input-
and-output training data ðxk; yk

dÞ; k = 1, . . .,K, where the input
xk ¼ ðxk

1; . . . ; xk
nÞ

T and the desired output yk
d ¼ ðyk

1;d; . . . ; yk
n;dÞ

T , we
have n-times-K-set linear equations in terms of the consequence
parameters. The desired outputs become

yk
j;d ¼

Xr

l¼1

�wk
l

Xn

i¼1

pljix
k
i þ plj0

 !
¼
Xr

l¼1

�wk
l

Xn

i¼0

pljix
k
i

 !

¼
Xr

l¼1

Xn

i¼0

ð �wk
l xk

i Þ � plji ð10Þ

for j = 1, . . .,n, where xk
0 ¼ 1, k = 1, . . .,K. In other words,

Yd ¼ ½Y1;d � � �Yn;d�T ¼ K�P ¼

A 0 . . . � � � 0

0 . .
. . .

. . .
. ..

.

..

. . .
.

A . .
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. . .
. . .

. . .
.

0
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2
666666664

3
777777775
�

P1
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.

Pj

..

.

Pn

2
666666664

3
777777775
;

ð11Þ

where Yj;d ¼ ½y1
j;d � � � yK

j;d�
T ¼ A � Pj; j = 1, . . .,n and

A ¼

�w1
1 �w1

1x1
1 � � � �w1

1x1
n � � �

..

.
� � �

..

.
� � �

�wK
1 �wK

1 xK
1 � � � �wK

1 xK
n � � �

� � � �w1
r �w1

r x1
1 � � � �w1

r x1
n

� � � ..
.

� � � ..
.

� � � �wK
r �wK

r xK
1 � � � �wK

r xK
n

2
666664

3
777775;

Pj ¼ p1j0 p1j1 � � � p1jn � � � � � � prj0 prj1 � � � prjn

�� T
:

ð12Þ

The sizes of the desired output vector Yd and the unknown
parameter matrix P are nK � 1 and nr(n + 1) � 1, respectively. Usu-
ally the number of input–output patterns used for training (K) is
larger than that of the unknown consequence parameters
(r(n + 1)). The optimal solution P⁄ which is obtained from mini-
mizing the square error kYd � K�Pk2 by using the pseudo-inverse
operation, is

P� ¼ ðKTKÞ�1KTYd: ð13Þ

We now proceed to the second-phase learning to adjust the
parameters of the membership functions. We estimate the net-
work output yk

j ¼
Pr

l¼1

Pn
i¼0ð�wk

l xk
i Þ � p�lji first, and then the error

ek
j ¼ yk

j;d � yk
j ; j = 1, . . .,n, k = 1, . . .,K. The error signals are fed back-

ward to update the premise parameters by using the chain rule.
The goal of the learning in phase two is to minimize the mean-
square error (MSE),

E ¼ 1
2nK

Xn

j¼1

XK

k¼1

ðek
j Þ

2 ¼ 1
2nK

Xn

j¼1

m
K

k¼1
ðyk

j;d � yk
j Þ

2
: ð14Þ



Fig. 2. The small-scale genetic network [18].

Table 1
Comparison for the small-scale gene network.

Case MF No. of input-space partitions No. of premise-para./rule Rule No. Total of premise para. MSE (training) MSE (testing)

B_2 Bell 2 35 25 7776 0.014590 0.204038
B_3 Bell 3 35 35 59049 0.009538 0.330193
G_2 Gaussian 2 25 25 1024 0.016477 0.245342
G_3 Gaussian 3 25 35 7776 0.006545 0.232094
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Let a denote one of the premise parameters (aji,bji,cji) or
(rji,mji). By using the gradient-descent method we have

Da ¼ �g � @E
@a ;

aðt þ 1Þ ¼ aðtÞ þ gð� @E
@aÞ;

ð15Þ

where g is a learning rate. By using the chain rule,
@E=@a ¼ @E=@að�Þ � @að�Þ=@a; we get

Da ¼ 1
nK

XK

k¼1

ðyk
j;d � yk

j Þ
@yk

j

@a
¼ 1

nK

XK

k¼1

ðyk
j;d � yk

j Þ
Xn

i¼1

p�‘jix
k
i
@ �x‘

@a
1.3

1.4

1.5

at
io
n

@ �xl

@a
¼ @w‘

@a
1Xr

‘¼1

w‘

0
BBBB@

1
CCCCA�

w‘

ð
Xr

‘¼1

w‘Þ2
�
@ð
Xr

‘¼1

w‘Þ

@a
ð16Þ

If wl ¼ lA1
ðx1Þ � lB2

ðx2Þ and a is one of the unknown parameters
of the membership function lA1

ðx1Þ (a bell-shape function denoted
as bellða11; b11; c11Þ), then

@w‘

@a ¼ lB2
ðx2Þ �

@lA1 ðx1 Þ
@a

@
Pr

‘¼1
w‘

� 	
@a ¼ ½lB1ðx�2Þ þ lB2ðx2Þ�

@lA1 ðx1 Þ
@a

@lA1ðx1Þ
@a11

¼ 2a�2b�1
11

11 � b11ðx1 � c11Þ2b11 ð1þ j x1�c11
a11
j2b11 Þ�2

@lA1 ðx1 Þ
@b11

¼ 2 � j x1�c11
a11
j2b11 � ‘nj x1�c11

a11
j � ð1þ j x1�c11

a11
j2b11 Þ�2

@lA1 ðx1Þ
@c11

¼ 2a�2b11
11 � b11ðx1 � c11Þ2b�1

11 ð1þ j x1�c11
a11
j2b11 Þ�2

:

ð17Þ
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Fig. 3. The dynamic behavior of the small-scale gene network for Case B_2 (inputs
with two fuzzy partitions and bell-shaped MFs). The solid curves are the profiles of
the data generated from S-system in [18]. ‘‘o’’ denotes the estimated data.
3. Dry-lab experiments

We used the adaptive neural-fuzzy-modeling technique to
identify three biological systems. The performance of the member-
ship functions (bell-shaped and Gaussian) with the different num-
bers of input-space partition is discussed. The true time-series data
sets were generated by solving the S-systems in [18–20]. The
ode45 solver in Matlab toolbox was used to get the time-series
data for training and testing. The eight-set training data sets were
generated from eight different initial conditions, and the testing
data was generated from another initial condition. The simulation
time was set from t = 0 s to t = 5 s or to t = 8 s.
3.1. A small-scale genetic network

The used small-scale genetic network is shown in Fig. 2 [18].
This is a typical gene-interaction system, which consists of two
genes (genes 1 and 4). X1 is the mRNA generated from gene 1. X2

is the respective enzyme protein. X3 (an inducer protein) is cata-
lyzed by X2. X4 is another mRNA, which is generated from gene
4. X5 is the respective regulator protein. Both positive- and nega-
tive-feedback signals exist in the mRNA production of genes 1
and 4.

We considered four different cases, as shown in Table 1. Case
B_2 is the case of the bell-shaped membership function with two
input-space partitions. For this five-state (five-gene) system, the
number of premise parameter for each rule is 35 and the number
of fuzzy rules is 25. Therefore, the total number of premise param-
eters to be identified (denoted by ;) is 35 � 25 for Case B_2, 35 � 35

for Case B_3, 25 � 25 for Case G_2, and 25 � 35 for Case G_3; i.e.,
;ðB 3Þ > ;ðB 2Þ ¼ ;ðG 3Þ > ;ðG 2Þ The mean-square error
EðG 3Þ < EðB 3Þ < EðB 2Þ < EðG 2Þ in the training phase, but
EðB 2Þ < EðG 3Þ < EðG 2Þ < EðB 3Þ in the testing phase. Although
Case B_3 uses the most number of premise parameters
ð;ðB 3Þ ¼ 59;049Þ and shows good learning performance in the



Table 2
The term sets and the estimated membership functions for Case B_2.

Term
set

Bell-shaped MFs

A1 lA1
(x1) = bell(a11,b11,c11) = bell

(0.3097191084,1.9819508769, 0.0967951710)
A2 lA2

(x1) = bell(a21,b21,c21) = bell
(0.0513495425, 2.0333314758,0.6710566149)

B1 lB1
(x2) = bell(a12,b12,c12) = bell

(0.2029263954, 1.9739584207,0.0802034926)
B2 lB1

(x2) = bell(a22,b22,c22) = bell(1.7014551266,1.9729088617,
3.2196524445)

C1 lC1
(x3) = bell(a13,b13,c13) = bell

(0.2107807831,1.9876189708, 0.1140792596)
C2 lC1

(x3) = bell(a23,b23,c23) = bell(0.1755185005,2.0282764361,
0.6715300071)

D1 lD1
(x4) = bell(a14,b14,c14) = bell

(0.2664561431,1.9752868187,0.1185672835)
D2 lD1

(x4) = bell(a24,b24,c24) = bell
(0.1442955986,2.0416071274,0.7004080389)

E1 lE1
(x5) = bell(a15,b15,c15) = bell

(0.2073412894, 1.9222169628,0.0917616417)
E2 lE1

(x5) = bell(a25,b25,c25) = bell
(0.1912147910, 2.0955691554,0.5671200835)

Fig. 4. The branch pathway [19].
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training phase, it performs badly in the testing phase. Therefore, in
the limited computation time the number of parameters to be
identified should not be too large. Below, we compare the
Table 3
The estimated fuzzy rules for Case B_2 (32 rules).

Rule # Premise condition Consequence

1 If (x1 is A1) _x1 = (�1.805402)x1 + (0.374
and (x2 is B1) _x2 = (�6.585688)x1 + (�5.24
and (x3 is C1) _x3 = (0.978450)x1 + (3.7761
and (x4 is D1) _x4 = (�6.596762)x1 + (�2.54
and (x5 is E1) _x5 = (�17.650697)x1 + (�6.4

17 If (x1 is A2) _x1 = (31.792603)x1 + (4.996
and (x2 is B1) _x2 = (23.093542)x1 + (2.808
and (x3 is C1) _x3 = (�0.326283)x1 + (�0.13
and (x4 is D1) _x4 = (�1.917613)x1 + (0.040
and (x5 is E1) _x5 = (0.454389)x1 + (�1.915

32 If (x1 is A2) _x1 = (�13.394363)x1 + (�15
and (x2 is B2) _x2 = (9.140159)x1 + (18.039
and (x3 is C2) _x3 = (12.172604)x1 + (�18.9
and (x4 is D2) _x4 = (�15.099643)x1 + (27.8
and (x5 is E2) _x5 = (7.316944)x1 + (�4.871

Table 4
Comparison for the branch-pathway system.

Case MF No. of input-space
partitions

No. of premise-para./
rule

B_2 Bell 2 34

G_2 Gauss 2 24

G_3 Gauss 3 24
performance of Cases G_3, B_2 and B_2 only. As comparing the
cases of the same number of unknown parameters (Cases B_2
and G_3), we observe that even if Case B_2 performs worse than
Case G_3 in the training phase, it shows better in the testing phase.
For the same number of input partitions, Case B_2 performs better
than Case G_2 in both training and testing phases. In both training
and testing phases Case G_3 performs better than Case G_2. Fig. 3
shows the dynamic behavior of Case B_2, where the circle points
are the estimated data and the solid curves are the profiles of the
data generated from the S-system in [18]. Table 2 shows the esti-
mated membership functions. Due to space limitation Table 3 only
shows three of the inferred thirty-two fuzzy rules. The complete
results of the rules and the simulation results of Cases B_3, G_2
and G_3 are shown in supplement file.

The inferred fuzzy system is composed of thirty-two fuzzy
rules. The 17-th rule in Table 3 denotes the seventeen fuzzy sub-
system: If x1 is A2, x2 is B1, x3 is C1, x4 is D1 and x5 is E1, then

_X¼

31:792603 4:996830 6:172297 6:623522 8:456148
23:093542 2:808661 0:868960 0:680079 20:396518
�0:326283 �0:134161 �1:665026 �1:056774 0:995313
�1:917613 0:040022 �1:403534 �1:038280 �1:299481
0:454389 �1:915773 0:849511 �3:283238 1:363533

2
6666664

3
7777775
�X

þ

45:632534
35:545749
�1:200182
�0:722646
1:760645

2
6666664

3
7777775
: ð18Þ
3.2. A branch-pathway system

We now consider the branch pathway in Fig. 4, wherein one
constant source X0 and two regulatory signals are included. The
production rate of X1 depends on the concentration of the source
variable X0. The rate is inhibited by X3, which is generated from
X1 through the intermediate X2. X1 generates X4 which, in turn,
501)x2 + (�0.571667)x3 + (�2.390966)x4 + (1.597605)x5 + (1.237362)
4748)x2 + (�3.067193)x3 + (�6.027011)x4 + (3.123262)x5 + (8.742235)

51)x2 + (3.343020)x3 + (10.201972)x4 + (5.148152)x5 + (16.074961)
8520)x2 + (�2.916527)x3 + (�5.073449)x4 + (�3.200010)x5 + (�1.444041)
19498)x2 + (16.186847)x3 + (�23.540106)x4 + (�3.710285)x5 + (35.275563)

830)x2 + (6.172297)x3 + (6.623522)x4 + (8.456148)x5 + (45.632534)
661)x2 + (0.868960)x3 + (0.680079)x4 + (20.396518)x5 + (35.545749)
4161)x2 + (�1.665026)x3 + (�1.056774)x4 + (0.995313)x5 + (�1.200182)
022)x2 + (�1.403534)x3 + (�1.038280)x4 + (�1.299481)x5 + (�0.722646)
773)x2 + (0.849511)x3 + (�3.283238)x4 + (1.363533)x5 + (1.760645)

.489171)x2 + (�14.522549)x3 + (�10.179259)x4 + (�3.172033)x5 + (�12.303465)
619)x2 + (15.730383)x3 + (11.776771)x4 + (�39.428628)x5 + (10.841829)
11194)x2 + (�4.967920)x3 + (30.727985)x4 + (�9.948022)x5 + (6.052937)
07653)x2 + (14.595713)x3 + (6.408267)x4 + (�35.690673)x5 + (�5.714309)
945)x2 + (�5.849911)x3 + (�14.834883)x4 + (�7.203929)x5 + (37.116727)

Rule
No.

Total of premise
para.

MSE
(training)

MSE
(testing)

24 1296 0.001674 0.642328
24 256 0.001378 0.321211
34 1296 0.000876 0.483230
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Fig. 5. The dynamic behavior of the branch pathway system for Case G_2 (inputs
with two fuzzy partitions and Gaussian MFs). The solid curves are the profiles of the
data generated from the S-system in [18]. ‘‘o’’ denotes the estimated data.

Table 5
The term sets and the estimated membership functions for Case G_2.

Term set Gaussian MFs

A1 lA1
(x1) = N(m11,r11) = N(0.4484497445,�0.3698028420)

A2 lA2
(x1) = N(m21,r21) = N (0.3358241071, 1.1569335970)

B1 lB1
(x2) = N(m12,r12) = N (1.3556163212,0.4388491336)

B2 lB2
(x2) = N(m22,r22) = N (1.1968851967,3.5675579132)

C1 lC1
(x3) = N(m13,r13) = N (0.8472455821,0.3862060982)

C2 lC2
(x3) = N(m23,r23) = N (1.0329170905,2.6702505223)

D1 lD1
(x4) = N(m14,r14) = N (0.7192191057,�0.9281075647)

D2 lD2
(x4) = N(m24,r24) = N (1.3702190503,2.4501362904)

Fig. 6. The cascade network [20].
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inhibits the degradation of X3. We shall further discuss the perfor-
mance of Cases B_2, G_2 and G_3 in this system.

Table 4 shows the number of input partition, premise parame-
ters and fuzzy rules. The total number of premise parameters to be
identified is 34 � 24 for Cases B_2 and G_3, and 24 � 24 for Case
G_2. In the training phase the mean-square error
EðG 3Þ < EðG 2Þ < EðB 2Þ, but EðG 2Þ < EðG 3Þ < EðB 2Þ in the test-
ing phase. In this system Case G_3 performs always better than
Case B_2, and Case G_2 performs better than Case B_2. These re-
sults are different from those in last subsection. We also observe
that even using only 256 premise parameters, the performance of
Case G_2 is still good. Fig. 5 shows the dynamic behavior of Case
G_2, where the solid curves are the profiles of the data generated
from the S-system in [19]. The circle points are the estimated data.
Table 5 shows the estimated membership functions. Due to space
limitation Table 6 only shows three of the sixteen fuzzy rules.
Fig. 5 only shows the simulation results of Case G-2. The complete
Table 6
The estimated fuzzy rules for Case G_2 (16 rules).

Rules # Premise condition Consequence

1 If (x1 is A1) _x1

and (x2 is B1) _x2

and (x3 is C1) _x3

and (x4 is D1) _x4

11 If (x1 is A2) _x1

and (x2 is B1) _x2

and (x3 is C2) _x3

and (x4 is D1) _x4

16 If (x1 is A2) _x1

and (x2 is B2) _x2

and (x3 is C2) _x3

and (x4 is D2) _x4
results of the rules and the simulation results of Cases B_2 and G_3
are shown in supplement file.

3.3. A cascade-network system

We further consider a small system in Fig. 6, which is a cascade
network with three steps and two feedback signals. The dependent
variable X1 is generated from the precursors X4, which is an inde-
pendent variable. X1 inhibits the production of X2, which, in turn,
inhibits the production of X3. Both X2 and X3 inhibit the production
of X1.

From the results in the last subsection, we observe that the per-
formance of Case G_2 is the best in the testing phase. In this case
only 256 premise parameters to be identified. To further realize
the performance of these two kinds of membership functions, we
now consider the cases with the premise-parameter numbers
higher than 200 but lower than 1000; i.e., Cases B_2, G_3, B_3
and G_4, where Cases B_2 and G_3 have the same number of the
premise parameters (; ¼ 216).

The mean-square error EðG 3Þ < EðG 4Þ < EðB 3Þ < EðB 2Þ in the
training phase and EðB 3Þ < EðG 4Þ < EðG 3Þ < EðB 2Þ in the testing
phase, as shown in Table 7. In both training and testing phases,
Case G_3 performs better than Case B_2, and Case B_3 better than
Case B_2. Fig. 7 shows the dynamic behavior of Case B_3, where the
solid curves are the profiles of the data generated from the S-sys-
tem in [20]. The circle points are the estimated data. Table 8 shows
the estimated membership functions. Due to space limitation Table 9
only shows three of the estimated twenty-seven fuzzy rules. The
complete results of the rules and the simulation results of Cases
B_2, G_3 and G_4 are shown in supplement file.

3.4. Robustness and discussion

To realize the influence of the membership functions and the
premise-parameter numbers to the accuracy, we first consider a
five-state (the small-gene network), then a four-state (the branch
pathway) and finally a three-state (the cascade pathway) systems.
= (0.872838)x1 + (1.370118)x2 + (2.463601)x3 + (�4.308165)x4 + (0.813599)
= (7.058914)x1 + (�1.040160)x2 + (2.732890)x3 + (3.790796)x4 + (�3.882646)
= (�1.593277)x1 + (�0.497749)x2 + (�2.045406)x3 + (1.450548)x4 + (4.787881)
= (�12.142588)x1 + (�0.035636)x2 + (1.851351)x3 + (�0.858458)x4 + (1.450552)

= (0.037176)x1 + (2.080029)x2 + (�1.772855)x3 + (0.119057)x4 + (�0.793813)
= (0.423635)x1 + (1.783810)x2 + (�2.130905)x3 + (�0.077072)x4 + (�1.377067)
= (�0.150248)x1 + (2.207348)x2 + (�0.023670)x3 + (3.259519)x4 + (�0.417050)
= (1.898811)x1 + (2.039294)x2 + (�1.889381)x3 + (�0.472064)x4 + (�4.762252)

= (0.796587)x1 + (0.197774)x2 + (�3.522612)x3 + (�7.957953)x4 + (4.309952)
= (0.073142)x1 + (�0.198299)x2 + (1.059254)x3 + (�5.341454)x4 + (1.519781)
= (2.458432)x1 + (0.882399)x2 + (�1.382544)x3 + (�9.020635)x4 + (�0.002416)
= (�0.138391)x1 + (�0.779898)x2 + (0.582258)x3 + (�3.785568)x4 + (2.429161)



Table 7
Comparison for the cascade-network system.

Case MF No. of input-space partitions No. of premise para./rule Rule No. Total of premise para. MSE (training) MSE (testing)

B_2 Bell-shaped 2 33 23 216 0.127334 0.094908
B_3 Bell-shaped 3 33 33 729 0.000607 0.030100
G_3 Gaussian 3 23 33 216 0.000467 0.045322
G_4 Gaussian 4 23 43 512 0.000587 0.032074
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Fig. 7. The dynamic behavior of the cascade-network system for Case B_3 (inputs
with three fuzzy partitions and Gaussian MFs). The solid curves are the profiles of
the data generated from S-system in [18]. ‘‘o’’ denotes the estimated data.

Table 8
The term sets and the estimated membership functions for Case B_3.

Term set Bell-shaped MFs

A1 lA1
(x1) = bell(a11,b11,c11)

= bell(0.6496206720,2.0631628436,0.0328476062)
A2 lA2

(x1) = bell(a21,b21,c21)
= bell (0.7636297791,2.0618033038,1.8481211554)

A3 lA3
(x1) = bell(a31,b31,c31)

= bell (0.8757370711,2.0027074037,3.6194493740)
B1 lB1

(x2) = bell(a12,b12,c12)
= bell (1.2405200557,1.9630070208,0.0821521074)

B2 lB2
(x2) = bell(a22,b22,c22)

= bell (1.4040693335,2.0220579489,2.6854316838)
B3 lB3

(x2) = bell(a32,b32,c32)
= bell (1.3399644665,1.9838826452,5.3884285322)

C1 lC1
(x3) = bell(a13,b13,c13)

= bell (1.0132736653,1.7070975995,�0.1696217798)
C2 lC2

(x3) = bell(a23,b23,c23)
= bell (1.0318122863,2.2118054698,1.3334398913)

C3 lC3
(x3) = bell(a33,b33,c33)

= bel1(0.8725660382,2.0778530171,2.7477785579)
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Fig. 8. Robustness examination for the identification of the small-scale genetic
network (Case G_3). The dot points are the data subject to 10% random noise, the
solid curves are the estimated profiles, and the circle points are the noise-free
data.
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The used premise-parameter numbers are, respectively,
(1024,7776,7776,59,049) for cases (G_2, G_3, B_2, B_3) in the
five-state system, (256, 1296, 1296) for cases (G_2, G_3, B_2) in
the four-state system, and (216,216,512,729) for cases (G_3, B_2,
G_4, B_3) in the three-state system. Cases G-3 and B-2 have the
same number of the premise parameters. From the simulation re-
sults we observe three phenomena: (1) Except the five-state sys-
tem, the performance of Case G_3 is always better than that of
Case B_2 in both training and testing phases. In the five-state sys-
tem the number of fuzzy rules and consequence parameters for
Case G_3 is up to 243 and 7290, respectively. Therefore, the influ-
ence of consequence-parameter numbers to the accuracy should
be considered for a fair comparison. In other words, the compari-
son of Cases B_2 and G_3 of Table 1 in this five-state system is
not suitable. (2) Case B_2 performs better than G_2 in the five-state
system, but worse in the four-state system. Therefore, for the same
number of input-space partitions the Bell-type MFs, even with
more parameters, does not always perform better than the Gauss-
ian MFs. (3) Increasing the number of input-space partitions can-
not improve the performance. In the four-state system E(G_3) is
not always smaller than E(G_2). In the three-state system E(G_4)
is not smaller than E(G_3). Based on these three phenomena and
considering various limitations (computation time, rule num-
bers. . . etc.), Case G-3 is a good choice for neural-fuzzy modeling
of biological systems.

We further discuss the scalability of the proposed method (the
ability of ANTM when applied to a large situation). If there are a
large number of data sets, then we can adopt pattern update to re-
lease the burden of the computation. The CPU time depends on the
dimension of the system and the partition of the input space: The
larger the dimension or the finer the partition, the more the CPU
time is. When the partition is two, or the system dimension is
two (except Case G-4), CPU time is less than thirty minutes. For
other situations CPU time is around several hours. For an n-dimen-
sional system with m output variables, the number of input vari-
ables is n. If we divided the input space into three, then the
number of fuzzy rules to be identified is 3n. In other words, the
number of premise parameters to be identified is 3n � 2n, and that
of the consequence parameters is n(n + 1). The latter issue is easy
to be solved. As for the former issue, we should develop self-orga-
nization techniques to reduce the number of fuzzy rules. We also
simulate for the tendency of the small genetic system to be subject
to 10% external noise, the results of which are shown in Fig. 8 for
Cases G_3 and in supplement file for Case B_3. We observe that
ATNM is robust to the external noise, even testing at 20% beyond
a training range.
4. Conclusion

In this study we present an adaptive neural-fuzzy modeling
technique to identify biological systems. The proposed approach



Table 9
The estimated fuzzy rules for Case B_3 (27 rules).

Rule # Premise condition Consequence

1 If (x1 is A1) and (x2 is B1) and (x3 is C1) _x1 = (3.675062)x1 + (�1.876954)x2 + (5.122481)x3 + (0.543429)
_x2 = (�6.953465)x1 + (�1.118006)x2 + (0.204854)x3 + (4.621695)
_x3 = (�3.904580)x1 + (0.097342)x2 + (2.374119)x3 + (�0.738029)

19 If (x1 is A3) and (x2 is B1) and (x3 is C1) _x1 = (5.426150)x1 + (1.522649)x2 + (�4.016111)x3 + (�4.103842)
_x2 = (�1.844097)x1 + (1.907740)x2 + (�3.749317)x3 + (�1.271477)
_x3 = (�1.875846)x1 + (3.604842)x2 + (�3.167104)x3 + (�2.983358)

27 If (x1 is A3) and (x2 is B3) and (x3 is C3) _x1 = (�0.040836)x1 + (�0.047499)x2 + (�0.014949)x3 + (�0.038240)
_x2 = (0.004175)x1 + (0.031465)x2 + (0.035390)x3 + (0.007242)
_x3 = (�0.000150)x1 + (0.007043)x2 + (�0.007488)x3 + (0.001523)
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maps a biological network onto a fuzzy system in which the rela-
tion of variables is included in the fuzzy rules. As the time-series
data are fed into the net, the parameter values of the fuzzy rules
are updated through the hybrid learning algorithm. Our approach
is tested with three biological systems. The simulation results
show the inferred fuzzy models effectively simulate the dynamic
behavior of these systems. However, when dealing with a large
system too many fuzzy rules are needed such that the implemen-
tation is limited. In the future we shall develop self-organizing
techniques to reduce the number of fuzzy rules while keeping
the high accuracy. Self-organizing approaches can achieve not only
the parameter identification but also the structure identification of
a T–S fuzzy system. Even if the proposed technique is robust to
external noise it is still not able to analyze microarray data because
the noise contamination in these data sets may be as high as fifty
percent. In the future we shall develop new fuzzy estimators (fuzzy
filters) for data that are seriously contaminated by white and col-
ored noise, and for systems with bias and uncertainty.
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