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Abstract — Home Network-Attached Storage (NAS) 

provides an easy way for data sharing and backup among 
multiple consumer electronic devices in home networks. 
Because of large capacity and cost effectiveness, disks are 
widely adopted in home NAS devices. In addition, data writes 
are common for many home NAS devices since these devices 
are usually used for data storage and backup.  

A writeback policy selects which dirty buffers are to be 
flushed to the disk, which is critical to the system performance 
under write-intensive workloads. In this paper, an intelligent 
writeback policy for home NAS called TESA is proposed. In 
contrast to most existing writeback policies, TESA considers 
both temporal and spatial information of the dirty buffers to 
improve the writeback performance. Considering the temporal 
information helps to reduce the frequency of writing back 
recently used dirty buffers, and hence leads to reduced write 
traffic. Considering the spatial information causes a reduction 
in the overall seek time and rotation delay of the dirty buffer 
writeback. 

The TESA writeback policy was implemented on a NAS 
evaluation board running Linux kernel. The performance 
results shows that TESA yields a significant performance 
improvement (i.e., up to 33.1%) over the original writeback 
policy of Linux. Moreover, TESA outperforms the policy that 
considers only the temporal information of the dirty buffers by 
up to 21.0%, and it also has up to 10.9% performance 
improvement over a previous policy that considers both the 
temporal and spatial information1.  
 

Index Terms —Writeback policy, Buffer management, 
Home network-attached storage, Temporal information, 
Spatial information. 

I. INTRODUCTION 

Nowadays, data sharing among multiple consumer 
electronic devices in a home network is easy [1], and the range 
of sharing can also be beyond a single home network [2], [3]. 
Home Network-Attached Storage (NAS) provides a large 
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storage space for data sharing among multiple consumer 
electronic devices in one or more home networks [4]. For 
example, users can create or download media content (e.g. 
video files) with video game consoles or set-top boxes (STBs), 
and store the content in a home NAS device. The stored 
content can then be accessed by the other devices (e.g. TVs or 
smart phones). In addition, home NAS is often used to backup 
data from consumer electronic devices in the home networks. 
For example, users can backup vital data from their personal 
mobile devices (e.g. laptops or smart phones) to a home NAS 
device. Users can also backup video content captured by 
camcorders (i.e., video camera recorders) to a home NAS 
device. Fig. 1 shows the role of home NAS. 

 

 

Fig. 1. Role of home NAS in home networks 

 
Currently, embedded operating systems (e.g. embedded 

Linux) are widely adopted in home NAS devices. In addition, 
disk is a common storage medium in a home NAS device 
because of its large capacity and cost effectiveness. However, 
due to the large performance gap between disks and 
processors, disks are the major performance bottleneck in 
home NAS devices. Moreover, owing to small performance 
improvement of the mechanical accesses in disks such as plate 
rotation and disk head seeking, the gap is becoming larger. 
According to a previous study, processor speed grows 60% 
annually but the annual performance improvement of disks is 
only 8% [5]. Therefore, for performance consideration, 
operating systems use memory as buffer caches to buffer 
writes to the disks and to cache recently-read data.  



T.-C. Huang and D.-W. Chang: TESA: a Temporal and Spatial Information Aware Writeback Policy for Home Network-Attached Storage Devices 123 

Disk writes are common for many home NAS devices since 
home NAS is usually used for data storage and backup. Using 
memory to buffer disk writes can effectively improve the 
response time in these devices. However, since main memory 
is volatile, dirty buffers (i.e., buffers with data more up-to-date 
than their counterparts in the disk) still need to be written back 
to the disks to reduce the loss of up-to-date data upon sudden 
power outages or system crashes. 

To prevent losing a large amount of up-to-date data upon 
power or system failures, writeback of dirty buffers is 
performed when the amount of dirty buffers reaches a specific 
threshold. The writeback threads of the operating system are 
responsible for performing the writeback task. Specifically, 
these threads select target dirty buffers according to the 
writeback policy, and then flush these buffers to the disk. 

The writeback policy has a significant impact to the system 
performance when there are a large number of dirty buffers in 
the memory and the free memory drops below a threshold (i.e., 
memory pressure). Write-intensive workloads with large 
working sets could easily lead to such condition. Under this 
condition, the system performance degrades severely since I/O 
operations (which require free memory space either as the 
write buffers or as the read caches) have to be blocked until 
enough dirty buffers have been written back and the 
corresponding memory space has been reclaimed [6]. 
Therefore, a writeback policy should select dirty buffers that 
can be efficiently written back to the disk in order to reduce 
the performance degradation. 

To efficiently write back dirty buffers, the disk block 
locations (i.e., spatial information) of the dirty buffers should 
be considered to reduce the seek time and the rotation delay. 
However, such information is not considered by the writeback 
policies of existing operating systems. For example, the Linux 
operating system uses a file based policy, which writes back 
dirty buffers in a file-by-file manner, and some operating 
systems write back dirty buffers that are not used recently. 

In this paper, an efficient writeback policy for home NAS 
called TESA is proposed. TESA improves the writeback 
performance by exploiting both the spatial and temporal 
information of the dirty buffers. Similar to the writeback 
policies of some existing operating systems, TESA considers 
the temporal information of the dirty buffers. Specifically, it 
reduces the frequency of writing back recently-used dirty 
buffers since these buffers are likely to become dirty again 
soon after they have been written back. More importantly, 
TESA considers the spatial information of the dirty buffers to 
reduce the seek time and the rotation delay. Two types of 
spatial information are considered in the design of TESA, and 
the corresponding performance is shown in this paper.  

The TESA writeback policy was implemented on a NAS 
evaluation board running Linux 2.6.12, and 6 widely-used 
benchmarks were used to evaluate the performance of TESA. 
The performance results show that TESA outperforms the 
writeback policy used in Linux by up to 33.1%, the policy that 
considers only the temporal information by up to 21.0%, and a 
previous policy that considers both the temporal and spatial 
information (similar to DULO [7]) by up to 10.9%. 

The remainder of this paper is organized as follows. Section 
II describes the related work, followed by the design and 
implementation of TESA in Section III. Section IV shows the 
performance results, and conclusions are given in Section V.  

II. RELATED WORK 

Traditional operating systems flush dirty buffers without 
considering the temporal or spatial information of the buffers. 
For example, the Linux operating system flushes dirty buffers 
in a file-by-file manner. That is, dirty buffers are grouped by 
files, and the dirty buffers belonging to a file are flushed 
before the flushing of the dirty buffers belonging to another 
file. However, one problem of this policy is that it may flush 
recently-used dirty buffers since temporal information is not 
considered. Writing back these buffers does not help relieving 
memory pressure since they tend to be kept in memory by 
LRU based page replacement algorithms, which are 
commonly used in operating systems. Moreover, these buffers 
are likely to become dirty again soon after they have been 
flushed, and therefore they require to be flushed later. This 
increases the write traffic to the disk. Some operating systems 
avoid this problem by only writing back dirty buffers that are 
not used recently. However, all of the above policies do not 
consider the spatial information of the dirty buffers, and thus 
could lead to longer seek time and rotation delay during the 
writeback. The proposed writeback policy TESA considers 
both temporal and spatial information of the dirty buffers, 
resulting in superior performance. 

DULO [7] and WOW [8] also exploit both temporal and 
spatial information of the dirty buffers. DULO groups dirty 
buffers corresponding to adjacent blocks as a segment and 
flushes the largest segment among the non-recently-used 
buffers. If a fixed amount of dirty buffers need to be flushed, 
flushing larger segments leads to a reduced number of flushed 
segments and hence results in less total seek time and 
rotational delay. However, under workloads with random and 
small writes, segments tend to be small and hence the benefit 
of DULO is limited [9]. WOW is a writeback policy used in a 
storage controller. It divides the storage into a set of 
contiguous blocks, called write groups, locates write groups 
that are not written recently in the CSCAN order, and flushes 
the dirty buffers in the located write groups. However, most 
operating systems already adopt SCAN-like I/O schedulers 
[10] and therefore flushing dirty write groups in the CSCAN 
order does not have much benefit. Moreover, WOW may flush 
a large number of small write groups (i.e., write groups with 
small numbers of dirty buffers) to relieve memory pressure 
since the amount of dirty buffers in each write group is not 
considered. For example, if the operating system requires 
reclaiming 100 dirty buffers, WOW may flush 10 write groups, 
whereas flushing the largest write group (which may have 
more than 100 dirty buffers) may be enough to relieve the 
memory pressure. Therefore, WOW may lead to more disk 
positioning time under such condition. 

AWOL [6] improves the performance of writing back dirty 
buffers by adjusting the start/stop time of dirty buffer flushing 
according to the workload. TESA takes a different approach to 
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improve performance of dirty buffers flush (i.e., by 
considering the temporal and spatial information of the dirty 
buffers). 

Efficient disk scheduling algorithms, like SPTF [10] or 
CSCAN, also help to reduce the latency of flushing dirty 
buffers. The difference between a writeback policy and a disk 
scheduling algorithm is that the former generates write 
requests, which are scheduled by the latter. Both writeback 
policies and disk scheduling algorithms play important roles in 
latency reduction of flushing dirty buffers. 

III. DESIGN AND IMPLEMENTATION 

As mentioned above, a writeback policy (which is 
responsible for selecting target buffers to be flushed) is critical 
to the writeback performance. In this paper, the TESA 
writeback policy is proposed to improve the writeback 
performance by exploiting both the spatial and temporal 
information of the dirty buffers. By exploiting the spatial 
information of the dirty buffers, TESA reduces the seek time 
and rotation delay when flushing dirty buffers, leading to 
higher flushing speed. Moreover, by exploiting the temporal 
information, TESA reduces the frequency of flushing 
frequently modified buffers. As mentioned in Section II, 
writing back such buffers increases the write traffic to the disk 
and does not help to relieve memory pressure. 

In the following, the consideration of spatial and temporal 
information of dirty buffers in TESA is first described, 
followed by the description of the implementation of TESA in 
Linux. 

A. Exploiting Spatial Information 

 Two schemes exploiting spatial information, the zone 
scheme and the zone_segment scheme, are proposed in TESA 
to improve the speed of flushing dirty buffers. The zone 
scheme selects dirty buffers that are close to each other in the 
block locations as the targets. This reduces the seek time by 
decreasing the seek distance. According to the previous study, 
seek time is reduced with the decrease of the seek distance 
[11]. Therefore, the performance of flushing dirty buffers can 
be improved if the seek distances are decreased. To achieve 
this, the disk is divided into a number of fixed-size zones, each 
of which corresponds to a set of contiguous blocks on the disk, 
and the zone scheme selects the zone with the largest number 
of dirty buffers (i.e., the maximum zone) as the target zone 
and flushes the dirty buffers belonging to the target zone. The 
set of the maximum zones ZonesMax is computed by  
 
ெ௔௫ݏ݁݊݋ܼ ൌ ൛ܼ௜ ∈ ܼܵ	ห	∀ ௝ܼ ∈ ܼܵ, 	 ௝ܼ ് ܼ௜, ௝ܤܰ	 ൑  ௜ൟ (1)ܤܰ
 
where SZ denotes the set of all the zones that have dirty 
buffers and NBi denotes the number of dirty buffers in zone i. 
If there are multiple maximum zones in the ZonesMax, the zone 
with the minimum zone identifier in the ZonesMax is selected 
as the target zone. If the number of buffers that need to be 
flushed is larger than the number of buffers in the target zone, 
the next maximum zone is selected again according to (1) and 
the steps repeat until enough buffers have been flushed.  

Note, since the operating system does not know the physical 
location of a given block, the logical block number (LBN) is 
used as an estimation of the physical block location. For 
example, given the zone size as 100 blocks, blocks with LBN 
10 and LBN 20 both belong to zone 0. In this way, it is 
assumed that blocks having close LBNs are also close in the 
physical block locations. Although a modern disk hides the 
physical location of a block and presents only the LBN of that 
block to the host operating system, this assumption generally 
holds and is commonly used [12], [13]. 

Although reducing long seeks, the zone scheme may still 
incur a significant number of short seeks (companied with 
rotation delays) when flushing dirty buffers. For example, 
flushing block 20 right after the writeback of block 10 still 
requires a short seek and a following rotation delay. To 
address this, the zone_segment scheme tries to flush a zone 
containing long segments. A segment is a set of dirty buffers 
that correspond to a set of adjacent blocks on the disk. 
Flushing a whole segment typically requires only a single seek 
and a following rotation delay. As a result, the zone_segment 
scheme reduces not only the seek distance between two 
successive buffer flushes but also the number of seeks and 
rotation delay.  

To locate the zones with long segments, the average 
segment length for each zone i, denoted as ASLi, is maintained 
in the zone_segment scheme. The ASLi can be calculated by 

 

௜ܮܵܣ ൌ ൜
௜ܤܰ	 ܰ ௜ܵ,				݂݅	ܰܤ௜ ൒ ⁄	௔௩௚ܤܰ

݁ݏ݅ݓݎ݄݁ݐ݋								,								0
 (2) 

 

where NBi and NSi denote the number of dirty buffers and the 
number of segments in zone i, respectively, and NBavg denotes 
the average number of dirty buffers in all zones. Note that a 
zone with a large average segment length may have only a 
small number of dirty buffers. Thus, selecting target zones 
purely based on the average segment length of each zone 
could result in flushing a large number of zones that contain 
small numbers of dirty buffers, which would lead to poor 
writeback performance if the distances among these zones are 
long. To prevent this, in (2), the ASL value is set as 0 if the 
number of dirty buffers in a given zone is less than a threshold. 
Currently, the threshold is set as the average number of dirty 
buffers per zone. The set of zones with the maximum ASL 
value, denoted as ZonesMaxASL, is computed by 

 
ெ௔௫஺ௌ௅ݏ݁݊݋ܼ ൌ ൛ܼ௜ ∈ ܼܵห∀ ௝ܼ ∈ ܼܵ, ௝ܼ ് ܼ௜, ௝ܮܵܣ ൑  ௜ൟ (3)ܮܵܣ
 

Note that flushing zones with the maximum ASL value can 
achieve good writeback performance only when the maximum 
ASL value is large. Under that situation, long segments can be 
flushed. However, under workloads with small random writes, 
all the segments could be short and the maximum ASL value 
could be small. Flushing zones with the maximum ASL value 
has little benefit for these workloads. Under these workloads, 
the zone with the largest number of dirty buffers should be 
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flushed in order to reduce the inter-zone seeks. Therefore, the 
zone_segment scheme selects the target zones that need to be 
flushed according to (4). 

௧௔௥௚௘௧ݏ݁݊݋ܼ ൌ ൜
ெ௔௫ܮܵܣ	݂݅			,ெ௔௫஺ௌ௅ݏ݁݊݋ܼ		 ൒ ߙ
,						ெ௔௫ݏ݁݊݋ܼ 						݁ݏ݅ݓݎ݄݁ݐ݋

 (4) 

 
In (4), the target zones are selected from ZonesMax if the 

maximum ASL value ASLMax is smaller than a pre-defined 
threshold α. Otherwise, the target zones are selected from 
ZonesMaxASL. If the target zones are selected from ZonesMaxASL 
and there are multiple zones in ZonesMaxASL, the zone with the 
maximum dirty buffers is selected as the target zone. The dirty 
buffers in the target zone are flushed. If the number of buffers 
that need to be flushed is larger than the number of buffers in 
the target zone, the next target zone is selected again 
according to (4), and the steps repeat until enough buffers 
have been flushed. 

Fig. 2 illustrates the target zone selection in the 
zone_segment scheme. In Fig. 2, each zone consists of 25 
blocks, the number shown on each block indicates the logical 
block number (LBN), and α is set as 2. Initially, the value of 
NBavg is assumed to be 10.3. The ASL values of both zone 3 
and zone 5 are zero since the numbers of dirty buffers in these 
zones are both smaller than NBavg. Zone 4 is selected as the 
target zone since it has the largest ASL value 10, which is 
larger than α. At the bottom of the figure, the dirty buffers of 
zone 4 have been flushed and the NBavg is assumed to become 
7. As can be seen, although zone 5 now has the maximum ASL 
value among the zones, its ASL value (i.e., 1.4) is smaller than 
α. Therefore, zone 2 (i.e., the zone with the maximum number 
of dirty buffers) will be selected as the target zone if more 
dirty buffers need to be flushed.  

 
Fig. 2. Target zone selection in the zone_segment scheme  
 

B. Exploiting Temporal Information 

As mentioned above, flushing frequently modified buffers 
does not help to relieve memory pressure since these buffers 

tend to be kept in the memory by the memory management 
subsystem. Moreover, flushing these buffers increases the disk 
write traffic since these buffers are likely to become dirty 
again soon after they have been flushed. To address this 
problem, in addition to exploiting the spatial information of 
the buffers, TESA also takes the temporal information into 
account. 

Many modern operating systems keep track of temporal 
information for each buffer page, and hence TESA can 
determine whether or not a given buffer is recently-used based 
on that information. For example, an operating system may 
maintain an LRU list for page replacement. In that case, the 
TESA writeback policy can prevent writing back a dirty buffer 
that is close to the MRU (Most Recently Used) end of the list. 
For another example, Linux maintains a flag called PG_active 
for each page, which is set as 1 if the page is recently-used. 
Therefore, in Linux, TESA can exclude all the buffers with the 
PG_active flags set as 1 when flushing buffers. 

Note that the frequently modified dirty buffers would still 
be flushed eventually even they have been excluded by TESA. 
In order to prevent dirty buffers from being kept in the 
memory for a long time, many operating systems periodically 
write back old dirty buffers (i.e., dirty buffers that have not 
been flushed for more than a specific time period). When 
TESA is used in such operating systems, the frequently 
modified buffers can be flushed via this periodic writeback 
procedure. 

C. Implementation of TESA 

To exploit both spatial and temporal information of the dirty 
buffers, the zone and zone_segment schemes of TESA are 
modified to exclude frequently modified buffers. Fig. 3 shows 
the data structures used by TESA to maintain dirty buffers. As 
shown in Fig. 3, dirty buffers corresponding to the same zone 
are grouped together via a zone control block (zone_cb). Each 
zone_cb structure includes the information such as the zone 
number and the number of dirty buffers in that zone. In the 
zone_segment scheme, extra information is included in the 
zone_cb structure such as the number of segments in that zone 
and a block bitmap. Each bit in the block bitmap corresponds 
to a block in that zone and indicates whether there is a dirty 
buffer corresponding to the block. Moreover, dirty buffers 
belonging to the same segment are grouped in a data structure 
called segment control block (seg_cb). As shown in Fig. 3(b), 
zone 1 has 2 segments, one contains dirty buffer pages 
corresponding to blocks 256 to 305 (i.e., 50 blocks), and the 
other contains dirty buffer pages corresponding to blocks 512 
to 611 (i.e., 100 blocks). To speed up the search of a specific 
segment, segments in each zone are managed by a hash table 
of 256 entries. Each entry chains a list of segments and a 
segment starting with LBN B is chained in the list 
corresponding to the entry (B mod 256).  

When a dirty buffer needs to be inserted into the data 
structures shown in Fig. 3, the corresponding zone_cb 
structure has to be located first. This is achieved by calculating 
the zone number according to the LBN of the buffer and then 
searching the zone_list. In the zone scheme, the dirty buffer 
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can then be chained directly under the located zone_cb 
structure. In the zone_segment scheme, however, the 
corresponding seg_cb structure has to be located. As described 
above, the starting LBN of a segment is used as the hash key 
to locate a specific seg_cb structure. Thus, to locate the seg_cb 
structure corresponding to the dirty buffer, the block bitmap in 
the zone_cb structure is checked to find the starting LBN of 
the segment. Note that inserting a buffer may involve creating 
a new segment, expanding an existing segment, or merging 
segments. For example, assuming that two segments are 
presented, segment S1 corresponds to LBNs 1 to 3 and 
segment S2 corresponds to LBNs 5 to 8, and a dirty buffer 
with LBN 4 needs to be inserted. By checking the block 
bitmap, the dirty buffer with LBN 4 can be chained into the 
seg_cb structure of S1, which can be located by using LBN 1 
as the hash key. In addition, all the dirty buffers in S2 need to 
be moved to the seg_cb structure of S1.  
 

 
Fig. 3. Data structures used in the (a) zone and (b) zone_segment schemes  
 

In the zone_segment scheme, a segment can span across zone 
boundaries, and a segment is assigned to a zone if the starting 
LBN of the segment belongs to that zone. The seg_cb structure 
of a segment S is placed in the hash table of a zone_cb structure 
of a zone Z if S is assigned to Z. For example, if each zone 
contains 3 blocks, the segment S1 in the above example spans 
across the boundary of zone 0 and zone 1, and the seg_cb 
structure of S1 is placed in the hash table of the zone_cb 
structure of zone 0 (i.e., S1 is assigned to zone 0). As a 
consequence, inserting a dirty buffer (which requires locating 
the seg_cb structure corresponding to the dirty buffer) may need 
to check the block bitmaps of multiple zones. As in the above 
example, if each zone contains 3 blocks, inserting dirty buffer 
with LBN 4 requires checking the block bitmaps of both zone 1 
and zone 0 to obtain the starting LBN of the segment S1. 

In the implementation, both the zone_cb and the seg_cb 
structures are allocated and freed dynamically. For example, if 
the last dirty buffer belonging to a zone/segment is 

disassociated from the zone/segment (i.e., the buffer becomes 
clean or has been freed), the corresponding zone_cb/seg_cb 
structure is freed.  

The TESA writeback policy was implemented in the Linux 
kernel 2.6.12. Specifically, the following modifications were 
made. First, the data structures shown in Fig. 3 were 
implemented. In Linux, a buffer is represented by a 
buffer_head structure. The buffer_head structure was 
augmented to include a field for chaining the dirty buffers in 
the list shown in Fig. 3. 

Second, the functions that change the BH_Dirty flag or the 
PG_active flag of a buffer were modified to 
associate/disassociate the buffer to/from its corresponding 
zone_cb and seg_cb structures. A buffer is dirty if its 
BH_Dirty flag is set. TESA only associates a buffer with the 
above structures when the buffer is dirty since it only needs to 
flush dirty buffers. In addition, as mentioned above, TESA 
tries to avoid flushing frequently modified buffers. To achieve 
this, only infrequently-used dirty buffers (i.e., dirty buffers 
with PG_active flag set as 0) were placed in the structures 
shown in Fig. 3. Therefore, when the PG_active flag of a dirty 
buffer is set as 1 (for example, during the invocation of the 
function add_page_to_active_list()), the buffer is removed 
from the corresponding zone_cb and seg_cb structures. 
Similarly, when the PG_active flag of a dirty buffer is set as 0 
(for example, during the invocation of the function 
del_page_from_active_list()), the buffer is placed into the 
corresponding zone_cb and seg_cb structures.  

Third, the function background_writeout() was modified, 
which is invoked by the dirty buffer flushing threads (i.e., the 
pdflush thread) to write back dirty buffers when the amount of 
dirty buffers exceeds a specific threshold. Originally, this 
function utilizes the file-based writeback policy, under which 
the dirty buffers belonging to a file are flushed before the 
flushing of the dirty buffers belonging to another file. The file-
based writeback policy was replaced with the zone and 
zone_segment schemes of TESA. Note that the function that is 
invoked periodically to flush old dirty buffers (i.e., the 
wb_kupdate() function) was kept intact so as to allow the data 
updates to be flushed to the disk within a predefined time limit, 
as in the original Linux. 

IV. PERFORMANCE EVALUATION 

A. Experimental Environment and Workloads 

The performance of the TESA writeback policy was 
evaluated on a NAS evaluation board equipped with a 1.6 
GHz processor, 1GB RAM and a 500GB disk (7200 RPM). 
Linux (kernel version 2.6.12) was run on the board and ext3 
was used as the file system. The following 6 benchmarks were 
used for performance evaluation: seq-write, rnd-write, 
postmark, fileserver, videoserver, and data-backup. 

The seq-write and rnd-write benchmarks are included in the 
filebench file system benchmark suite. The seq-write 
benchmark creates a single empty file first and then performs 
a sequence of append operation on this file. The data size for 
each append operation is 4KB. The rnd-write benchmark 
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repeatedly issues 16KB random writes to a 2GB file. The 
fileserver benchmark (included in filebench) simulates the 
workload of a file server, which performs a sequence of 
creation, deletion, append, read, and write operations. The 
initial file set contains 10k files with mean size 128KB. The 
sizes of each read/write operation and each append operation 
are 1MB and 16KB, respectively. The videoserver benchmark 
(included in filebench) simulates the workload of a video 
server, in which 4 1GB video files are created and then read 
concurrently by 4 threads. The run time of all the above 
benchmarks are set to 60 seconds, the default value of the 
benchmarks. Postmark [14] is a widely used benchmark for 
evaluating storage system performance. During the execution, 
it creates an initial set of files and then applies a number of 
transactions on those files. Each transaction consists of a 
create/delete operation together with a read/append operation. 
The initial file set contains 100K files residing in 100 
directories, and 200K transactions are performed. The data-
backup benchmark simulates user data backup from a laptop 
to the NAS. The backup data includes 18630 files and the total 
size is 649MB. 

In an operating system, dirty buffers can be flushed under 
different conditions. In the following, the percentages in the 
amount of dirty buffers flushed under different conditions in 
Linux are presented first. Next, the performance of TESA 
under different zone sizes and α values are shown, which is 
followed by the performance comparison of the zone and the 
zone_segment schemes. Finally, the performance of TESA is 
compared with that of several existing writeback policies, and 
the memory overhead of TESA is evaluated. 

B. Amount of Dirty Buffers Flushed under Different 
Conditions 

As mentioned in Section III-C, TESA was implemented by 
modifying the background_writeout() function in Linux, 
which is invoked in the condition where the amount of dirty 
buffers exceeds a specific threshold. Generally, there are three 
other conditions for writing back dirty buffers. First, writeback 
is performed periodically to prevent dirty buffers from being 
kept in the memory for a long time. Second, dirty buffers are 
written back by the memory reclamation procedure for 
obtaining more free memory upon memory pressure. Third, 
writeback is performed by the checkpointing procedure of a 
journaling file system (e.g. ext3) to reclaim its journal space 
[15]. The amount of dirty buffers flushed under different 
conditions in Linux was measured. According to the results, 
almost all the dirty buffers (i.e., more than 97.6%) are written 
back due to that the amount of dirty buffers exceeds a specific 
threshold. Therefore, TESA can simply be implemented in the 
background_writeout() function without noticeable reduction 
in its effectiveness. 

C. Performance Impact of Zone Sizes and α Values 

Both the zone scheme and the zone_segment scheme flush 
dirty buffers in a zone-by-zone manner, and the zone size has 
performance impact to these schemes. For example, in the 
zone scheme, extremely large zones could lead to long seeks 

within a zone when the zone is flushed, and extremely small 
zones result in the flush of many (small) zones and could lead 
to long seeks among the flushed zones. Fig. 4 and Fig. 5 show 
the performance results of the zone and the zone_segment 
schemes, respectively, under various zone sizes. The results 
are normalized to the performance with 2MB zones under the 
given scheme. For the seq-write, rnd-write, fileserver and 
videoserver benchmarks, the performance was measured in 
terms of the number of file operations performed per second. 
Therefore, higher performance means a larger number of file 
operations performed per second. For the other benchmarks, 
the performance was measured in terms of execution time. 
Therefore, higher performance means shorter execution time. 
According to the figures, setting the zone size as 8MB allows 
both the zone and the zone_segment schemes to achieve good 
performance under all the workloads. Thus, this setting is used 
in the following experiments. 

 

 
Fig. 4. Normalized performance under various zone sizes (zone scheme) 

 

 
Fig. 5. Normalized performance under various zone sizes (zone_segment 
scheme) 

 
As mentioned in Section III-A, in the zone_segment scheme, 

the threshold α has an impact on whether the zones with the 
maximum ASL value should be selected as the target zones. If 
the value of α is extremely large, the zone_segment scheme 
would retrograde to the zone scheme. On the contrary, an 
extremely small α value cannot efficiently reduce seeks between 
short segments, leading to poor writeback performance. Fig. 6 
shows the performance results under different values of α. The 
results are normalized to the performance of the zone_segment 
scheme that does not consider the α value (i.e., setting α as 0). 
According to Fig. 6, setting α as 50 achieves good performance 



128  IEEE Transactions on Consumer Electronics, Vol. 59, No. 1, February 2013 

under all the workloads, and hence the value is used in the other 
experiments. 

 
Fig. 6. Normalized performance under various α values 
 

D. Performance of Different Schemes in TESA  

Fig. 7 compares the performance of the two schemes used 
in the TESA writeback policy. The results are normalized to 
those under the zone scheme. As seen in Fig. 7, the 
zone_segment scheme outperforms the zone scheme by up to 
15.4%. As mentioned in Section III-A, the zone_segment 
scheme tries to flush a zone containing long segments and thus 
it reduces not only the seek distance but also the number of 
seeks, leading to a better performance compared to the zone 
scheme. According to the results, the zone_segment scheme is 
used when comparing TESA with the other writeback policies. 
 

  

Fig. 7. Performance comparison between the zone and zone_segment 
schemes 
 

E. Performance of Different Writeback Policies 

Fig. 8 compares the performance of different writeback 
policies: the file based writeback policy used in Linux, the 
recency based policy that considers only the temporal 
information of the dirty buffers, a DULO-like policy that 
flushes the largest segment among the non-recently-used 
buffers [7], and the TESA policy. These policies are referred 
to as the file, recency, segment, and TESA policies, 
respectively. The results are normalized to those of the file 
policy. As shown in Fig. 8, TESA outperforms the file policy 
by up to 33.1%. This is because TESA reduces disk 
positioning time and additional write traffic by considering 
both temporal and spatial information. When compared with 
the recency policy, which considers only temporal information, 

TESA has a performance improvement of up to 21.0%. 
Compared to the segment policy, which also considers both 
temporal and spatial information, TESA has a performance 
improvement of up to 10.9% since it tries to flush nearby 
segments (i.e., segments in a zone). Under the sequential write 
workload (i.e., seq-write), all the policies have similar 
performance because all of them lead to sequential data 
flushes. Under the read intensive workload (i.e., videoserver), 
these policies also result in similar performance. 
 

 
Fig. 8. Normalized performance of different writeback policies 

 

 

Fig. 9. Normalized performance factors of different writeback policies 
 

To further understand the performance of the writeback 
policies, the disk driver was modified to measure the average 
request sizes, the total numbers of blocks written to the storage, 
and the average inter-request distances, during the execution 
of each of the write dominated workloads (i.e., seq-write, rnd-
write, postmark, fileserver and data-backup) under the 
writeback policies. Note that the inter-request distance is 
defined as the distance between the last block of a request R 
and the first block of the request following R. Fig. 9 shows the 
results normalized to those under the file policy. According to 
Fig. 9, the TESA policy results in increased average request 
size when compared to the file and recency policies since 
TESA tends to flush zones with large segments. Flushing 
larger segments often leads to superior performance for disk. 
Compared to the segment policy which greedily flushes the 
largest segment, TESA shows only a small reduction in the 
average request size (i.e., 5.7% reduction in average). 
Moreover, the recency, segment and TESA polices all reduce 
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the total write traffic to the storage when compared to the file 
policy. This is due to that these policies consider the temporal 
information of the buffers and can reduce the frequency of 
flushing recently-updated buffers. Finally, both segment and 
TESA policies result in reduced average inter-request seek 
distances than the other policies. This is because the both 
policies tend to flush large segments, and each segment can be 
divided into multiple requests with adjacent blocks. TESA 
achieves even shorter average inter-request distances than the 
segment policy (up to 19.5% reduction), which is contributed 
by flushing nearby segments (i.e., segments in a zone). 

F. Memory Overhead of TESA 

As mentioned before, TESA maintains in-memory data 
structures such as zone_cb and seg_cb, and it adds a field in 
the buffer_head structure. In the current implementation, the 
sizes of the zone_cb and the seg_cb structures are 1292 and 16 
bytes, respectively. The added field in the buffer_head 
structure occupies 4 bytes. Table I shows the maximum 
memory overhead of TESA during the execution of the 
workloads. As shown in the table, the maximum memory 
overhead is less than 446.8KB for all the workloads. Such 
overhead is insignificant and would not lead to noticeable 
performance degradation. 
 

TABLE I 
MAXIMUM MEMORY OVERHEAD OF TESA  

Workloads  
Maximum Memory Overhead 

(KB) 

     seq-write 107.8 
     rnd-write 382.3 
     postmark 446.8 
     fileserver 241.1 
     videoserver 10.6 
     data-backup 299.5 

V.    CONCLUSION 

In this paper, an intelligent writeback policy called TESA is 
proposed to improve the performance of flushing dirty buffers 
in home NAS devices. By taking both temporal and spatial 
information of the dirty buffers into consideration, the TESA 
policy reduces both the disk positioning time and the amount 
of disk writes. 

The TESA writeback policy was implemented on a NAS 
evaluation board running Linux kernel. The performance of 
TESA was compared with several existing writeback policies 
under 6 benchmarks. According to the performance results, the 
performance of TESA is superior to the original file based 
writeback policy used in Linux by up to 33.1%. When compared 
to a recency based policy, TESA shows a performance 
improvement by up to 21.0%. Moreover, TESA outperforms a 
previous policy that also exploits both the temporal and spatial 
information of the dirty buffers by up to 10.9%.  
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