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ABSTRACT: One important discovery in recent years is that the total amplitude of gauge
theory can be written as BCJ form where kinematic numerators satisfy Jacobi identity.
Although the existence of such kinematic numerators is no doubt, the simple and explicit
construction is still an important problem. As a small step, in this note we provide an alge-
braic approach to construct these kinematic numerators. Under our Feynman-diagram-like
construction, the Jacobi identity is manifestly satisfied. The corresponding color ordered
amplitudes satisfy off-shell KK-relation and off-shell BCJ relation similar to the color or-
dered scalar theory. Using our construction, the dual DDM form is also established.
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1 Introduction

Recent studies have revealed that there are many new structures for scattering amplitudes
unforeseen from lagrangian perspective. One of such examples is the color-kinematic dual-
ity discovered by Bern, Carrasco and Johansson [1] (BCJ). In the work it was conjectured
that color-ordered amplitudes of gauge theories can be rearranged into a form where kine-
matic numerators satisfy the same Jacobi identities as the color part does (i.e, the part
given by multiplication of structure constants of gauge group according to corresponding
cubic Feynman diagrams). These forms (we will call BCJ-form) lead to very nontriv-
ial linear relations among color ordered amplitudes,! thus we can reduce the number of
independent amplitudes to (n — 3)!. A further conjecture of color-kinematic dual form
(BCJ-form) is that if we replace the color part by kinematic part in the BCJ-form, we will

'BCJ relations between color-ordered amplitudes has been proved in string theory in [2-5] and in field
theory in [6-8] using on-shell recursion relations



get corresponding gravity amplitudes. The double-copy formulation of tree-level gravity
amplitudes is equivalent? to the Kawai-Lewellen-Tye (KLT) relations [9, 10]. However,
unitarity suggests that double-copy formulation may be generalized beyond tree-level and
therefore provides an extremely useful aspect to understand or calculate gravity ampli-
tudes at loop-levels. Recent discussions on loop-level can be found in [12-24]. Because
these important applications to gravity amplitudes, the simple and explicit construction
of kinematic numerators is very important. In this paper we show that assuming gauge
symmetry provides enough degrees of freedom, it is possible to construct kinematic numer-
ators as linear combinations of contributions coming from cubic graphs, with vertices given
by generalization of the algebraic structure constant given in [25, 26]. This construction
makes many algebraic relations between numerators, such as Jacobi identity, KK-relation
and BCJ relations, manifest.

Another interesting consequence of color-kinematic duality is that gauge theory am-
plitudes may have different forms. Two such examples are the color-ordered decom-
position Awot = D ,eg. , Tr(T71T72...T") A(o) (which we will call “Trace form”)
and the form discovered by Del Duca, Dixon and Maltoni (DDM) [27] Ay =
Doves, o J1OR ROt L frn=sTnaa A1 g, n) (which we will call the “DDM form”). The
equivalence of two forms gives another proof of Kleiss-Kuijf (KK) [28] relations of the color-
ordered amplitudes.? Within the color-kinematic duality, it is natural to have the “Dual
Trace form” and “Dual DDM form” as discussed in [11, 31]. However, unlike the Trace
form and DDM form, the dual form does not have very simple construction for the dual
color part. In this paper, we will give a partial construction of the dual color part.

This paper is organized as follows. In section 2 we introduce the Lie algebra of general
diffeomorphism in Fourier basis. Upon the sum of cyclic permutations of the structure con-
stant, we get Yang-Mills 3-point vertex. Section 3 is our main part where the construction
of kinematic numerators is given. We start with two examples, the 4-point numerator and
5-point numerator, where explicit calculations are given. Then we give a general frame for
our construction. In section 4 we discuss relations, such as KK and off-shell BCJ relations,
among quantities defined in section 3. In section 5 we derive the dual DDM form using re-
lations from previous section. A few comments on relations between different formulations
of Yang-Mills amplitudes are given in section 6. After a short conclusion, a proof of KK
relation using off-shell recursion relation is included in the appendix.

2 Generators and kinematic structure constant

Our starting point is a generalization of the diffeomorphism Lie algebra introduced by
Bjerrum-Bohr, Damgaard, Monteiro and O’Connell [25, 26]. The generator is defined as

The = ehey,, (2.1)

2A proof can be found in [11].
3In [27], the DDM form was derived using the properties of Lie algebra. However, it can also be
derived [29] using KLT formulation of Yang-Mills amplitude [30].
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Figure 1. From left to right, three diagrams represent f12,, 31, 23, in eq. (2.5), where we used
arrows to distinguish upper from lower indices.

with label (k,a), where k is a D-dimensional vector and a, a Lorentz index. The kinematic
structure constant can be read out from commutator

[TF1e, T2 8] = (—0)(8, K1y — 0 hag) /1 TR 2, (2:2)

— f(kl,a)v(kmb) (hy sk .0) T (k1+ka,c)

In the following we shall use a shorthand notation by writing f (kl’“)’(kQ’b)(kl+k2,C) as
f 1“’2b(1+2)c. The upper and lower scripts of Lorentz indices a, b and ¢ are introduced to dis-
tinguish whether the corresponding generators are contravariant or covariant under Lorentz
symmetry. Jacobi identity coming from cyclic sum of the commutator [[T*1:¢, T2 TF3]
is given by

f1“’2b(1+2)ef(1+2)e’3c(1+2+3)d+f2b’36(2+3)6f(2+3)6’1a(1+2+3)d+f36’1a(1+3)ef(1+3)5’2b(1+2+3)d =0.
(2.3)
To relate structure constants to Feynman rules, we need to lower or raise Lorentz
indices by contracting with Minkowski metric. For example

o ahay, = 1o 1 Nee = (=) (ackis — Mockza) (2.4)

The index-lowered structure constant (2.4) does not enjoy cyclic symmetry. However sum-
ming over cyclic permutations of ki, ko and ks = —k; — ko produces the familiar color
ordered 3-point Yang-Mills vertex
1
V2
i

= — Mw(k1 — k2)e + Mpe(ka — k3)a + Nea (ks — k .
\/5[7712(1 2) Nbe (k2 3) Nea (k3 1)b)

Three terms at the left handed side of (2.5) can be represented by the three arrowed graphs

(f1a72b_3c + f3571a_2b + f2673c_1a)
. (2.5)

in figure 1. In this representation, two upper indices a,b of f . are denoted by arrows
pointing towards the vertex while lower index ¢ is denoted by an arrow leaving the vertex.
These three terms are related to each other by counter-clockwise cyclic rotation, thus from
the left to right, they represent f123, 3, 1%,

Note that when expressed in terms of index-lowered structure constants, Jacobi identity
becomes

f1a72b(1+2) ﬁegf(1+2)g’36 3) negf(2+3)a,1

(213)d + F2% a4 *(1+4243)d

. (2.6)
+f36’1“(1+3)577 f(1+3)6’2b(1+2+3)d = 0.



When we interpret relations between numerators as Jacobi identities, the Minkowski metric

n
below we neglect Lorentz indices of structure constants, which can be easily recovered from

€¢ comes from gluon propagator and connects two structure constants. In discussions

the context. Contraction of a structure constant fl‘“zbgc with other structure constants
should be understood as the same as contracting a tensor f!?3 labelled by legs 1, 2, 3.

3 Construction of kinematic numerators

In this section we present an algorithm to construct the kinematic numerators that satisfy
Jacobi identity as proposed by Bern, Carrasco and Johansson [1]. We demonstrate our
method through 4-point and 5-point amplitudes, and then present the general picture for
arbitrary n-point amplitudes.

3.1 kinematic numerators for 4-point amplitudes

For 4-point amplitudes, we consider two color-ordered ones A(1234) and A(1324), since rest
of amplitudes can be obtained from these two with the Kleiss-Kuijf (KK) [28] relations.
From the prescription of Bern, Carrasco and Johansson, 4-point color-ordered amplitudes

can be divided into contributions of s, t and u-channels [1],*
Ns Ny ng = Ny
A(1234) = — — —, A(1324) = —— + —. 3.1
(1234) = "2 - 1 (1324) = =2 4+ 2 (3.1)

Our goal is to construct kinematic (BCJ) numerators ng, ng, n, that satisfy Jacobi identity
ns + ny +ny, = 0. Let us first focus on amplitude A(1234). From color-ordered Feynman
rules, amplitude A(1234) contains a s-channel and a wu-channel graphs with only cubic
vertices. Thus it is natural to attribute expressions coming from Feynman rules to numer-
ators ng and n,, respectively. In addition we have a contribution from color-ordered 4-point
vertex

i

2

7

2

7

Z‘77ac77bd - (nabncd + nad'r/bc) = (nacnbd - nadnbc) + 2 (nacnbd - nabncd)a (32)

(where the Lorentz indices of particles 1,2,3,4 are a,b, c,d,). We attribute the first and
the second terms of (3.2) at the right handed side to ns and n,.> Using propagator %,
the s-channel numerator n¥ can be read out

ny = —% [ e+ (P2t 2] - [P+ (7 a+ 1270 )] (3-3)

7
+38 (MacTbd — NadMbe )+

where we used equation (2.5) to express 3-point Yang-Mills vertex in terms of kinematic
structure constants. A star sign of n; was introduced to denote quantities that have

4We follow the sign convention such that n, n¢, n, correspond to cyclic permutations of the three external
particles with the fourth one fixed, as they appear in the Jacobi identity.

5The reason for assigning the first term with 7,47 to s-channel can be understood as collecting con-
tributions that carry the same color dependence as s-channel graph from the complete 4-point Yang-Mills

vertex.
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Figure 2. Graphical representation of contributions from eq. (3.4) where the first four graphs

3

correspond to contributions from the first line of the equation, and the remaining five graphs, from
the second line of the equation.

not been contracted with polarization vectors. Expanding product of kinematic structure
constants in the first line yields the following nine terms

fl,2_e(fe,3_4 + f4,fe_3> + (fe,1_2 4 f2,e_1)f3,4e (3.4)
+f1727€f3746+ (fe’172+f2’671)(fe’374+f4’_673),

which can be represented by the graphs in figure 2. From these graphs, several information
can be read out.

First we note that contraction of the repeated index e leads to consistent arrow direc-
tions for internal lines in first four graphs but inconsistent arrow directions for internal line
in the remaining five graphs. As we will see in discussions below, contributions from con-
sistent contractions satisfy the Jacobi identity of kinematic structure constants f*, while
inconsistent contractions do not. Because of this reason we shall split contributions from
Feynman diagrams consisting of only cubic vertices into two groups: the “good ones” with
consistent contractions and the “bad ones” with at least one inconsistent contractions.

Secondly, we note that a “good” graph can only have one outgoing arrow among all
external particles. The unique external particle line carrying outgoing arrow plays an
important role when we consider identities among graphs. In particular, we shall see that
Jacobi identity is separately satisfied among graphs that have same outgoing leg.

Based on above observations, we can write numerator n}; = G+ X where G is contri-
butions from good graphs and X is contributions from bad graphs and four-point vertex
%s (Nactbd — NadMbe)- As we will explain in section 3.1.1, remainder X can be eliminated
through averaging procedure.

However, for the simple 4-point amplitude, we can do better by digging out some good
part from the “bad contribution”. We note that we are allowed to freely translate between

upper and lower script structure constants through the identities

(fe,1_2 + f2,€_1) _ f172_e = —inab(—kl 4 kz)e -+ O(klcu ka)v
(fe,374 + f4,—€73) _ f374e = —incd(—k‘3 + k’4)e + O(kiica k4d)a



where Oc(kiq, kop) denotes longitudinal term O, (k1q, kop) = —i(Neakap — Nevki1a), and simi-
larly does Og(ksc, k4q). Both longitudinal terms do not contribute when they are contracted
with physical polarization vectors of external legs. Multiplying (3.5) with (3.6) we obtain
the identity

fl,2_ef3,4e 4 (fe,l_2 4 f2,e_1)(fe,3_4 4 f4,7e_3) (37)
= P e(f o+ ) + (fO e+ ) e = (= W) Tabnea
+O(k1a7 k?ba k3Ca k;4d))

where O(kia, k2p, k3e, kag) = Oc(kse, kaq) - Oc(kias ko) — i0apOe(kse, kaa) - (—k1 + k2)e —
iNedOe(k1a, kap) - (—ks + ka)e. Thus n¥ is given by

n: - [f172—e(fe’3—4 4 f4,fe_3) 4 (fe,1_2 + f2,e_l)f3,4e] (38)
1
t3 8 (NacTbd — NadMbe) + (£ — w)NabTea] + O(Kk1a, k2b, ke, kad),

and n),n; can be derived from it by permutations of indices (123) — (312) and
(123) — (231) respectively. To obtain the numerators ng,n,,n; in equation (3.1), we
just need to contract n},n;,n; with physical polarization vectors, thus the longitudinal
terms O(kiq, kop, k3, kagq) drop out.

Having obtained expressions (3.8) we want to check the Jacabi idenity ns +
ng + ng, = 0. First we notice that after contraction, contributions from
% [$ (Mactbd — NadMbe) + (t — w)Napeq) Will be trivially zero under cyclic sum. To see con-
tributions from the first line of equation (3.8) give zero, let us expand the first line of n?

into

PP PR s+ 1O o+ (3.9)
and write down corresponding terms of n} by permutation (123) — (231)

P28 el 28 phee |y ope? 24 e g4 (3.10)
and similarly terms of nf by permutation (123) — (312)

FIL ey 3l phee o oped 24 ple g4 (3.11)

When summing these three contributions (3.9), (3.10) and (3.11) together, the first terms
from each contribution add up to zero because of the Jacobi identity derived from cyclic
permutations of legs (123),

e e e BT LU ) (3.12)

Adding up the rest three terms from each contribution again gives zero by following three
Jacobi identities (3.13), (3.14) and (3.15),

f172—ef4778—3 + f274—6f1’7€—3 + f4’1—ef2776—3 = 07 (313)
T e RS e R (3.14)
PR o PP P = 0, (3.15)

which correspond to fixed leg 3,2, 1.



It is easy to see that when expressed graphically, terms in equation (3.12) shall all
have the outgoing arrow on leg 4, and similarly terms in equations (3.13), (3.14) and (3.15)
shall all have the outgoing arrows on legs 3, 2 and leg 1 respectively. Thus Jacobi identity
can be translated as the sum of three graphs related to each other by cyclic permutations
with a fixed leg having outgoing arrow.

3.1.1 Eliminating contact terms

In the discussion above we demonstrated explicitly that contributions from cubic and quar-
tic diagrams together give rise to numerators that satisfy the Jacobi identity. While “good
parts” of these contributions satisfy the identity manifestly, the “bad parts”, do not. For
4-point amplitudes since structure of amplitudes is simple, we were able to rewrite these
“bad parts” into nicer forms. However this rewriting becomes rather difficult for higher
point amplitudes, therefore we resort to an alternative way to solve the problem. The idea
is the following. Since the numerator such as ng is calculated from contracting n} with
polarization vectors, in a gauge theory we have the freedom to choose different gauges
(i.e., different polarization vectors). Using this freedom we can eliminate “bad contribu-
tions” and keep only “good contributions”, thus the final result will satisfy Jacobi identity
manifestly.

Now we demonstrate the idea using 4-point amplitudes. For simplicity let us abuse
the notation a bit by writing

ns(q) = €1 (q1) ... ex (qn)ns = €(q) - 1y, (3.16)
where ¢ represents the set of reference momenta {qi,q2,...,¢,} collectively. Using the

notation that the good contribution given by equation (3.9), (3.10) and (3.11) as n}, n;
and nj, we have

nsla) = —ie(a) 7L + 28X (a),

Xs(q) = e(q) - X =¢€(q) {(ﬁacnbd — Nadbe) + (t _S w Uabncd} (3.17)

and similarly for n,(q),n:(q), Xu(q), and X(q). Thus the amplitudes are given by

A(1234) = e(q) - (_l” - _L”" + ;Xf> , Xi=X'— X
ST
A(1324) = €(q) - (— Zt”t M ;X5‘> , Xi=—X;+ X (3.18)

In above expressions, good contributions into 7], which satisfy Jacobi identity, have been
separated from the bad contributions X manifestly. Having done the reorganization, next
step is to eliminate the X parts. To realize it, we consider the average of above two
color-ordered amplitudes over three different choices of gauges. Since A(1234) is invariant
under gauge choices, we can get rid of all X parts simultaneously if we impose following
three conditions

l=ci+ca+c3

T3:4 0= cielqi) - X (3.19)
0= 30, cielai) - X3



By gauge invariance, the first condition guarantee that

n n —ng Ny

A(1,2,3.4) == -2 A(1,3,2,4) = — + = 3.20

(2349="2-" A1324= 40 (3.20)

where n, = Z?:l —icie(q;) - 7} and similarly for n,,ns. Since each €(g;) - s satisfies

Jacobi identity, so do ng,n,,n:. To see that there is indeed a solution for ¢;, we simply
need to show that the following matrix has nonzero determinant

1 1 1
e(q) - X7 e(qe) - X7 e(gs) - X7 | - (3.21)
e(qr) - X5 e(q2) - X5 e(q3) - X5

This can be checked by explicit calculations.

3.1.2 KK vs. BCJ-independent basis

In previous section we have showed how to derive kinematic numerators ng,n; and n,
satisfying Jacobi identity by eliminating bad contributions. In the derivation we considered
the analytic structures of two color ordered amplitudes A(1234) and A(1324), which serve
as a basis when KK-relations [28] are taken into account. Since there were two remainders
(i.e., the bad contribution part X) we need to introduce three ¢; to achieve our goal. But
could we do better by introducing fewer variables ¢;?

Let us consider only A(1234). To eliminate its remainder term, we only need to average
over two different gauge choices. The constraint conditions for ¢; are

l=c+e
Ty : . 3.22
i { 0=37,Ge(q) - X{ (3.22)

—e(g2)- X7 e(q)- X7

@)X (@) X7 and ¢ = @)X —e(q) X7 Substituting them

which have the solution ¢; =
back, we have

A(1234) = % — % ne = —i(Cre(q1) + Cae(qa)) - %, ny = —i(Cre(q1) + Cae(qa)) (3123)

Having obtained these two numerators, we can define an amplitude using

A(1324) = _=(ns+1) 4 Du (3.24)
t u
It is easy to check that the amplitude just defined satisfies fundamental BCJ relation [1]

by construction,

591 A(1234) + (s21 + 593) A(1324) = 0, (3.25)

Since the same relation is satisfied between physical amplitudes, so1A(1234) + (s21 +
s23)A(1324) = 0, we conclude that A(1324) = A(1324) and in particular, n; = —(ns +ny),
i.e., the kinematic-dual Jacobi identity we would like to have.



Above discussions show that, because of the BCJ relation for color-ordered amplitudes,
we can use fewer ¢; to eliminate remainders. After doing so, X; in rest of the color-ordered
amplitudes automatically disappear, i.e.,

cie(qr) - X5 + cae(qe) - X5 =0 . (3.26)

Now we have developed two methods to eliminate remainders through averaging over
KK or BCJ basis of amplitudes. We need to clarify the relation between these two methods.
To do so, let us assume that we have solution (c1, co, c3) with gauge choice €(q3) = ae(q1) +
Be(q2). This gauge choice can be achieved if reference spinors of polarization vectors of three
particles, for example, 2,3,4 are same for gauge choices €(q1),€(q2), €(g3), but reference
spinors of polarization vector of particle 1 satisfy the relation €(q3) = «ae(qr) + Be(ge).
Putting it back to the second equation of T3 given in (3.19) and comparing with the second
equation of T given in (3.22), we can write down the following solution for 75,

¢y =c1+oacg+ye(q) - Xy, 2 =co+ Pez —ye(qr) - X7 (3.27)

where y is determined by ¢; + ¢2 = 1 to be y = %. It is easy to check that
1

the above indeed constitutes a solution if we assume o+ — 1 = 0. In this case (3.26) is

automatically satisfied because of the third equation in (3.19). To see that indeed a+3 = 1,

notice that the reference spinors of particle 1 have relation s = ajiq + bpia, so

o Az a[1mm] A1 b[1]pe] A1fi2
) = i) = <amm +b[1lﬁz]> i+ (amm +b[1\ﬁ2]> i

—a+p=1

This explanation shows that solutions (¢1,¢2) can be taken as a special case of solutions

(c1,¢2,¢3).

3.2 5-point numerators

For 5-point amplitudes KK relations reduce the number of independent color-ordered ampli-
tudes to six. It was shown by Bern, Carrasco and Johansson [1] that these six amplitudes
can be written into following forms with fifteen numerators suggested by possible cubic

graphs:
ny ng ns nyg ns
A(12345) = + , (3.28)
512545 523851 534512 545523 551534
ne ns nr ng no
A(14325) = )
514525 543851 532514 525543 551532
g ns nio ng ni
A(13425) = + + — ,
513545 534851 542513 525534 S$51542
ni2 ni n3 ni3 ns
A(12435) = + — + — ,
512835 524851 543512 535524 551543
niq ni1 ny nis n2
A(14235) = — — — — ,
514535 542851 523514 535542 551523
nis n2 nio ny ni
A(13245) = — — — —

)
513845 532551 524513 545532 551524
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Figure 3. A Feynman diagram contributing to n}

To find expressions for these n;, as in the 4-point amplitudes, we divide contributions
from Feynman rules to good contributions plus a remainder (bad contributions),

ni n n n n

A*(12345) = + X*(12345) . (3.29)

$12845  S$23S51  S34812 545523 551534
As before we use x to denote quantities that have not been contracted with polarization
vectors. The definition of n; and X™ is the following. First we include all contributions that
contain at least one 4-point vertex in Feynman diagrams to X*. For remaining Feynman
diagrams having only cubic vertices like figure 3 for example, we use (2.5) to translate

3-point vertices to kinematic structure constants, thus obtain 6

[(F7 oo+ f29_0) + [ ) (F 93+ 9 g+ 270 ) x (s + o0 a) + f45,

(3.30)
Expanding (3.30) produces 27 terms, five terms among them have consistent arrows in the
internal lines (see figure 4) (so they are good contributions). We assign these five terms to
nj and the rest to X* (these bad contributions), thus we have

nT _ f1727gfg’3h(fh’45 + f5,h4) + f1’2—gf_h’_g—3f475—h + (fg,172 + f2’gfl)f3’_hgf4’5—h-

(3.31)
It is worth noticing that five terms in nj correspond to five possible assignments of
single outgoing arrow to external legs in graphical representations. If we use nj, to
denote the consistent graph having leg k with outgoing arrow, for example njs; =
f1’2_gf*h’*9_3f4’5,h, the numerator can be written as nj = ZZZI nj - It is straight-
forward to see that numerators from rest of channels can be written into similar structures.
In particular, (—nj5) is found to be the same as permutation (123) — (312) of nj

—nis = [P fPPR (M ) A g T o f Y (0P ) [T S
(3.32)
and (—nj), the same as permutation (123) — (231) of nj,

=g = g P s ) SR f T (s PR a) fE T Y
(3.33)

For simplicity we neglect the overall factor %, where 1/4/2 comes from (2.5) and (—i)? come from

two propagators.

,10,
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Figure 4. Five terms with consistent arrow directions contributing to nj

When adding up (3.31), (3.32) and (3.33), terms with same outgoing leg will add to zero
by Jacobi identity. Thus by our construction, we have Jacobi identity n] — nj; —nj = 0.
Similar argument shows when we permute (345) — (534) we will produce (—nj%) and when
we permute (345) — (453) we will produce (—nj,). Thus nj —n§ — nj, = 0 is guaranteed
by Jacobi identity of kinematic structure constants ...

3.2.1 Eliminating contact terms

Having established the form (3.29) as well as similar expressions for other five am-
plitudes given in (3.28), we construct the n; given in (3.28) by averaging over differ-
ent choices of gauges. Just like for the 4-point amplitudes, we consider seven gauge

choices denoted by €(g;) with ¢ = 1,...,7 for polarization vectors under gauge choice
¢ = {41,993, 94,, 95} and impose following seven equations for coefficients c¢;,
1=1,...,T:

7 7
de=1, ) acla) X;=0, j=1,...,6 (3.34)
i=1 i=1

where six remainders X are those given in (3.29). After solving ¢; from above equations,
we can get n; defined in (3.28) as following

7
n; = Z cje(gj) - nj . (3.35)
j=1

Since by our construction, n; satisfy Jacobi identity even before contracting with polariza-
tion vectors and c; are same for all fifteen n;, n; will too satisfy Jacobi identity.

In the prescription above, we use the KK-basis (i.e., the basis under KK-relation) and
BCJ relations between amplitudes follow as a consequence of the Jacobi identities among
n;. However, if our focus is the construction of these n; numerators, we can take another
logic starting point using only BCJ-basis (i.e., the basis under BCJ relation). For 5-point
amplitudes, we can take A(12345) and A(13245) as BCJ-basis and consider averaging over
three different gauge choices

3 3
citeates=1, Y ce(q) X*(12345) =0, > cie(q) - X*(13245) =0 (3.36)
=1 =1

By imposing these conditions we obtain

3
n; = ZCiEi 'njv I = 17273a4a5’ 10711’15 ' (337)
=1
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Then we construct the remaining seven coefficients using Jacobi identities

ng = nio +n1 —n3 — ng + ns, ny = Ng — Ny, ng = —ns + ns,
ng = ng — N5 + Ng, Ny =n1 —n3g, N3 =nN1+ Nz —n3 — N4 — Ng,
N4 = —No + Ng + Ng (3.38)

The relation between these two eliminating methods can be understood similarly to the
4-point example.

3.3 n-point numerators

Having above two examples, it is straightforward to see the structure of kinematic numer-
ators for n-point amplitudes. Generically a color-ordered amplitude can be written as

A = Z F +X (3.39)
K3

where the sum is taken over all cubic graphs. In this expression, n; contain only contri-
butions from cubic graphs that have consistent arrow directions. All other contributions
from cubic graphs with inconsistent arrow directions as well as graphs with at least one
4-point vertex are assigned to X* part. Furthermore, according to which external parti-
cle has been assigned with the outgoing arrow in graphical representation, we can divide
kinematic numerator into

n
ny =2 n (3.40)
k=1

so that each nj, is represented by a single graph. All these n; j* will have Jacobi identities
among themselves with different 7 but same fixed k.

Having expressions as in (3.39), we average over amplitudes to eliminate the remainder
terms X*. This can be done through averaging over either KK-basis or BCJ basis. The
average coefficients ¢; are determined by N1 = (n — 2)! + 1 equations

1= Zj\il C;
T N * 1 3.41
{0: i\glcie(qi).Xj, ]:1,.”7(71_2)! ( )

for KK-basis or No = (n — 3)! + 1 equations

1=
Trey - 7 3.42
Bed {ozzﬁvjlcie(qi)-x;, j=1,...,(n—3) (342)

for BCJ-basis. After the averaging we have n; = Zf\;l cie(qi) - n;‘ Other n;’s which do not
show up in the KK-basis or BCJ-basis can be constructed from various relations including
Jacobi identities. From either method we can construct the numerators proposed by Bern,
Carrasco and Johansson in [1].

A technical issue concerning the above averaging procedure is the existence of solution
for equation (3.41) and (3.42). The existence for lower point amplitudes can be checked
by explicit calculations, but we have not find a proof for general n. In this paper, we will
assume their existence.
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4 Fundamental BCJ relations

In previous section, we have shown how to construct the kinematic numerator satisfying
the Jacobi identity by averaging over different gauge choices. An important step is to
separate contributions from Feynman diagrams to two parts

A — Z >kt 5 4 X (4.1)
= =5 ’ )

7
where each n;"k can be represented by a single consistent arrow graph with only cubic
vertices. Effectively, we can treat these graphs as if they were built from the Feynman
rules with only cubic vertices, where the coupling is given by kinematic structure constant
f%.. From this point of view we can define an n-point color-ordered amplitude for given

n
A= E 5 : (4.2)
. 7
7

The physical amplitude is given by linear combination of these fixed-k amplitudes

N n
A= ce(g) Y Any (4.3)
=1 k=1

An important feature of formula (4.3) is that the part Zfi 1 ¢i€(gi) coming from averaging

k as

procedure does not depend on the color ordering of external particles.
The amplitudes defined in (4.2) contain similar algebraic structure as these amplitudes

A%COZOT) of color-dressed scalar theory considered in [29]. In that paper we have shown that

amplitudes A%COZOT) satisfy color-order reversed relations, U(1) decoupling relations, KK-
relations and both on-shell and off-shell BCJ relations. Because of the similarity between
{eolor) and A ., it is natural to ask if the A* . defined by (4.2) obey these

same identities. We can not make the naive conclusion since there are differences between

amplitudes A

these two theories. First the kinematic coupling constant fabC here is only antisymmetric
between a,b while group structure constant f®¢ of U(N) is totally antisymmetric. In
addition, fabC depends on kinematics while ¢ is independent of momenta. Bearing these
in mind, we discuss properties of new amplitudes in this section.

4.1 The color-order reversed relation

Since each n:‘k is given by single graph, it is easy to analyze it directly. Under the color-
order reversing, each cubic vertex will gain a minus sign coming from f%, = —f% (See
figure 5a for example). For n-points amplitudes, there are (n—2) cubic vertices and (n—3)
propagators, thus we will get a sign (—)"~2, i.e., we do have

p(123.0m) = (=)" Al (n...321) . (4.4)
To see U(1)-decoupling relation

> AL(C(L,2,.. . n—1),n) =0 (4.5)

cyclic
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2 3 4 1 5

(a) reversing the color ordering in a five point graph

) n-1

"M m+1

order(12...n) order(m+1...n-1,1,2..m,n)
(b) two typical terms in U(1)-decoupling relation

Figure 5. Demonstration of color-order reversed relation (part (a)) and the U(1)-decoupling
relation (part (b))

is satisfied, we draw two typical terms in the cyclic sum in figure 5b). These two terms
have same denominator and same numerator up to a sign since the only difference between
them is the reversing of vertex connecting n, thus contributing (—) sign. However, the left
term belongs to color ordering (123,...,n) while the right term belongs to color ordering
(m+1,...,n—1,1,2,...,m,n), thus we can see the general pair-by-pair cancellation in
U(1) identity given in (4.5).

4.2 The off-shell and on-shell BCJ relation

Just like the color-dressed scalar field theory, the A7, satisfies a similar off-shell BCJ
relation, which can be represented graphically by

n n

n ) n 2
Kn
Sa1 + (Sm"' Sza) + ...+ (SZ1+"'+SZ,n—1) =
1 -1 -
n 1 n1 1 3 n_12 1 3 n'1

2 g 32...

(4.6)
with the momentum of particle n taken off-shell. Depending on the arrow directions of 2,n

we have another two similar relations

n n

n ) n 2
kl'l
S21 l/ + (521+ Sza) +...+ (521+"'+32‘n-1) =
1 n-1 -
1 .- 1 5 o nel 2 15 ..n1

2 3 3,
(4.7)
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and

n n , n 2
kn
Sa1 + (8,+8,) +...+ (Sz1+ "'+52,n—1) =
n-1 -
1 1 .. N1 1 3 - n-1 2 1 3« N-1

(4.8)

There three relations show that the off-shell BCJ relations are, as in the case of color-order

reversed and U(1)-decoupling relations, independent of the choice of arrow directions. The

proof of relations (4.6) is similar to the proof given in [29] for color-dressed scalar theory.

The case of n = 3 is trivially true from momentum conservation. For n = 4, the left
handed side of relation (4.6) consists of following sum of graphs,

(1) 5 (2) (3) (4) (5) ()
4 — 4 ‘/ 3 4 . 2 4 2 4 2 4 2
1 2 1 2 1 3 1 31 3 ’ 3
We note that graphs (2) and (5) cancel due to antisymmetry of the structure constant.
Using Jacobi identity, graphs (1) and (6) combine to produce

4 3 3 2 4 2
e & e
Sa1 + Sy = S5
T PR & g

which, when added to the rest two graphs (3) and (4), produces the result as claimed using
the on-shell conditions of particles 1,2, 3.

s 1o T
K

Similar manipulations can be done for (4.7) and (4.8).

Having proven the n = 4 example, let us consider, for example, relation (4.8) for
general n. We divide contributions to any amplitude A;k“k into the two sub-amplitudes
that share same cubic vertex with leg n. (See part figure 5b as an illustration.) i.e.,

#(np)=n—2
wk= > A({nw}; PL)Vs(n, Pr, Pr)Ar(—Pr; {nr}) (4.9)
#(nr)=1
where the number of legs in set ny can be 1,2,...,(n — 2), and we used V3(n, P, Pr)

to denote the cubic vertex that connects leg n to the two sub-amplitudes. Using this
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decomposition, the left handed side of (4.8) can be expressed by following graphs

E1(SZ1+ Syt szj) ( Jg: + i /l\C) 4 EZ ?% )
ji=1 k=1 k=j+1
| Anyiiv il /,i A iaA

1 ..k k+12 n-1 1 .. 2j+1...n-1 1. 2 j+1.. n1 1 2k k+l..n-1

(4.10)

We can categorize terms in (4.10) according to whether leg 2 belongs the left or right
sub-amplitude. When the 2 belongs to the left, the summation is given by

n n

MA™RRTTTTR AR

’ 1 k2 ktln1 1. k  k+l..n-1
(4.11)

where we used the off-shell BCJ relation for left part with fewer points. The value of k in
sum (4.11) can be 1,3,4, ...,n—2. Similarly, when leg 2 belongs to the right sub-amplitude,

the summation is given by
n n
(SZ1+ 523+ -t SZI) /k pgR
/L\ +ot [ ]

QR 9 oo :
n R ARLVAY:

- 1.. k k+1..n-1
2k+1n1 1 k  k+1, n-1 1. k+1 .2

n

(Sprt Syt . +8y) [ (SyF Syt ... +Sy)

(4.12)

The above sum can be split into two parts. First there are terms carrying the common
factor Zle S9i, and their sum (Zle s9i)(Ar(2,k+1,...,n—1,PRr)+ A(k+1,2,...,n—
1,Pr)+...+A(k+1,...,n—1,2, Pg)) = 0 by U(1)-decoupling identity. The remaining part
can be simplified by off-shell BCJ relation for fewer points. The value of k for sum (4.12)
can be 1,3,4,...,n — 2. The sum given in (4.11) and (4.12) can be further combined to

n n n

G RTR G
A AN AN ATENAYA
Tk k+lnt 1.k k#tnt Tk keln- (4.13)
by using the Jacobi identity derives from permuting the internal 4-point tree

{n,2,{1,...k},{k + 1,...,n — 1}}. When we sum over k, we get (kn, +
ko)*V5(Pr,2,n)A%_1(1,3,...,n — 1, Py). Finally, result given in (4.13) is combined with

N
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term (Z?;ll 505)V3(Pr,2,m)A;_1(1,3,...,n — 1,Pr) coming from the decomposition of
Ar(1,3,4,...,n —1,2,n) according to (4.9) ( which is the boundary term that has been
neglected in the sum (4.11) and (4.12)). Putting together, we have the same graph mul-
tiplied by (k,, + k2)? — 2ko - k, = k2, which is exactly the right handed side of (4.8). In
other words, we have proved the off-shell BCJ relation for Ay, amplitudes defined in (4.2).
Taking the on-shell limit k2 — 0, we get the familiar on-shell BCJ relation.

4.3 The KK-relation

The KK-relation found originally in [28] for gauge theory is given by

An(ﬁla"wﬂﬁl?al?'"7a87n) = (_1)T Z An(la{a}7n)7 (414)
{o}eP(O{a}uO{B}T)

where the sum is over all permutations keeping relative ordering inside the set o and the
set BT (where the T means the set 3 with its order reversed), but at the same time allowing
all relative orderings between sets a and /5. We show that relation (4.14) still holds if we
replace A, by the fixed k amplitude A7, defined in (4.2).

When {a} is empty set (4.14) reduces to the color-order reversed relation (4.4), while
when there is only one leg in the set {8} or the set {a}, (4.14) reduces to the U(1)-
decoupling identity (4.5). Thus the color-order reversed relation and the U(1)-decoupling
identity are just two special cases of KK relation. Since KK-relations coincide with these
two relations for n < 5, the starting point of our induction proof is checked.

Now we give the proof. Using the graphical representation, when the set {a} is not
empty, there are two types of graphs depending on if 1 is at the left or right handed side
of n. When leg 1 is at the right sub-amplitude as described by the left graph of (4.15)

By ()™
~—

B n a B n E >
1{ ~ 1{
= = n
S Z E :/ A
1
; o aup, o aup,

we can use KK-relation of the right sub-amplitude to get the middle graph of (4.15). After

(4.15)

that we reverse the ordering of sub-amplitude $; and flip it to the right hand side of n.
The final result is the last graph of (4.15). When leg 1 is at the left handed side of n as
given by the left graph of (4.16),

e i

°UB<> (4.16)
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we can use KK-relation for the left sub-amplitude to get the right graph of (4.16). When
we combine results from (4.16) and (4.15), we find they are nothing but the graphical
representation of right handed side of equation (4.14) except contributions from following

graphs
1 n
~_
aup (4.17)
These contributions are nothing, but”
V3(nl1P) > Ar (P, o)) | =0. (4.18)
{o}eP(O{a}uO{BT})

Sum inside the bracket of (4.18) to be zero can be proved by exactly same method as that
given in [29] after using two times of KK-relation for (n — 1)-point amplitudes.

5 Kinematic ordering of gauge theory amplitude

As proposed in [30] and proved in [29], the full gauge theory amplitude can be represented
by the manifestly (n — 2)! symmetric KLT formula (which was found in [34])

An,

~ ()

nZA(n,y(Q, coon=1),D)S8H(2,...,n=1)|B(2,...,n—1)],,A(1,B(2,...,n—1),n)
~ B 5123...(n-1)

(5.1)

where leg k, has to be taken off-shell prior to the summation and the full amplitude is
given by the limit k2 — 0. The momentum kernel S is defined as

k k
S[ila cee 7ik’j17j27 e 7jk]P1 = H(Sitl + Z e(itv iq)sz’tz’q) 3 (52)

t=1 q>t

where 6(i¢, iq) is zero when pair (i, i4) has the same ordering in both set Z, J and otherwise
it is one. In the KLT formulation above, one copy of the amplitudes A'is calculated from the
color-dressed scalar theory discussed in [29] and other copy A is the familiar color-ordered
gauge theory amplitude.

To calculate the sum in numerator of (5.1), let us consider the following sum for given
fixed ordering of ~, for example, v(2,...,n —1) = (2,3,...,n— 1),

> S[2.8,. . n = 1ig iz, inalky An(L, d2, 43, ino137) (5.3)
{i}eSp_2

"Generalized U(1)-decoupling equation (4.18) has been written down in [35].
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where the semicolon is used to emphasize that leg n is taken off-shell. For amplitudes
given by

n—ch e(q:) (ZA ) (5.4)

since the part Zfil cie(qi) is same for all color orderings, using the definition of function

S we see that the sum in (5.3) can be written as®

Y SB.n =15, jn]

{j}ESn_3
X [321An(1 2,73 .. Jn—1;5m) + (s21 + 52j3)121n(1aj37 2, n—in) + ...

p”V32nc S SBeon—1s e Guet)Ana(L s 50). (5.5)
Pr2 {5}€8n-3

where {j} is the set defined by deleting leg 2 from the set {i}. In the last line we have
used off-shell BCJ relation (4.8) as well as the form (5.4). The sum over the new S can be
done similarly and we obtain

p"V(an) p%vg, Beer) Y Sl.o.n— sy juoi)Au1(Lay..501)  (5.6)
Pro Pras (7}E€Sn_a

Repeatedly reducing the number of legs contained in the amplitude one by one for A7 , we
arrive at the graphical representation

n k2 n
2 S[2,..n-1{i}, ] = 3 SI3..n-10i}, ]
Sn—2 Sn—3 ’ 2
1 .
{I}2n1 1 {I}
3,n-1

= = n(—r—r—r—r—r—1

2

Ko 2 3 4 - n-2 n-1 (5.7)

Putting this result back to amplitudes given by (5.4), the KLT formula (5.1) produces

In this form, we have used V3, which is not exactly right since we have not included the factor

Z;N:l Cif(Qi)'
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naturally the following expression

-+ n-2 n-1

CTTTT 7T
2 34 - n-2n-1
_ N
A=Y A Y eeley) (5.)
v(23...(n—1))ESn—2 j=1 + 1 T i‘T‘ T‘ T‘ n
2 34 - n-2n-1

A B B I

2 34 - n2n-1
The graph at the right handed side of (5.8) is very similar to the chain of U(N) group
structure constant given in [27]. The manipulation demonstrated above can obviously be
applied to KLT relation of gravity theory, so graviton amplitudes can be ordered by the
same kinematic structure constants.

6 Various forms of amplitudes

From recent progresses we saw that amplitudes of gauge theory can be expressed in follow-
ing three formulations [1, 27]:

i1y

double — copy form : Aot = i) (6.1)
Trace form : Aot = Z Te(T'...T")A(0) (6.2)

ceSh—1
DDM form : Ay = Z Clio(2. .- nAL, 0,1) (6.3)

gESH_2

where A are color ordered amplitudes, T is the matrix of fundamental representation of
U(N) group and ¢;, ¢y|(2,....n—1)|n are constructed using the structure constants febe. For
example, we have

Cllo(2,n—1)n = fOLOTfTO8T2 | fEn=son-al (6.4)

The transformation from double-copy formulation to DDM was shown in [29] using the
KLT relation, while the transformation from DDM to Trace was given in [27] where the
following two properties of Lie algebra of U(NN) gauge group were essential

Property One :  (f%);; = f*9 = Te(T*[T", 7)), (6.5)
Property Two:  » Tr(XT*)Tx(T"Y) = Tr(XY)
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A special feature of double-copy formulation is that both ¢; and n; satisfy the Jacobi
identity in corresponding Feynman diagrams with only cubic vertices. Because of this
duality, it is natural to exchange the role between ¢; and n; and consider the following two
dual formulations

Dual Trace form : Aiot = Z Tgl,,.ong(a) (6.7)
UESn—l

Dual DDM form : At = > Moz, a-1)nA(l,0,7) (6.8)
0ESH_2

where A is color ordered scalar theory with f¢ as cubic coupling constants (see the ref-
erences [29, 30]) and 7 is required to be cyclic invariant. Indeed, the Dual-DDM was
given in [11] while the Dual-Trace-form was conjectured in [31] with explicit constructions
given for the first few lower-point amplitudes and a general construction was given in [26].
Although the existence of above two dual formulations were established, a systematic Feyn-
man rule-like prescription to the coefficients 7 and n is not known at this moment. Our
result (5.8) niyy, for dual-DDM-form serves as a small step towards this goal.

Having above explanation, let us consider following situation where both ¢;, n; satisfy-
ing Jacobi-identity can be constructed by Feynman rule, i.e., the theory can be constructed
using cubic vertex with coupling constant fabc.fabc. We want to know under this assump-
tion, which dual form comes out naturally. The conclusion we found is that the dual
DDM (6.8) is more compatible with double-copy formulation.

To see that, let us note that the total amplitude can be constructed recursively as

n—1
AL2,...m) =3 Y ]_-161@2]7-161@«4(61];1;17 e U) «4(62,];12}, 3 'avn—z—mn)7 (6.9)
i=1 Split UL y.eeyUs Ulyee0sUn—2—14,1

where the second sum is over all possible separations of (n — 1) particles into two subsets
{u},{v} with n, = i. Assuming the color-decomposition holds for lower-point amplitude
A, we can substitute the lower-point DDM-form into above equation and obtain

A(L,2,...,n)
s PUR Aler,a 1, U;)
— § E fleleiflelei % E f€1a162f62a2€3 o JT_'e.L-,lociflui 1, 1’2' s Q=15 Uy
i=1 Split acperm{uy,...,u;j—1} U1,.Ue
Aleir Bry s Bui-2,m)
eif1ei+1 Teit1B2€it2 €n—3Bn—i—2n Py Pn—i—2,
x ) Feibrec F LT -
56;067'7”{1’1,-“71%727@'} V1yeeyUn—i—2,1
n—1
_ E § Fleiei perarer  pei_iai—iu; peifieivr  Fen—3fn-i—2n
i—1 Split
Flere, Aler,on, ... 0-1,u;) Ales, B, -+ ., Br—i—2,1) 6.10
P2 P2 ( : )
ULs.eos Ui Uiy Un—i—2,M
where for given permutations aq,...,a; of us and fSi,...,8,_;—2 of vs, the contraction of

Fs has the structure at the left handed side of figure 6. After applying Jacobi identity,
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Q-1 ai-1 ai-1
Qs = Bis B Qs = Bist Bt Qs = as Bin B
i | I i l I || l

1 n 1 n 1 n

Figure 6. We can use Jacobi identity to reduce the contraction of Fs.

2 n-1

1 n

Figure 7. A DDM chain with contractions of structure constants F'2¢1 Feidez Fen-sn—1ln

Fleiei Fereiez hocomes
‘/—_‘16161'./—_’6104162 — flalelfelegei _ flezelfeloqei7 (611)

i.e., the right handed side of figure 6. Iterating this procedure like the one did
in [27], we get a sum of 2! DDM chains (e.g., figure 7) where the ordered set
O{aa,...,a;—1} is split into two ordered sets O{c} and O{p} and the form is given by
(—1)sFloe | FeoweFeweepse  FepreFebre | Fen—s.fn-2-in  All these forms are multi-
plied by FX¥1€ A(eq, o, ..., 01, u;)Alei, B, - .. Bni—2.n). Doing same things to other
permutations of ui,...,u;—1s and collecting all terms having same DDM chain structure,
we get,

loier eote Teue repse ep1e Tefbie €n—3,Pn—2—i,M

1 -
X]_-lele,T Z A(er, Y1, - Yie1,14)
Uleti | veOP({a} U{p})
1 ~
‘PQ—A(elﬁ 617 s 7/Bn—i—27 n)
V15 Un—2—4,M
— ]:10161 . ]_-eate]:euie]:epse . ]:6016]_‘6616 . ].‘671731571—2—1'7”
1~ 1 -
Xf1€1€z27A(617 01y, 0¢t,Uj5 Psy - - 7p1)2—A(ei7 Bla cee 7671—1‘—27 n)
Pulvm’ui Pvlwwvanfi,n
(6.12)

where the KK-relation has been used for the sum in square bracket.
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Putting this result back to recursion relation we reach our final claim

A(1,2,...,n)

n—1
= Z Z Z Z |:f10’161 | Feote Feuie repse .Jjeplefeﬁle o f&n_g,ﬂn727hn
i=1 Split aeS{u} peS{v1}

PO 1 ~ 1 ~
leie;
X-F ! ’LPQ A(617017-~-7at7ui7p5a"'7p1)P2 A(ei7617"'76n—i—27n)
U ey Ug U1,y Un—2— 4N

— E falacrgel fen—Saan_lan

oES_2

n—1 e e
x Z]_':iéléi A(@l, Olyeees Oty Uiy Psy - v e 7p1) A(eia 617 cee 7611—1'—2777‘)
=1

= P’gla'“vui P317---,Un727i7n
= ) Fuens  Festna® A(1g(2...n— 1)n) (6.13)
0ESH_2

where at the last step we have used the recursion relation for color ordered amplitudes.

7 Conclusion

In this paper we have presented an algorithm which allows systematic construction of the
BCJ numerators as well as the kinematic-dual to the DDM formulation. We have shown
that assuming gauge symmetry provides enough degrees of freedom, we can express tree-
level amplitudes as linear combinations of cubic graph contributions, where Jacobi-like
relations between kinematic numerators can be made manifest.

Although our construction is systematically, it is a little bit hard to use practically. In
other words, our results is just a small step toward the simple construction of BCJ numer-
ators, which can have important applications for loop calculations of gravity amplitudes.
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A Off-shell KK relation from Berends-Giele recursion

The KK-relation was first written down in [28] without proof. With our knowledge, a
proof can be found in [27]. Since the off-shell tensors can be constructed by Berends-Giele
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recursion relation [32], it is natural to prove the off-shell KK relation by this recursion
relation and in this appendix we provide a proof for reader’s convenience.
The off-shell KK relation is given as

J(lv{a}vn7 {B}) = (_1)n5 Z J(1,0,n), (Al)

occOP({a} U{BT})
where J(1,2,...,n) is an off-shell tensor. After contracting J with on-shell polarization
vectors of external legs, it becomes a color-ordered amplitude A(1,2,...,n), and thus the

off-shell KK relation becomes the on-shell KK relation.

According to Berends-Giele recursion relation, for a given tensor, we can pick out a
leg, for example, the leg 1, to construct whole tensor recursively. In the formula, the leg 1
can be connected to either a three-point vertex or a four point vertex, i.e., we can separate
the tensor into J(1,2,...,n) = JO)(1,2,...,n) + JW(1,2,...,n). We will do the same
separation at both sides of (A.1) and show the matching for each part.

Connecting to 3-point vertex: in this case, the R.H.S. of KK relation (A.1) can be
expressed by

(_)TLB Z Z ‘/&5162 P21 J(€170'A)P21 J(627037n)7
a— aqap oa€ OP({asy U{Bs)7) a0 i
B = Ba,Bs op € OP({ap}tU{Ba}")

1

= (=)™ > ‘/(5162 p? > J(e1,04)
a—aa,ap;B—Ba,0B @a,68 \5,4e0P({as}U{Bs}T)
1
><P2 Z J(eg,JB,n) (AQ)

aB,Ba \opeoP({ap}U{Ba}T)

where the first sum is over all possible splitting of set «, § into two subsets (including the
case, for example, a4 = ) and the second sum is over all possible relative ordering between
subsets o, ;. Now we consider the sum in (A.2) for different splitting:

(i) If both ay and Bp sets are nonempty, we can use lower-point generalized U(1)-
decoupling identity (4.18)

> J(er,04) = 0. (A.3)
7A€0P({aa}UiBR}T)

Thus this case does not have nonzero contribution.

(ii) If Bp set is empty, we have

1 1
Y. Vi dlen o) x 5r—J(e2,am,n, ), (A-4)

a—ap,aB A ap,B

where we have used lower-point KK relation to sum up the last line in (A.2).
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(iii) If s is empty, we have
ylaa L g Ly A5
Z PT (627a7n7/8A) X PT (617/83)7 ( . )
B—Ba.BB ,Ba B

where we have used lower-point KK relations for the second bracket, the color-order
reversed relation for the first brackets as well as the antisymmetry of three-point
vertex V123 = (=1)V132 (so the overall factor (—)"# disappears).

The sum of contributions from (ii) and (iii) is just the recursive expansion of

J®(1,a,n, B).

Connecting to 4-point vertex: in this case, the R.H.S. of KK relation (A.1) is given as

" 1
(_) 5 Z ‘/'(1518263 52 Z J(@hg—A)

a—aa,op,aciB—Ba.8s.8c aaBa \orcoP({aa} U{BL})
1 1
><P2 Z J(eg,UB) X P2 Z J(eg,a(;,n)
o8P \opeoP({ap} (A5} ache \oceoP({act U{BE}

(A.6)

where the sum is over all possible splitting of sets «, 8 into three subsets (with possible
empty subset). For given splittings a — aa,ap,ac, 8 — Ba, BB, Pc, there are several
cases:

(1) If both {aa} and {4} are nonempty or both {ap} and {Sp} are nonempty, we can
use lower-point generalized U(1)-decoupling identity (A.3) and the sum is zero for
the first or the second brackets in (A.6).

(ii) If o4 = OP({aa}), op = OP({ag}), oc € OP({ac} U{BT}) , we have nonzero

contribution

€1€2€ 1 1 1
Z V(ll)1 o PTJ(ehaA)pTJ(ez,aB)Pz J(ez,ac,n, B), (A7)
@A ap

a—ap,0B,0C ac,B

where we have used lower-point KK relation to sum up the last bracket.

(iii) If oa = OP({BL}),05 = OP({BL}), oc € OP({a}U{B%}), we have nonzero contri-

bution
s ] RS
Z ‘/(4) P2 J(el’ o, n, BA) P2 J(€27 BB) P2 J(e?n BC): (A8)
B—B4,88,6c @,fa BB Bc

where we have used lower-point KK relation for the third bracket and the color-
order reversed relation for the first and second brackets as well as the symmetry of

four-vertex ‘/(}534 = ‘/(}1‘)132.

— 25 —



(iv) If o4 = OP({a4}), op = OP({B%}), oc € OP({ap}U{B%}), the nonzero contri-
bution is given as
ejeqe, 1
(_)nﬂ Z Vv(i)l 2 Sij(ebaz‘l) J(e%ﬁg)

PQ
a—aa,ap;B—Ba,0B @A

1
2
PBB

) A9
AB:PA \oeOP({ap}U{BL})

Similarly, If o4 = OP({B8L}), o5 = OP({aa}), oc € OP({ap} U{B%}) , we have

1 1
(_)ng Z VZezewaTJ(eQ”@g)iJ(el,OéA)
(4) P3 P2,

a—aq,ap;B—Ba,0B

1
X P2 B Z J(€37 ag, TL) . (Alo)
*B:PA \geOP({ap}U{B%})

where it is worth to notice that the 4-point vertex is written as VéSQeleg. The reason
doing so is because the 4-point vertex is

234 . i
V! = My psNuops — 5(”#1#277#3#4 + 77#1#477#2/13)' (A'll)

so we have following identity
yl234 | 1824 3 1243 (A.12)

Using this identity and lower-point KK relation for the third brackets and the color
order reversed relation for the first or the second brackets (thus the factor (—)"s
disappears), the sum of above two contributions becomes

1 1 1
Z V(}Sles@PTJ(elaOCA)TJ(eiiyaBanaBA)PTJ(e%BB)'
a—ag,ap;B—Ba,0B xa BB

ap,Ba

(A.13)
The sum of (i4), (iii), (iv) is just JH (1, o, n, B).

Having shown both 3-point vertex part and 4-point vertex part have KK-relation, we
have shown the whole off-shell tensor J(1,«,n, 3) has the KK-relation. In the proof, we
have used the antisymmetry of three-point vertex under exchanging a pair of indices as well
as the identity between 4-point vertex. This proof shows that if a tensor is constructed only
by three-point vertices, it obeys KK relation when the three-point vertex is antisymmetry
under exchanging a pair of indices.
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