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Abstract 

We present a linear-time algorithm for the path-partition problem in block graphs. 
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1. Introduction 

A path partition of a graph G is a collection of vertex-disjoint paths that cover all vertices of the graph. 
The path-partition problem is to find the path-partition number p(G): the minimum size of a path partition 
of G. Note that G has a Hamiltonian path iff p(G) = 1. Since the Hamiltonian path problem is NP-complete 
for planar graphs, bipartite graphs, and chordal graphs (see [ 61)) so is the path-partition problem. Bonucelli 
and Bovet [ 41 and Arikati and Pandu Rangan [ 21 gave linear-time algorithms for the path-partition problem 
in interval graphs, Skupien [ 81 gave a polynomial-time algorithm for forests, and Chang and Kuo [ 31 gave a 
linear-time algorithm for cographs, and Srikant et al. [9] gave linear-time algorithms for bipartite permutation 
graphs and block graphs. 

Srikant et al. [9] did not prove the correctness of their algorithm for block graphs. In fact, as discussed in 
Section 4, it does not work for all block graphs. The purpose of this paper is to give a linear-time algorithm for 
the path-partition problem for all block graphs and prove its correctness. For technical reasons, we also consider 
the following variant problem, which is the path-partition problem with a side condition. For a fixed vertex u 
in G, a v-path-partition of G is a path partition in which v is an end-vertex of a path in the partition. The 
u-path-partition problem is to find the u-path-partition number pU (G) : the minimum size of a u-path-partition 
of G. 

We now review block graphs. A vertex x is a cut-vertex if deleting x and all edges incident to it increases 
the number of connected components. A block is a maximal connected subgraph without a cut-vertex. The 
intersection of two distinct blocks contains at most one vertex, and a vertex is a cut-vertex iff it is the 
intersection of two or more blocks. Consequently, a graph with one or more cut-vertices has at least two blocks. 
A block graph is a graph whose blocks are complete graphs. 
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Suppose Gt , G2, . . . , G, are disjoint graphs and Ui E V( Gi) for 1 < i 6 t. The composition of Gt , G2, . . . , G, 
is the graph G = (YE) obtained from the union of these graphs by making {ut , ~2,. . . , vt} a clique, i.e. 

V = u V(Gi) and E = ( U E(Gi)) U {uiuj ) 1 < i < j < t}. 

l<i<t 1 (i<r 

On the other hand, suppose B is a block of t vertices in a connected block graph G. Deleting all edges in 
B results in t connected block graphs whose composition is G. Repeatedly applying this inverse operation of 
composition to a connected block graph give trivial graphs. In other words, a connected block graph can be 
obtained from trivial graphs by a series of compositions. 

2. Path partition in block graphs 

We establish some basic theorems to be used later. Suppose P is a path partition of graph G. For any induced 
subgraph H of G, PH denotes the path partition of H resulting from P when each vertex in G - H is deleted 
from the path containing it in P. 

Lemma 1. The following relations hold. 

(4 p(G - u) + 1 b p”(G). 
(b) p,(G) >p(G). 

(c) p(G - 0) + 1 b p,(G) 2 p(G - u). 

proof. p ( G - U) + 1 3 p”(G) , since a path partition of G - u together with the path u forms a u-path-partition 
of G. pu (G) 2 p(G) , since a u-path-partition is a path partition. pu (G) > p (G - v) , since the deletion of u 
from a path of a u-path-partition results in a path partition of G - U. 0 

Lemma 2. p(G) > p(G - u) ifsp(G - v) + 1 =p,(G) =p(G). 

Proof. The lemma follows immediately from (a) and (b) of Lemma 1. •i 

Suppose Gt , G2, . . . , G, are disjoint graphs and Ui E V( Gi) for 1 < i < t. Define 

I={il 1 <i< t andp(Gi-ui) +l=p,(Gi) =p(Gi)}, 

J = {i 1 1 6 i 6 t and p(Gi - Ui) =pu,(Gi) =p(Gi)}. 

By Lemma l(c), 

ZUJ={i(l<i<tandp,,,(Gi)=p(Gi)}. 

Theorem 3. If G is the composition of G1 , G2,. . . , Gt, then 

ifI#@andJ=@, 

otherwise. 

Proof. For each 1 < i < t, let Pi be an optimal path partition of Gi. For i E Z (respectively, i E J), 

we may assume that Ui is a path in Pi (respectively, there is a path qi with an end-vertex ui in Pi). For 
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the case of Z + 0 and J = 0, P = (lJIGiGtS) - <U,,,{u~}> U {q} is a path partition of G, where q is 

the path formed by all vertices ui with i E I. Hence p(G) < xi=, p(Gi) - )I[ + 1. For the other cases, 

p = (tJl<i<rPi) - (U&ui}) - (UiEJ(4i)) u {rl~rZ~~~~~r~~J~/2~} is a path partition of G, where each ri 
except ri is the catenation of two qi’s and 11 is formed by the remaining one or two qi’s together with all Ui’s 
with i E I. Hence 

P(G) G kP(Gi) - III - IJI + [IJ1/21 = &p(Gi) - 11) - l)Jl/2J. 
i=l i=I 

On the other hand, suppose P is an optimal path partition of G. A path in P is called mixed if it contains 
vertices in at least two different Gi’s. We may assume that P is chosen to contain the fewest vertices in all 
mixed paths. Note that any mixed path q is of the form q’q”q”‘, where q’ or q”’ is 0 or a nontrivial path in 
some Gi with Ui as an end vertex and q” is a sequence of some Ui’s. It follows that the deletion of any vertex 
x in q” is still a path, which we denote by q - x. Let 

I’ = {i ) Ui is the only vertex of Gi that is in some mixed path q }, 

J’ = {i 1 Gi contains a nonempty q[ or q[11 of a mixed path qi }. 

Note that I’ n J’ = 8. We claim that I’ & Z and J’ & Z U J. 

Suppose i E I’ - 1. Let Ui be the only vertex of Gi that is in a mixed path q. Assume Pi is an optimal path 
partition of Gi. Consider the path partition P’ = P - PG,-~, - {q} U Pi U {q - Ui}. Then 

IP’l = IPI - IPc,-uiI + IPi1 G lpi 

U implies 

IFI 

IpG,I + c IPG,-~:I + c IPG,-v(~;,I + m 
iftl’UJ’ iEI’ GJ’ 

2 iezJ P(Gi) + CP(Gi - ui> + C(pu(G,) - 1) + m 
I %I’ iEJ’ 

= Cp(Gi) - 11'1 - IJ’I + m. 
i=l 

Note that the last equality follows from p(Gi - Ui) + 1 = p(Gi) for i E I’ c Z and p”(Gi) = p(Gi) for 

iE J’CZUJ.ForthecaseofZ# 0andJ=0,Z’UJ’~Z.Ifm=O,thenZ’=J’=Q),so-jZ’l-IJ’I+m=O3 

-1Z[+ 1. If m 3 1, then -11'1 - IJ’I fm 3 -lZl+ 1. Hence p(G) > Cy!, p(Gi) - II) + 1. For the other cases, 
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since each mixed path contains vertices in at most two Gi’s with i E J’, -(I’1 - 1 .I’\ + m 2 -11’1 - 11 J/1/2] > 
-11’1 - IJ’ n II - [IJ’ I-? 4/2] > -III - [I.4/2]. H ence P(G) Z Xi=, p(Gi) - IZI - LlZl/2J. 0 

An argument similar to that used above gives the solution to pu (G) for v = v,. For this purpose, use 

I’ = Z II {i I i # t} and J*=Jn{ili # t}. 

Theorem 4. Zf G is the composition of GI , G2, . ..,Gtandv=v,andG’isthecompositionofG~,G2,...,Gr_~, 
then 

I p(G’) + P,(G,) ifs, =p(Gt -v,), 

p,(G) = I ‘-’ Cp(Gi) +~u,(Gr) - II*1 - [IJ*l/21 ifp,(Gr) > p(Gr -v,>. 
i=l 

Proof. Suppose P is an optimal v-path-partition of G in which q is a path ending at v. 
For the case pu,(G,) = p(G, - vl), we may assume that q is in G, and hence p,(G) = p(G’) +p,(G,). 

Otherwise, suppose q is not in Gt, i.e. q intersects G,, only at 0,. Let Pl be an optimal v,-path-partition of Gr. 
Then P’ = P - {q} - PC,_“, U {q - vt} U P, is another v,-path-partition with 

Ip’l = IpI - /PC,-o,\ + lptl < IpI -p(Gr - ut) +p,(G,) = IpI. 

So P’ is another optimal u-path-partition in which the only path ending at v, is in G,. 
For the case po, (G,) > p(G, - v,), we may assume that q intersects G,,, only at u,. Otherwise, PG, is a 

q-path-partition of Gt. Then we can replace PG, by vt together with an optimal partition of G, - U, to obtain 
an optimal v,-path-partition in which q intersects G,, only at vf. So p,,(G) = p,(G*) +p(G, - v,), where 

G* = G - (G, - v,). Let G** be the graph obtained from G* by adding a new vertex U’ adjacent to u only. Then 
p,(G*) = pvf (G**) = p(G**), since a v-path-partition of G* corresponds to a v’-path-partition of G** and a 
path partition of G** is a u’-path-partition of G**. However, G** is the composition of Gt , G2, . . . , G,_l , K2. 
So we may apply Theorem 3 to G** by considering I* to be Z and J* U {t} to be J. Note that .Z* U {t} # 8 
gives 

t-1 t-1 

p(G**) = 1 + Cp(Gi) - lZ*l - [(lJ*l + 1)/2J = Cp(Gi) - [Z*l - [IJ*1/21 + 1. 
i=l i=l 

Also, by Lemma 1, p (G, - v,) + 1 = pu (G,) . Hence the theorem holds. 0 

Theorem 5. Zf G is the composition of G,, G2,. . . , G, and v = v, and G’ is the composition of G1, G2, . . . , G,_l , 

thenp(G-v)=p(G’)+p(Gt-vr). 

Proof. The theorem follows from the fact that G - v is the disjoint union of G’ and Gt - vt. 0 

3. Algorithm 

We are ready to give a linear-time algorithm for the path-partition problem in block graphs. We may consider 
only connected block graphs G. Our algorithm iteratively processes a block B = {VI, ~2, . . . , vt} with exactly one 
cut-vertex vt of the current graph G’. Let Gi - Ui be the graph that has been deleted from the original graph G so 
far and let Gi connect to G only at vi. Then the composition of Gt , G2, . . . , G, connects to G’ - { ~1, u:! . . . , v,-1) 
only at uI. Theorems 3-5 can be used to compute p and pu for this composition. After computing p and pu, 
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Algorithm PPN 

Find the path-partition number p(C) of a connected block graph G: 

for all ui E V(G): pl(v;) := 1; /* for p(Gi) */ 

PI(Q) := 1; /* for p”,(Gi) */ 

p3(Ui) := 0; /* for p(Gi - ui) */ 
while G contains more than one vertex do 

choose a block B = {ut, ~2,. , II,} with exactly 

one cut-vertex U, or with no cut-vertex; 

I := {i 1 1 < i < t and P~(zJ;) + 1 =p2(Ui) = pt(Ui)}; 

J := (i ) 1 < i < t and p3(Ui) = pl(ui) = pt(Ui)}; 

I*:=ln{i~l<i<t-l}; 

J*=Jfl{i~1<~<f--1}; 

ifI#OandJ=e) 

then pi := xi=, pl(ui) - 111 + 1 

eke m(ur) := Cf=, Pl(4) - III - LIJ1/2J; 

if I* # 0 and .I* = 0 

then pi := c:i’ pl (ui) - [I*1 + 1 

else pi := CiG’pl(Vi) - II*1 - [/J1/2]; 

ifp2Cut) = ~3(ut) 

then p2(ut) := pi + p2Cu1) 

else pz(or) := C:i’Pl(ui) +p2(ut) - II*) - ~15*1/21; 

P3CUr) := P; + p3(e); 

G:=G-{LJ,,cJ:! ,..., u,-,} 
end while; 

let v be the only vertex in G; 

output p,(v). 

Fig. 1. Algorithm PPN 

delete ~1, ~2, . . . , ut-1 from G’ and continue the same process until G’ has only one vertex. The algorithm is 

shown in Fig. 1. 

Theorem 6. Algorithm PPN computes the path-partition number of a connected block graph in linear time. 

Proof. The correctness of the algorithm follows from Theorems 3-5. The algorithm takes only linear time since 
depth-first search can be used to find end blocks and each iteration of the while loop requires only O( IBI ) 
operations. 0 

4. Discussion 

Srikant et al.‘s [9] algorithm for the path-partition problem in block graphs is similar to ours except that it 
solves only the case when I = 0 in all iterations (see the definition of I after Lemma 2). If I # 8 at some 
iterations, their algorithm does not provide a correct answer. For instance, consider the block graph G in Fig. 2. 

The correct value of p(G) is 5 with a path partition {PI, P2, P3, P4, Ps U Ph}, while their algorithm gives 6 
with a path partition { 9, &, P3, P4, Ps, Ph}, where 

9 = (1,2,3), P2 = (6,7,8), P3 = (9,10, ll), 

P4 = ( 14,15,16), P5 = (4,5), P6 = (12, 13). 
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Fig. 2. A block graph G. 

We explain why the two algorithms give different solutions. At some iteration, the subgraphs rooted at 
4,5,12,13, respectively, have optimal solutions {Pi,4}, {Pz,~}, {Ps, 12}, {Pd, 13). Algorithm PPN merges 
4,5,12,13 to make a new path, since they are in a block. But their algorithm merges 4 and 5 to get P5 and 
merges 12 and 13 to get PG. In the case of there are many paths of single vertices in a block, these two methods 

give answers with a big gap. 
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