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Abstract In this paper, an efficient deformation framework
is presented for skeleton-driven polygonal characters. Stan-
dard solutions, such as linear blend skinning, focus on pri-
mary deformations and require intensive user adjustment.
We propose constructing a lattice of cubic cells embracing
the input surface mesh. Based on the lattice, our system au-
tomatically propagates smooth skinning weights from bones
to drive the surface primary deformation, and it rectifies the
over-compressed regions by volume preservation. The sec-
ondary deformation is, in the meanwhile, generated by the
lattice shape matching with dynamic particles. The proposed
framework can generate both low- and high-frequency sur-
face motions such as muscle deformation and vibrations
with few user interventions. Our results demonstrate that
the proposed lattice-based method is liable to GPU com-
putation, and it is adequate to real-time character anima-
tion.

Keywords Lattice-based shape · Character skinning ·
Secondary deformation · Skeleton-driven animation

1 Introduction

Character animations are now extensively used in video
games and movie production. To make the characters more
realistic, skeleton-driven animation with skinning deforma-
tion is one of the most efficient methods in real-time ap-
plications. Skeletal character animation represents the ba-
sis of character motion by a hierarchical bone structure.
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The bone movement can be evaluated by motion capture
devices [31], motion synthesis techniques [13, 22] or man-
ual indication, e.g. forward or inverse kinematics. Skinning
models, on the other hand, define how geometric surfaces
transform according to distinct bones. Skinning can be mod-
eled in an example-based style by data regression to esti-
mate the shape for a new pose [12, 28]. It can also be mod-
eled procedurally in physics-based or anatomy-based ap-
proaches.

A well-known method is called Linear Blend Skin-
ning (LBS), also known as Skeletal Subspace Deformation
(SSD) [17]. The principle of LBS is to represent transforma-
tions of vertices as linearly blended matrices. The blending
weights of vertices are usually indicated by skillful artists.
Even with careful weight tuning, this kind of method may
still produce artifacts, such as joint collapsing or candy-
wrapper effects, on the deformed surface. However, due to
its simplicity and computational efficiency, linear blending
is still the most popular skinning approach. Besides human
skin, LBS can also be applied to clothes or other deformable
surfaces [4].

On the other hand, simulation-based skin deformation
can produce surface bulging, jiggle of fat tissues and other
dynamic phenomena. However, many skinning or deforma-
tion approaches are devoid of such secondary deformation
effects [21]; otherwise, they have to utilize a separate sim-
ulation component. Such a strategy increases the overhead
in data correspondence and parameter-tuning between skin-
ning and secondary deformation structures.

Our system takes a unified framework, where skinning,
secondary deformation and volume preservation are sub-
stantially evaluated through regular 3D grids and their ver-
tices, called cells and particles, respectively. The variations
are then distributed to vertices of polygonal models.
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Fig. 1 Skeleton-driven
animation with primary and
secondary deformation. Upper:
the rendered character surface;
lower: the lattice structure
(cells) for efficient deformation
computation. The conceptual
arrows show the on-going
moving directions

Given an input mesh and its skeleton, we automatically
evaluate the deformable parts and skinning weights by a
heat-propagation-like method. The primary deformation is
evaluated by linear blend skinning on particles and cells.
While we further simulate the dynamic movement of par-
ticles, we can then generate surfaces with secondary de-
formation by extending the lattice shape matching (LSM)
method [23].

In the original lattice shape matching method, increasing
the shape matching region causes the rigidity. In our case,
the shape matching region size is related to the smooth-
ness of mesh. Moreover, since a part of cell volume may
be over-compressed by weighted blending, we present a hi-
erarchically preserving volume through all joint-dependent
deformable parts.

In our system, the shape matching regions and de-
formable parts are automatically computed and allow man-
ual adjustment as well. The deformation of polygonal model
can be partially soft or rigid according to the shape match-
ing regions and mesh parameters. These material proper-
ties can even be changed dynamically. Figure 1 shows our
skeleton-driven animation, where skinning and enhanced
secondary deformation on the chest are applied. Please
browse our demo video for details. Our main contribution
includes:

• A unified and efficient framework for combing skinning,
volume preservation and secondary volume deformation.

• Automatic skinning weight computation by a lattice-
based propagation method.

• A hierarchical volume preservation technique that can al-
leviate the collapsing effect.

2 Related work

Skinning techniques are widely used to drive realistic de-
formable characters. Various modifications of linear blend
skinning are proposed for different purposes, such as user
control, skinning effort, storage requirements, or computa-
tional performance.

Pose Space Deformation [14] addressed well-known col-
lapsing of joint artifacts. Dual Quaternion Skinning [11]
introduces effective rotation-based interpolations. Wang et
al. [28] proposed a rotational regression method to cap-
ture advanced skin deformation such as muscle bulging, and
twisting. Zhou et al. [30] proposed Volumetric Graph Lapla-
cian (VGL) to deform the mesh based on 2D curves. The
above-mentioned methods focused on the primary deforma-
tion of the surface mesh.

Shi et al. [24] proposed an example-based approach
with surface detail preservation and secondary deforma-
tions. However, example-based methods usually require in-
tensive manual adjustment or data acquisition. Von Funck et
al. [27] added elastic secondary deformation to a given pri-
mary deformation by a small number of user-placed mass-
spring sets. Forstmann et al. proposed alleviating skinning
artifacts based on auxiliary curved skeletons [6], but it in-
creased complexity of the GPU implementation and incon-
sistency with the established skinning pipeline.

Lattice-based shape deformations are widely used to an-
imate embedded geometry [5]. Regular voxel [7, 19] or
body-centered cubic tetrahedral meshes [20] can simplify
meshing issues for simulation. Other research [8–10] de-
formed a character using a simpler mesh, and are mainly
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Fig. 2 The flowchart of the
proposed system. The upper
part describes the offline
preprocess; the lower part
demonstrates the online stages

used for direct manipulation. Nevertheless, simulating de-
tailed volumetric deformation is expensive for many real-
time applications.

Detailed lattice-based FEM meshes are used in character
animation [25], but mostly for offline simulations. It is possi-
ble to avoid recomputing elements by using rotated linear el-
ement models [3, 18], but integrating large-deformation dy-
namics often involves significant computation for large lin-
ear systems. Besides, the patch-based method [32], using a
fewer number of B-spline control points with springs, effi-
ciently performed surface deformation.

Nevertheless, without carefully design, the volume of de-
formation body near joints, such as elbows and knees, may
change drastically. It usually causes serious collapses, such
as the joint collapsing effect. To fix the problem, Takamatsu
et al. [26] restricted the control point’s position by intro-
ducing displacement fields, while Hyun et al. [33] tried to
preserve the volume of body parts with sweep surfaces.

3 System overview

Figure 2 shows the flowchart of the proposed system. Given
a surface mesh to be deformed, we conservatively voxelize
the mesh to construct a lattice of cubic cells containing the
mesh. In the later operations, such as the skinning and dy-
namic evaluations, we apply these computations on parti-
cles of cells instead of mesh vertices. Our method would au-
tomatically compute per-particle skinning weights through
volumetric energy diffusion. After the skinning weight com-
putation, we group all particles into several sets called de-
formable parts based on the joints and bones of the applied

skeleton. For each joint-dependent deformable part, we eval-
uate the hierarchical volumes to preserve their volume dur-
ing online deformation. Properties such as rigidity, smooth-
ness, and intensity of secondary deformation, can be ad-
justed by users as well.

For online process, the input skeletal motions drive the
skinning deformation on cells. The over-compressed vol-
umes of deformable parts are then rectified by volume
preservation. The dynamic movements are also controlled
by unit point-mass particles placed on the cell corners. Each
particle is associated with a shape matching region compris-
ing a set of shape matching particles. We apply rigid shape
matching transforms around every particle for smooth and
robust deformation without domain boundary artifacts. Af-
ter combining the primary and secondary cell deformation,
the embedded vertices within a cell are then deformed by
trilinear interpolation of all particles’ positions.

We implement our efficient method on multiple-threading
and GPU. We organize all particles’ data as a linear texture
and stored in GPU’s global memory, and then use a trilinear
lattice deformer to move the surface mesh. By the compu-
tation power of GPUs, the performance can be substantially
improved for real-time applications.

4 Lattice-based skinning

In this section, we define the lattice representation for the
surface mesh, and show how to apply smooth skinning on
the mesh.
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Fig. 3 The input character mesh, skeleton and cell-skeleton mapping

Fig. 4 The cell structure of a target character

4.1 Lattice construction

Given an input surface mesh, we voxelize the mesh to con-
struct a lattice of cubic cells containing the mesh [7]. The
surface mesh should be in an appropriate initial pose as
shown in Fig. 3. Users can adjust the voxelization level ac-
cording to the details of input models and animation. The
embedded mesh can now be deformed by trilinear interpo-
lation of eight particles (cell vertices) positions.

Figure 4 shows the cell structure. Let P denote the set of
all particles. For each particle p in P , we denote its static
initial position as x0

p , its dynamic position as xp , and its
mass as mp . Each particle has its index represented by a
3-tuple related to the reference (or origin) particle. p(x,y,z)

denotes a particle with index (x, y, z). We denote neighbor
Np as a set of particles locating within 3 × 3 × 3 cells sur-
rounding p. We also define the adjacency of p as a set of
particles in one cell distance away from p. The particle re-

lations are evaluated and recorded during the initialization
stage.

4.2 Smooth skinning with voxels

This subsection describes smooth skinning on the voxelized
mesh (cells). Deforming a model with skinning techniques
requires a skeleton structure, the skin and the skinning
weight for each vertex. The skin is a 3D triangular mesh
without assumption on connectivity. The skeleton is a rooted
tree, where the nodes represent joints and the edges repre-
sent the bones. Figure 3 shows the surface mesh, skeleton of
a target character. In our current implementation, we provide
interfaces for users to assign rough skeleton nodes, and our
system then approaches these nodes to local volume cen-
ters. This manual initialization process can be replaced by
automatic skeleton extraction described in related articles
[15, 29].

Without loss of generality, transformations of individual
joints and bones are assumed to be rigid. In the classic skin-
ning framework [17], the vertex weights describe the skin-
to-skeleton binding (i.e., the amount of influence of individ-
ual joints on each vertex). In our case, we first consider par-
ticle weights instead of weights for surface vertices. Assume
that there are k joints in the input skeleton. Each joint has an
associated local coordinate system from its initial posture.
For a joint j ∈ {j1, . . . , jk}, the transformation from the ini-
tial position to its current position can be expressed by a
rigid transformation matrix—Tj ∈ SE(3).

We assume that particle p is attached to joints jp =
{j1, . . . , jn} with weights wp = {w1

p, . . . ,wn
p}. The integer

indices of j1, . . . , jn refer to the joints that influence a given
particle p; wi

p represents the influence of joint ji on parti-
cle p. Most skinning applications set n to 4 due to graphics
hardware considerations. We store jp in a vec4-typed vari-
able in GLSL. The weights are normally assumed to be con-
vex and

∑n
i=1 wi

p = 1 and wi
p ≥ 0. The particle positions xp

deformed by linear blend skinning is then computed as

x′
p =

n∑

i=1

wi
pTji

xp =
(

n∑

i=1

wi
pTji

)

xp (1)

where Tji
is the transformations of joint i. The blended ma-

trix
∑n

i=1 wi
pTji

is not guaranteed to be a rigid transforma-
tion, even if all Tji

are rigid. To rectify this problem, we fac-
torize transformations Tji

into rotation Rji
and scale/shear

Sji
components by the polar decomposition,

Tji
= Rji

Sji
(2)

We use the fast polar decomposition technique described
in [23] and build a new transformation Ṫji

to replace Tji

by Rji
.
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4.3 Automatic skinning weight estimation

Conventionally, skinning weights are specified by artists
according to bone size and joint influence regions. A re-
cent technique, called bone heat [1], automatically estimated
weights for unguided skeleton mesh. This method aims at
extracting the skeleton and weight through a heat diffusion
system on the surface of the mesh. Nevertheless, the heat
propagation on thin shields is different from solid volume;
authors also rectified this problem by volume approximation
on the shields. In our case, we approximate the propagation
on regular cells instead of thin shields. The heat diffusion
mechanism is more computationally efficient and reason-
able.

First, we treat each bone j as a heat source with energy ej

influenced by user-specified parameters such as bone width
or bone length. For each heat source j , we compute the di-
rectly influenced particles P̂j which are the closest particles
to the bone j within one cell width. The energy of particles
P̂j are assumed to be ej . Then we construct an undirected
simple graph G:

G = (V ,E), V = P

E = {
(p1,p2)|p1 ∈ P,p2 ∈ P,p2 ∈ Np1

}
(3)

Each particle is considered as a node in G, and having
edges with its neighbors. Let cost(pi,pj ) denote the cost
of edge (pi,pj ), pi has an index (xi, yi, zi ), and pj has an
index (xj , yj , zj ). The edge cost is proportional to the Eu-
clidean distance. When we apply heat diffusion from the di-
rectly influenced particles P̂j to all other particles, the parti-
cles’ energy transformation rates are dependent on the edge
cost to its neighbors. A neighbor’s energy transfer rate to
particle pi is denoted by ew(pi ,pj ), and computed as

ew(pi,pj ) = wt(pi,pj )
∑

pk∈Npi
wt (pi,pk)

wt(pi,pj ) = bi

cost(pi,pj ) + 1

(4)

where bi is bone strength that influences the energy atten-
uation. Hence, a particle’s energy is then computed from
neighbors as

epi
=

∑

pk∈Npi

ew(pi ,pk)epk
(5)

The diffusion runs repeatedly until the completion of
diffusion process. To obtain the particle weights, we com-
pare the energy from all heat sources for each particle
and then normalize them to ensure the weights are con-
vex. Skeletal motions can now be used to drive cell parti-
cles with skinning. Accordingly, the vertices on polygonal
models are moved through interpolation. Figure 5 presents a
skinned human model using our lattice-based smooth skin-
ning method. Since the concept of our lattice-based skinning

Fig. 5 Lattice-based smooth skinning. Left: the rendered character
surface; right: the lattice structure (cells)

approach is similar to the basic linear blend skinning, its per-
formance is almost as efficient as linear blend skinning.

4.4 Hierarchical volume preservation

Traditional linear blend skinning has deformation artifacts,
such as joint collapsing, since it does not consider unnatu-
ral volume changes. We present a hierarchical approach to
approximately preserve the volume.

First of all, we have to group unit cells into higher-level
parts. Since we have calculated the bone influences on cells,
we further make use of this information, and group all parti-
cles into several deformable parts based on their most effec-
tive bone as in Fig. 6a. Besides bone-dependent deformable
parts, we can also divide the part particles into two sub-
parts and combine two subparts adhering to the same joint
as joint-dependent deformable parts. As shown in Fig. 6b,
the joint deformable parts are basic units for our hierarchi-
cal volume preservation.

To evaluate the volume of deformable parts, we ex-
tend the global volume preservation by Takamatsu and
Kanai [26]. We denote diff p as a set of vectors whose
lengths are a half distance from p to its six adjacencies.

diff p =
{

1

2

(
x0
q − x0

p

)|q ∈ Adjp

}

= {
dx+
p , dx−

p , d
y+
p , d

y−
p , dz+

p , dz−
p

}
(6)

Then, the volume of each particle p can be defined based on
the diff p vectors:

Vol(p) = dx+
p · (dy+

p × dz+
p

) + dx+
p · (dy−

p × dz−
p

)

+ dx−
p · (dy+

p × dz−
p

) + dx−
p · (dy−

p × dz+
p

)

+ dz+
p · (dy+

p × dx−
p

) + dz+
p · (dy−

p × dx+
p

)

+ dz−
p · (dy+

p × dx+
p

) + dz−
p · (dy−

p × dx−
p

)
(7)
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Fig. 6 The deformable parts (red part). (a) Bone-dependent de-
formable part. (b) Joint-dependent deformable part that combines two
adjacent bone-dependent parts in halves

The operator · and × represent the dot and cross prod-
uct, respectively. The volume of a deformable part is then
defined as the total volume of its particles:

Vol(P ) =
∑

p∈P

Vol(p) (8)

After mesh deformation, all particles P transform to their
new positions. Let P ′ be the deformed particles. The particle
displacement field is

V̂ = {v̂1, . . . , v̂|P |}
= {s1u1R1, . . . , s|P |u|P |R|P |} (9)

where |P | represents the particle amount; {R1, . . . ,R|P |}
are a set of particle’s rotations; {u1, . . . , u|P |} are the parti-
cles’ outward vectors which point toward the nearest bound-
ary. {s1, . . . , s|P |} are the particle’s volume correction scales.
These scales are inverse related to the nearest Manhattan dis-
tance to the boundary. This means that a particle closer to the
boundary has a larger percentage to keep the local volume
consistent. We choose this strategy because we observe that
the deformations usually change larger on the surface than
the internal regions. We are inclined to accentuate the sur-
face contributions in volume preservation. Figure 7 shows
the composition of a displacement field V . u controls the di-
rection of pulling each vertex, and s controls the percentages
of a particle in volume changes.

With the displacement field, now we can rectify the cur-
rent deformed mesh volume Vol(P ′) to the desired one.
Since the volume should be preserved, we evaluate how each

Fig. 7 Components of displacement field. For a particle p, its dis-
placement vector results from spupRp . An appropriate λ is evaluated
to preserve the volume after deformation

particle should be adjusted to keep the part’s volume the
same through the following equation:

Vol(P ) = Vol
(
P ′ + λV̂

)
(10)

where λ is the unknown value. We make use of the cubic
equation solution proposed by Takamatsu and Kanai [26] to
solve the unknown λ.

Vol
(
P ′ + λV̂

) =
∑

p∈P ′
Vol(p + λv̂p)

=
∑

p∈P ′

(
a0
p + a1

pλ + a2
pλ2 + a3

pλ3) (11)

where

a0
p =

∑

p

mx
p · (my

p × mz
p

)

a1
p =

∑

p

nx
p · (my

p × mz
p

) +
∑

p

mx
p · (ny

p × mz
p

)

+
∑

p

mx
p · (my

p × nz
p

)

a2
p =

∑

p

mx
p · (ny

p × nz
p

) +
∑

p

nx
p · (my

p × nz
p

)

+
∑

p

nx
p · (ny

p × mz
p

)

a3
p =

∑

p

nx
p · (ny

p × nz
p

)
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Fig. 8 Volume preservation example: (a) without volume preserva-
tion; (b) blue arrows show the displacement field; (c) with volume
preservation

Fig. 9 A mesh pushed by a downward external force. Left: without
volume preservation. Right: with volume preservation

Similar to Eq. (6), mp and np are difference vectors for new
position x′

p and current displacement field v̂p .

{
1

2

(
x′
q − x′

p

)|q ∈ Adjp

}

= {
mx+

p ,mx−
p ,m

y+
p ,m

y−
p ,mz+

p ,mz−
p

}

{
1

2
(v̂q − v̂p)|q ∈ Adjp

}

= {
nx+

p ,nx−
p ,n

y+
p ,n

y−
p ,nz+

p ,nz−
p

}

(12)

Figure 8 shows an example of preserving volume near el-
bow. The muscle size near the elbow is enlarged through the
displacement field. We apply volume preservation on each
joint-dependent deformable part instead of the whole mesh,
such as [26]. An example is shown in Fig. 9. While a force
push downward, we correct the positions of particles from
the root joint-dependent deformable part to all its child parts.

For skeletal-driven animation, our approach preserving
local volumes is more adequate than that for the global vol-
ume. For instance, deforming the left arm should not sig-
nificantly influence the volume on the legs. Compared with
deformation methods preserving cell rigidity and volume by
optimization [2], the proposed method is relatively light-
weight in computing, since the evaluation of particle out-
ward vectors and scales are deterministic and parallel com-
putation is applicable.

5 Lattice-based skinning with secondary deformation

In this section, we introduce how we combine our lattice-
based skinning method with the lattice shape matching to
generate secondary deformation.

5.1 Dynamic movement and lattice shape matching

A lattice of cubic cells containing the surface mesh is pre-
sented in the previous section. Now, we further define shape
matching region for each particle. Each particle p is asso-
ciated with a shape matching region Regionp . Regionp con-
tains p and all particles within a Manhattan distance ŵ from
particle p. For instance, when ŵ = 1, Regionp is the adja-
cent neighbors.

The main lattice shape matching algorithm is proposed
by Rivers and James [23]. At each time step, each Region
finds the best rigid transformation T̃r by least-squares to
match the initial particle positions x0

p to their deformed
positions xp for p ∈ Regionr . Therefore, each particle p’s
goal position gp can be calculated by average regional rigid
transformation of the particle’s position:

gp = 1

|Regionp|
( ∑

r∈Regionp

T̃r

)

x0
p (13)

To generate the secondary deformation, we establish a
dynamic system according to differences between the par-
ticle position xp and the goal position gp and the external
force fp , as shown in (14) and (15)

vp(t + h) = vp(t) + α
gp(t) − xp(t)

h2
+ h

fp(t)

mp

(14)

xp(t + h) = xp(t) + hvp(t + h) (15)

where h is the simulation time step, xp(t) and vp(t) are the
position and velocity at t , respectively.

Applying the calculation of the dynamics to all particles
results in a “gummy bear” like deformation. To embed the
skeleton into the cells, we further assign the particles within
bone cylinders to be rigidly adhered on the bone. The effect
of “bone rigidness” for other particles depends on the region
windows. In general, those closer to the bone axis can have
more rigidness.

5.2 Combination of skinning and dynamic movement

Both the skinning and dynamic movements update particle
positions. In order to generate secondary deformation by lat-
tice shape matching with guidance of skinning, we use the
result of (1) and (2) and particle p’s dynamic position xp to
obtain

x̂p = δxp + (1 − δ)x̄p (16)
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Fig. 10 Result of combination
of skinning and lattice shape
matching. Upper: δ = 0.7;
lower: δ = 0.9. Check the
muscle located near the wings.
With larger δ, the secondary
deformation performs more
observably

where xp , the primary deformation, is the position evaluated
in Sect. 4, and δ is the ratio of secondary deformation and
0� δ � 1. If δ = 0, the result is the same as for lattice-based
smooth skinning. The larger δ is applied, the more obvious
the secondary deformation appears. Users can freely adjust
δ or even switch different δ profiles during simulation to ob-
tain more realistic effects. x̂p is then applied to the lattice
shape matching process for the best transformation.

At each time step, each particle p vibrates between xp

and x̄p . The goal position gp will be more and more close to
x̄p . xp will gradually converge toward x̄p . Finally, we com-
pute the vertex positions of the mesh by barycentric coordi-
nates. Besides, we also include the damping force described
in [23] to speed up the convergence. Figure 10 shows an ex-
ample. Left to right shows a motion sequence of a penguin
waving its wing. In two different δ settings, we can observe
that when the lower penguin has larger δ, its muscles vibrate
larger, as the secondary deformation performs observably.

5.3 GPU-acceleration

For the sake of rendering performance, we use a vertex
buffer object and a trilinear lattice deformer based on GLSL.
The interpolation weight of vertices are considered as vertex
attributes and could be stored at GPU memory during pre-
processing stage. The positions of all particles are stored in
a texture and are updated at each frame.

6 Experiment and result

Our approach is flexible since we provide an interactive en-
vironment and various adjustable mesh parameters with de-
faults for users. Figure 3 shows our subject mesh, skele-
ton, and mesh-skeleton mapping. The skeleton motion data

we used are from CMU’s motion capture database [31],
and a 30 Hz dataset for interactive applications mentioned
in [16]. Besides, the posture of skeleton can also be adjusted
by forward kinematics. Please browse our demo video,
where we show skinning, combination of primary and sec-
ondary movement, and exaggerated deformation on charac-
ters’ chest and arms. The influence of secondary deforma-
tion is adjustable as shown in the penguin movement.

Figure 11 shows the results of voxelization resolution
test. An improper resolution (1092 particles) results in skin-
ning artifacts. For our test surface mesh (28059 vertices),
we choose the resolution to be about 1900 particles to get
balance between skinning quality and performance.

Figure 12 shows the results of volume correction. The
volume preservation method is capable of alleviating the
joint collapsing effect resulting from linear blend skinning.
Table 1 shows performance tests for various voxelization
resolutions on a laptop and desktop.

7 Conclusion and future work

In this paper, we present a lattice-based framework for ef-
ficient surface deformation in skeleton-driven character ani-
mation. After voxelizing an input surface mesh with cells,
our system automatically generates lattice-based skinning
weights through diffusion-based influence propagation. To
reduce the over-compressed artifacts, a hierarchical method
is employed for volume preservation on deformable parts.
The skinning deformation is then combined with dynamic
particles for lattice shape matching to approximate the phys-
ically realistic secondary deformation.

The proposed system requires the triangle mesh and
skeleton as input, and it can generate appealing surface
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Fig. 11 Skinning artifacts. Left:
with lower voxel resolution
(1072 particles); right: with
higher voxel resolution
(1906 particles)

Fig. 12 The deformation result.
Left: without hierarchical
volume preservation; right: with
hierarchical volume
preservation. The volumes near
the joints are closer to the
original ones

Table 1 Performance test on a moderate laptop and a desktop

# of cells # of particles Average frame per second (laptop) Average frame per second (desktop)

524 1072 148.572 215.294

976 1906 92.717 134.181

1241 2451 61.684 99.436

1905 3058 42.376 81.633

Triangle Mesh: 28059 vertices, 55888 triangles.
Time step: 16 ms.
Number of joints: 38; Region size: 2 (cell width)

CPU: Intel Core 2 Duo P8600
RAM:DDR3-1066 4 GB
RAM:DDR2-800 8 GB

CPU: Intel Core 2 Quad Q6600
Display: Nvidia GeForce G105M
Display: Nvidia GeForce 8800GT

deformation according to character motion data or user-
specified postures. The experiment shows that our frame-
work makes our system adequate for real-time computation
even on a moderate laptop computer.

Comparing to existing methods, such as [33], we do
not constrain the exact volume but approximate the skin-
ning, and volume of deformation parts through cells. How-
ever, we provide a unified framework combining primary

deformation, secondary deformation and volume preserva-
tion. It is a plausible approximation and can avoid extra
switching cost among different structure types. We con-
sider that our approach is balance in efficiency and visual
performance. On the other hand, the process stages in our
framework can also be replaced by more precise evalu-
ation algorithms if appropriate structure transition is ap-
plied.
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A possible future work is adaptive voxelization. For in-
stance, octree-based approaches can achieve irregular sam-
pling. Reducing the resolution of interior particles could fur-
ther improve the performance and keep the appearance qual-
ify as well. Besides, the delicate design of cells and smooth-
transit of rigidness will benefit the result. Another work is
related to skinning weights. Currently, our automatic weight
computation supports only positive weights; more variety of
deformation may be generated if negative weights are con-
sidered.
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