
122 IEEE Transactions on Consumer Electronics, Vol. 59, No. 1, February 2013

Contributed Paper
Manuscript received 12/26/12
Current version published 03/25/13
Electronic version published 03/25/13. 0098 3063/13/$20.00 © 2013 IEEE

TESA: a Temporal and Spatial Information Aware
Writeback Policy for Home Network-Attached

Storage Devices
Ting-Chang Huang and Da-Wei Chang, Member, IEEE

Abstract — Home Network-Attached Storage (NAS)

provides an easy way for data sharing and backup among
multiple consumer electronic devices in home networks.
Because of large capacity and cost effectiveness, disks are
widely adopted in home NAS devices. In addition, data writes
are common for many home NAS devices since these devices
are usually used for data storage and backup.

A writeback policy selects which dirty buffers are to be
flushed to the disk, which is critical to the system performance
under write-intensive workloads. In this paper, an intelligent
writeback policy for home NAS called TESA is proposed. In
contrast to most existing writeback policies, TESA considers
both temporal and spatial information of the dirty buffers to
improve the writeback performance. Considering the temporal
information helps to reduce the frequency of writing back
recently used dirty buffers, and hence leads to reduced write
traffic. Considering the spatial information causes a reduction
in the overall seek time and rotation delay of the dirty buffer
writeback.

The TESA writeback policy was implemented on a NAS
evaluation board running Linux kernel. The performance
results shows that TESA yields a significant performance
improvement (i.e., up to 33.1%) over the original writeback
policy of Linux. Moreover, TESA outperforms the policy that
considers only the temporal information of the dirty buffers by
up to 21.0%, and it also has up to 10.9% performance
improvement over a previous policy that considers both the
temporal and spatial information1.

Index Terms —Writeback policy, Buffer management,
Home network-attached storage, Temporal information,
Spatial information.

I. INTRODUCTION

Nowadays, data sharing among multiple consumer
electronic devices in a home network is easy [1], and the range
of sharing can also be beyond a single home network [2], [3].
Home Network-Attached Storage (NAS) provides a large

1 This work was supported in part by the National Science Council,

Taiwan, Republic of China, under Grant No. NSC 101-2221-E-006-098-MY3.
T. C. Huang is with the Department of Computer Science, National Chiao

Tung University, No. 1001, University Road, Hsinchu, Taiwan 300, R.O.C.
(e-mail: tchuang@cs.nctu.edu.tw).

D. W. Chang is with the Department of Computer Science and Information
Engineering, National Cheng Kung University, No. 1, University Road,
Tainan, Taiwan 701, R.O.C. (e-mail: davidchang@csie.ncku.edu.tw).

storage space for data sharing among multiple consumer
electronic devices in one or more home networks [4]. For
example, users can create or download media content (e.g.
video files) with video game consoles or set-top boxes (STBs),
and store the content in a home NAS device. The stored
content can then be accessed by the other devices (e.g. TVs or
smart phones). In addition, home NAS is often used to backup
data from consumer electronic devices in the home networks.
For example, users can backup vital data from their personal
mobile devices (e.g. laptops or smart phones) to a home NAS
device. Users can also backup video content captured by
camcorders (i.e., video camera recorders) to a home NAS
device. Fig. 1 shows the role of home NAS.

Fig. 1. Role of home NAS in home networks

Currently, embedded operating systems (e.g. embedded

Linux) are widely adopted in home NAS devices. In addition,
disk is a common storage medium in a home NAS device
because of its large capacity and cost effectiveness. However,
due to the large performance gap between disks and
processors, disks are the major performance bottleneck in
home NAS devices. Moreover, owing to small performance
improvement of the mechanical accesses in disks such as plate
rotation and disk head seeking, the gap is becoming larger.
According to a previous study, processor speed grows 60%
annually but the annual performance improvement of disks is
only 8% [5]. Therefore, for performance consideration,
operating systems use memory as buffer caches to buffer
writes to the disks and to cache recently-read data.

T.-C. Huang and D.-W. Chang: TESA: a Temporal and Spatial Information Aware Writeback Policy for Home Network-Attached Storage Devices 123

Disk writes are common for many home NAS devices since
home NAS is usually used for data storage and backup. Using
memory to buffer disk writes can effectively improve the
response time in these devices. However, since main memory
is volatile, dirty buffers (i.e., buffers with data more up-to-date
than their counterparts in the disk) still need to be written back
to the disks to reduce the loss of up-to-date data upon sudden
power outages or system crashes.

To prevent losing a large amount of up-to-date data upon
power or system failures, writeback of dirty buffers is
performed when the amount of dirty buffers reaches a specific
threshold. The writeback threads of the operating system are
responsible for performing the writeback task. Specifically,
these threads select target dirty buffers according to the
writeback policy, and then flush these buffers to the disk.

The writeback policy has a significant impact to the system
performance when there are a large number of dirty buffers in
the memory and the free memory drops below a threshold (i.e.,
memory pressure). Write-intensive workloads with large
working sets could easily lead to such condition. Under this
condition, the system performance degrades severely since I/O
operations (which require free memory space either as the
write buffers or as the read caches) have to be blocked until
enough dirty buffers have been written back and the
corresponding memory space has been reclaimed [6].
Therefore, a writeback policy should select dirty buffers that
can be efficiently written back to the disk in order to reduce
the performance degradation.

To efficiently write back dirty buffers, the disk block
locations (i.e., spatial information) of the dirty buffers should
be considered to reduce the seek time and the rotation delay.
However, such information is not considered by the writeback
policies of existing operating systems. For example, the Linux
operating system uses a file based policy, which writes back
dirty buffers in a file-by-file manner, and some operating
systems write back dirty buffers that are not used recently.

In this paper, an efficient writeback policy for home NAS
called TESA is proposed. TESA improves the writeback
performance by exploiting both the spatial and temporal
information of the dirty buffers. Similar to the writeback
policies of some existing operating systems, TESA considers
the temporal information of the dirty buffers. Specifically, it
reduces the frequency of writing back recently-used dirty
buffers since these buffers are likely to become dirty again
soon after they have been written back. More importantly,
TESA considers the spatial information of the dirty buffers to
reduce the seek time and the rotation delay. Two types of
spatial information are considered in the design of TESA, and
the corresponding performance is shown in this paper.

The TESA writeback policy was implemented on a NAS
evaluation board running Linux 2.6.12, and 6 widely-used
benchmarks were used to evaluate the performance of TESA.
The performance results show that TESA outperforms the
writeback policy used in Linux by up to 33.1%, the policy that
considers only the temporal information by up to 21.0%, and a
previous policy that considers both the temporal and spatial
information (similar to DULO [7]) by up to 10.9%.

The remainder of this paper is organized as follows. Section
II describes the related work, followed by the design and
implementation of TESA in Section III. Section IV shows the
performance results, and conclusions are given in Section V.

II. RELATED WORK

Traditional operating systems flush dirty buffers without
considering the temporal or spatial information of the buffers.
For example, the Linux operating system flushes dirty buffers
in a file-by-file manner. That is, dirty buffers are grouped by
files, and the dirty buffers belonging to a file are flushed
before the flushing of the dirty buffers belonging to another
file. However, one problem of this policy is that it may flush
recently-used dirty buffers since temporal information is not
considered. Writing back these buffers does not help relieving
memory pressure since they tend to be kept in memory by
LRU based page replacement algorithms, which are
commonly used in operating systems. Moreover, these buffers
are likely to become dirty again soon after they have been
flushed, and therefore they require to be flushed later. This
increases the write traffic to the disk. Some operating systems
avoid this problem by only writing back dirty buffers that are
not used recently. However, all of the above policies do not
consider the spatial information of the dirty buffers, and thus
could lead to longer seek time and rotation delay during the
writeback. The proposed writeback policy TESA considers
both temporal and spatial information of the dirty buffers,
resulting in superior performance.

DULO [7] and WOW [8] also exploit both temporal and
spatial information of the dirty buffers. DULO groups dirty
buffers corresponding to adjacent blocks as a segment and
flushes the largest segment among the non-recently-used
buffers. If a fixed amount of dirty buffers need to be flushed,
flushing larger segments leads to a reduced number of flushed
segments and hence results in less total seek time and
rotational delay. However, under workloads with random and
small writes, segments tend to be small and hence the benefit
of DULO is limited [9]. WOW is a writeback policy used in a
storage controller. It divides the storage into a set of
contiguous blocks, called write groups, locates write groups
that are not written recently in the CSCAN order, and flushes
the dirty buffers in the located write groups. However, most
operating systems already adopt SCAN-like I/O schedulers
[10] and therefore flushing dirty write groups in the CSCAN
order does not have much benefit. Moreover, WOW may flush
a large number of small write groups (i.e., write groups with
small numbers of dirty buffers) to relieve memory pressure
since the amount of dirty buffers in each write group is not
considered. For example, if the operating system requires
reclaiming 100 dirty buffers, WOW may flush 10 write groups,
whereas flushing the largest write group (which may have
more than 100 dirty buffers) may be enough to relieve the
memory pressure. Therefore, WOW may lead to more disk
positioning time under such condition.

AWOL [6] improves the performance of writing back dirty
buffers by adjusting the start/stop time of dirty buffer flushing
according to the workload. TESA takes a different approach to

124 IEEE Transactions on Consumer Electronics, Vol. 59, No. 1, February 2013

improve performance of dirty buffers flush (i.e., by
considering the temporal and spatial information of the dirty
buffers).

Efficient disk scheduling algorithms, like SPTF [10] or
CSCAN, also help to reduce the latency of flushing dirty
buffers. The difference between a writeback policy and a disk
scheduling algorithm is that the former generates write
requests, which are scheduled by the latter. Both writeback
policies and disk scheduling algorithms play important roles in
latency reduction of flushing dirty buffers.

III. DESIGN AND IMPLEMENTATION

As mentioned above, a writeback policy (which is
responsible for selecting target buffers to be flushed) is critical
to the writeback performance. In this paper, the TESA
writeback policy is proposed to improve the writeback
performance by exploiting both the spatial and temporal
information of the dirty buffers. By exploiting the spatial
information of the dirty buffers, TESA reduces the seek time
and rotation delay when flushing dirty buffers, leading to
higher flushing speed. Moreover, by exploiting the temporal
information, TESA reduces the frequency of flushing
frequently modified buffers. As mentioned in Section II,
writing back such buffers increases the write traffic to the disk
and does not help to relieve memory pressure.

In the following, the consideration of spatial and temporal
information of dirty buffers in TESA is first described,
followed by the description of the implementation of TESA in
Linux.

A. Exploiting Spatial Information

 Two schemes exploiting spatial information, the zone
scheme and the zone_segment scheme, are proposed in TESA
to improve the speed of flushing dirty buffers. The zone
scheme selects dirty buffers that are close to each other in the
block locations as the targets. This reduces the seek time by
decreasing the seek distance. According to the previous study,
seek time is reduced with the decrease of the seek distance
[11]. Therefore, the performance of flushing dirty buffers can
be improved if the seek distances are decreased. To achieve
this, the disk is divided into a number of fixed-size zones, each
of which corresponds to a set of contiguous blocks on the disk,
and the zone scheme selects the zone with the largest number
of dirty buffers (i.e., the maximum zone) as the target zone
and flushes the dirty buffers belonging to the target zone. The
set of the maximum zones ZonesMax is computed by

ெ௔௫ݏ݁݊݋ܼ ൌ ൛ܼ௜ ∈ ܼܵ	ห	∀ ௝ܼ ∈ ܼܵ, 	 ௝ܼ ് ܼ௜, ௝ܤܰ	 ൑ ௜ൟ (1)ܤܰ

where SZ denotes the set of all the zones that have dirty
buffers and NBi denotes the number of dirty buffers in zone i.
If there are multiple maximum zones in the ZonesMax, the zone
with the minimum zone identifier in the ZonesMax is selected
as the target zone. If the number of buffers that need to be
flushed is larger than the number of buffers in the target zone,
the next maximum zone is selected again according to (1) and
the steps repeat until enough buffers have been flushed.

Note, since the operating system does not know the physical
location of a given block, the logical block number (LBN) is
used as an estimation of the physical block location. For
example, given the zone size as 100 blocks, blocks with LBN
10 and LBN 20 both belong to zone 0. In this way, it is
assumed that blocks having close LBNs are also close in the
physical block locations. Although a modern disk hides the
physical location of a block and presents only the LBN of that
block to the host operating system, this assumption generally
holds and is commonly used [12], [13].

Although reducing long seeks, the zone scheme may still
incur a significant number of short seeks (companied with
rotation delays) when flushing dirty buffers. For example,
flushing block 20 right after the writeback of block 10 still
requires a short seek and a following rotation delay. To
address this, the zone_segment scheme tries to flush a zone
containing long segments. A segment is a set of dirty buffers
that correspond to a set of adjacent blocks on the disk.
Flushing a whole segment typically requires only a single seek
and a following rotation delay. As a result, the zone_segment
scheme reduces not only the seek distance between two
successive buffer flushes but also the number of seeks and
rotation delay.

To locate the zones with long segments, the average
segment length for each zone i, denoted as ASLi, is maintained
in the zone_segment scheme. The ASLi can be calculated by

௜ܮܵܣ ൌ ൜
௜ܤܰ	 ܰ ௜ܵ,				݂݅	ܰܤ௜ ൒ ⁄	௔௩௚ܤܰ

݁ݏ݅ݓݎ݄݁ݐ݋								,								0
 (2)

where NBi and NSi denote the number of dirty buffers and the
number of segments in zone i, respectively, and NBavg denotes
the average number of dirty buffers in all zones. Note that a
zone with a large average segment length may have only a
small number of dirty buffers. Thus, selecting target zones
purely based on the average segment length of each zone
could result in flushing a large number of zones that contain
small numbers of dirty buffers, which would lead to poor
writeback performance if the distances among these zones are
long. To prevent this, in (2), the ASL value is set as 0 if the
number of dirty buffers in a given zone is less than a threshold.
Currently, the threshold is set as the average number of dirty
buffers per zone. The set of zones with the maximum ASL
value, denoted as ZonesMaxASL, is computed by

ெ௔௫஺ௌ௅ݏ݁݊݋ܼ ൌ ൛ܼ௜ ∈ ܼܵห∀ ௝ܼ ∈ ܼܵ, ௝ܼ ് ܼ௜, ௝ܮܵܣ ൑ ௜ൟ (3)ܮܵܣ

Note that flushing zones with the maximum ASL value can
achieve good writeback performance only when the maximum
ASL value is large. Under that situation, long segments can be
flushed. However, under workloads with small random writes,
all the segments could be short and the maximum ASL value
could be small. Flushing zones with the maximum ASL value
has little benefit for these workloads. Under these workloads,
the zone with the largest number of dirty buffers should be

T.-C. Huang and D.-W. Chang: TESA: a Temporal and Spatial Information Aware Writeback Policy for Home Network-Attached Storage Devices 125

flushed in order to reduce the inter-zone seeks. Therefore, the
zone_segment scheme selects the target zones that need to be
flushed according to (4).

௧௔௥௚௘௧ݏ݁݊݋ܼ ൌ ൜
ெ௔௫ܮܵܣ	݂݅			,ெ௔௫஺ௌ௅ݏ݁݊݋ܼ		 ൒ ߙ
,						ெ௔௫ݏ݁݊݋ܼ 						݁ݏ݅ݓݎ݄݁ݐ݋

 (4)

In (4), the target zones are selected from ZonesMax if the

maximum ASL value ASLMax is smaller than a pre-defined
threshold α. Otherwise, the target zones are selected from
ZonesMaxASL. If the target zones are selected from ZonesMaxASL
and there are multiple zones in ZonesMaxASL, the zone with the
maximum dirty buffers is selected as the target zone. The dirty
buffers in the target zone are flushed. If the number of buffers
that need to be flushed is larger than the number of buffers in
the target zone, the next target zone is selected again
according to (4), and the steps repeat until enough buffers
have been flushed.

Fig. 2 illustrates the target zone selection in the
zone_segment scheme. In Fig. 2, each zone consists of 25
blocks, the number shown on each block indicates the logical
block number (LBN), and α is set as 2. Initially, the value of
NBavg is assumed to be 10.3. The ASL values of both zone 3
and zone 5 are zero since the numbers of dirty buffers in these
zones are both smaller than NBavg. Zone 4 is selected as the
target zone since it has the largest ASL value 10, which is
larger than α. At the bottom of the figure, the dirty buffers of
zone 4 have been flushed and the NBavg is assumed to become
7. As can be seen, although zone 5 now has the maximum ASL
value among the zones, its ASL value (i.e., 1.4) is smaller than
α. Therefore, zone 2 (i.e., the zone with the maximum number
of dirty buffers) will be selected as the target zone if more
dirty buffers need to be flushed.

Fig. 2. Target zone selection in the zone_segment scheme

B. Exploiting Temporal Information

As mentioned above, flushing frequently modified buffers
does not help to relieve memory pressure since these buffers

tend to be kept in the memory by the memory management
subsystem. Moreover, flushing these buffers increases the disk
write traffic since these buffers are likely to become dirty
again soon after they have been flushed. To address this
problem, in addition to exploiting the spatial information of
the buffers, TESA also takes the temporal information into
account.

Many modern operating systems keep track of temporal
information for each buffer page, and hence TESA can
determine whether or not a given buffer is recently-used based
on that information. For example, an operating system may
maintain an LRU list for page replacement. In that case, the
TESA writeback policy can prevent writing back a dirty buffer
that is close to the MRU (Most Recently Used) end of the list.
For another example, Linux maintains a flag called PG_active
for each page, which is set as 1 if the page is recently-used.
Therefore, in Linux, TESA can exclude all the buffers with the
PG_active flags set as 1 when flushing buffers.

Note that the frequently modified dirty buffers would still
be flushed eventually even they have been excluded by TESA.
In order to prevent dirty buffers from being kept in the
memory for a long time, many operating systems periodically
write back old dirty buffers (i.e., dirty buffers that have not
been flushed for more than a specific time period). When
TESA is used in such operating systems, the frequently
modified buffers can be flushed via this periodic writeback
procedure.

C. Implementation of TESA

To exploit both spatial and temporal information of the dirty
buffers, the zone and zone_segment schemes of TESA are
modified to exclude frequently modified buffers. Fig. 3 shows
the data structures used by TESA to maintain dirty buffers. As
shown in Fig. 3, dirty buffers corresponding to the same zone
are grouped together via a zone control block (zone_cb). Each
zone_cb structure includes the information such as the zone
number and the number of dirty buffers in that zone. In the
zone_segment scheme, extra information is included in the
zone_cb structure such as the number of segments in that zone
and a block bitmap. Each bit in the block bitmap corresponds
to a block in that zone and indicates whether there is a dirty
buffer corresponding to the block. Moreover, dirty buffers
belonging to the same segment are grouped in a data structure
called segment control block (seg_cb). As shown in Fig. 3(b),
zone 1 has 2 segments, one contains dirty buffer pages
corresponding to blocks 256 to 305 (i.e., 50 blocks), and the
other contains dirty buffer pages corresponding to blocks 512
to 611 (i.e., 100 blocks). To speed up the search of a specific
segment, segments in each zone are managed by a hash table
of 256 entries. Each entry chains a list of segments and a
segment starting with LBN B is chained in the list
corresponding to the entry (B mod 256).

When a dirty buffer needs to be inserted into the data
structures shown in Fig. 3, the corresponding zone_cb
structure has to be located first. This is achieved by calculating
the zone number according to the LBN of the buffer and then
searching the zone_list. In the zone scheme, the dirty buffer

126 IEEE Transactions on Consumer Electronics, Vol. 59, No. 1, February 2013

can then be chained directly under the located zone_cb
structure. In the zone_segment scheme, however, the
corresponding seg_cb structure has to be located. As described
above, the starting LBN of a segment is used as the hash key
to locate a specific seg_cb structure. Thus, to locate the seg_cb
structure corresponding to the dirty buffer, the block bitmap in
the zone_cb structure is checked to find the starting LBN of
the segment. Note that inserting a buffer may involve creating
a new segment, expanding an existing segment, or merging
segments. For example, assuming that two segments are
presented, segment S1 corresponds to LBNs 1 to 3 and
segment S2 corresponds to LBNs 5 to 8, and a dirty buffer
with LBN 4 needs to be inserted. By checking the block
bitmap, the dirty buffer with LBN 4 can be chained into the
seg_cb structure of S1, which can be located by using LBN 1
as the hash key. In addition, all the dirty buffers in S2 need to
be moved to the seg_cb structure of S1.

Fig. 3. Data structures used in the (a) zone and (b) zone_segment schemes

In the zone_segment scheme, a segment can span across zone
boundaries, and a segment is assigned to a zone if the starting
LBN of the segment belongs to that zone. The seg_cb structure
of a segment S is placed in the hash table of a zone_cb structure
of a zone Z if S is assigned to Z. For example, if each zone
contains 3 blocks, the segment S1 in the above example spans
across the boundary of zone 0 and zone 1, and the seg_cb
structure of S1 is placed in the hash table of the zone_cb
structure of zone 0 (i.e., S1 is assigned to zone 0). As a
consequence, inserting a dirty buffer (which requires locating
the seg_cb structure corresponding to the dirty buffer) may need
to check the block bitmaps of multiple zones. As in the above
example, if each zone contains 3 blocks, inserting dirty buffer
with LBN 4 requires checking the block bitmaps of both zone 1
and zone 0 to obtain the starting LBN of the segment S1.

In the implementation, both the zone_cb and the seg_cb
structures are allocated and freed dynamically. For example, if
the last dirty buffer belonging to a zone/segment is

disassociated from the zone/segment (i.e., the buffer becomes
clean or has been freed), the corresponding zone_cb/seg_cb
structure is freed.

The TESA writeback policy was implemented in the Linux
kernel 2.6.12. Specifically, the following modifications were
made. First, the data structures shown in Fig. 3 were
implemented. In Linux, a buffer is represented by a
buffer_head structure. The buffer_head structure was
augmented to include a field for chaining the dirty buffers in
the list shown in Fig. 3.

Second, the functions that change the BH_Dirty flag or the
PG_active flag of a buffer were modified to
associate/disassociate the buffer to/from its corresponding
zone_cb and seg_cb structures. A buffer is dirty if its
BH_Dirty flag is set. TESA only associates a buffer with the
above structures when the buffer is dirty since it only needs to
flush dirty buffers. In addition, as mentioned above, TESA
tries to avoid flushing frequently modified buffers. To achieve
this, only infrequently-used dirty buffers (i.e., dirty buffers
with PG_active flag set as 0) were placed in the structures
shown in Fig. 3. Therefore, when the PG_active flag of a dirty
buffer is set as 1 (for example, during the invocation of the
function add_page_to_active_list()), the buffer is removed
from the corresponding zone_cb and seg_cb structures.
Similarly, when the PG_active flag of a dirty buffer is set as 0
(for example, during the invocation of the function
del_page_from_active_list()), the buffer is placed into the
corresponding zone_cb and seg_cb structures.

Third, the function background_writeout() was modified,
which is invoked by the dirty buffer flushing threads (i.e., the
pdflush thread) to write back dirty buffers when the amount of
dirty buffers exceeds a specific threshold. Originally, this
function utilizes the file-based writeback policy, under which
the dirty buffers belonging to a file are flushed before the
flushing of the dirty buffers belonging to another file. The file-
based writeback policy was replaced with the zone and
zone_segment schemes of TESA. Note that the function that is
invoked periodically to flush old dirty buffers (i.e., the
wb_kupdate() function) was kept intact so as to allow the data
updates to be flushed to the disk within a predefined time limit,
as in the original Linux.

IV. PERFORMANCE EVALUATION

A. Experimental Environment and Workloads

The performance of the TESA writeback policy was
evaluated on a NAS evaluation board equipped with a 1.6
GHz processor, 1GB RAM and a 500GB disk (7200 RPM).
Linux (kernel version 2.6.12) was run on the board and ext3
was used as the file system. The following 6 benchmarks were
used for performance evaluation: seq-write, rnd-write,
postmark, fileserver, videoserver, and data-backup.

The seq-write and rnd-write benchmarks are included in the
filebench file system benchmark suite. The seq-write
benchmark creates a single empty file first and then performs
a sequence of append operation on this file. The data size for
each append operation is 4KB. The rnd-write benchmark

T.-C. Huang and D.-W. Chang: TESA: a Temporal and Spatial Information Aware Writeback Policy for Home Network-Attached Storage Devices 127

repeatedly issues 16KB random writes to a 2GB file. The
fileserver benchmark (included in filebench) simulates the
workload of a file server, which performs a sequence of
creation, deletion, append, read, and write operations. The
initial file set contains 10k files with mean size 128KB. The
sizes of each read/write operation and each append operation
are 1MB and 16KB, respectively. The videoserver benchmark
(included in filebench) simulates the workload of a video
server, in which 4 1GB video files are created and then read
concurrently by 4 threads. The run time of all the above
benchmarks are set to 60 seconds, the default value of the
benchmarks. Postmark [14] is a widely used benchmark for
evaluating storage system performance. During the execution,
it creates an initial set of files and then applies a number of
transactions on those files. Each transaction consists of a
create/delete operation together with a read/append operation.
The initial file set contains 100K files residing in 100
directories, and 200K transactions are performed. The data-
backup benchmark simulates user data backup from a laptop
to the NAS. The backup data includes 18630 files and the total
size is 649MB.

In an operating system, dirty buffers can be flushed under
different conditions. In the following, the percentages in the
amount of dirty buffers flushed under different conditions in
Linux are presented first. Next, the performance of TESA
under different zone sizes and α values are shown, which is
followed by the performance comparison of the zone and the
zone_segment schemes. Finally, the performance of TESA is
compared with that of several existing writeback policies, and
the memory overhead of TESA is evaluated.

B. Amount of Dirty Buffers Flushed under Different
Conditions

As mentioned in Section III-C, TESA was implemented by
modifying the background_writeout() function in Linux,
which is invoked in the condition where the amount of dirty
buffers exceeds a specific threshold. Generally, there are three
other conditions for writing back dirty buffers. First, writeback
is performed periodically to prevent dirty buffers from being
kept in the memory for a long time. Second, dirty buffers are
written back by the memory reclamation procedure for
obtaining more free memory upon memory pressure. Third,
writeback is performed by the checkpointing procedure of a
journaling file system (e.g. ext3) to reclaim its journal space
[15]. The amount of dirty buffers flushed under different
conditions in Linux was measured. According to the results,
almost all the dirty buffers (i.e., more than 97.6%) are written
back due to that the amount of dirty buffers exceeds a specific
threshold. Therefore, TESA can simply be implemented in the
background_writeout() function without noticeable reduction
in its effectiveness.

C. Performance Impact of Zone Sizes and α Values

Both the zone scheme and the zone_segment scheme flush
dirty buffers in a zone-by-zone manner, and the zone size has
performance impact to these schemes. For example, in the
zone scheme, extremely large zones could lead to long seeks

within a zone when the zone is flushed, and extremely small
zones result in the flush of many (small) zones and could lead
to long seeks among the flushed zones. Fig. 4 and Fig. 5 show
the performance results of the zone and the zone_segment
schemes, respectively, under various zone sizes. The results
are normalized to the performance with 2MB zones under the
given scheme. For the seq-write, rnd-write, fileserver and
videoserver benchmarks, the performance was measured in
terms of the number of file operations performed per second.
Therefore, higher performance means a larger number of file
operations performed per second. For the other benchmarks,
the performance was measured in terms of execution time.
Therefore, higher performance means shorter execution time.
According to the figures, setting the zone size as 8MB allows
both the zone and the zone_segment schemes to achieve good
performance under all the workloads. Thus, this setting is used
in the following experiments.

Fig. 4. Normalized performance under various zone sizes (zone scheme)

Fig. 5. Normalized performance under various zone sizes (zone_segment
scheme)

As mentioned in Section III-A, in the zone_segment scheme,

the threshold α has an impact on whether the zones with the
maximum ASL value should be selected as the target zones. If
the value of α is extremely large, the zone_segment scheme
would retrograde to the zone scheme. On the contrary, an
extremely small α value cannot efficiently reduce seeks between
short segments, leading to poor writeback performance. Fig. 6
shows the performance results under different values of α. The
results are normalized to the performance of the zone_segment
scheme that does not consider the α value (i.e., setting α as 0).
According to Fig. 6, setting α as 50 achieves good performance

128 IEEE Transactions on Consumer Electronics, Vol. 59, No. 1, February 2013

under all the workloads, and hence the value is used in the other
experiments.

Fig. 6. Normalized performance under various α values

D. Performance of Different Schemes in TESA

Fig. 7 compares the performance of the two schemes used
in the TESA writeback policy. The results are normalized to
those under the zone scheme. As seen in Fig. 7, the
zone_segment scheme outperforms the zone scheme by up to
15.4%. As mentioned in Section III-A, the zone_segment
scheme tries to flush a zone containing long segments and thus
it reduces not only the seek distance but also the number of
seeks, leading to a better performance compared to the zone
scheme. According to the results, the zone_segment scheme is
used when comparing TESA with the other writeback policies.

Fig. 7. Performance comparison between the zone and zone_segment
schemes

E. Performance of Different Writeback Policies

Fig. 8 compares the performance of different writeback
policies: the file based writeback policy used in Linux, the
recency based policy that considers only the temporal
information of the dirty buffers, a DULO-like policy that
flushes the largest segment among the non-recently-used
buffers [7], and the TESA policy. These policies are referred
to as the file, recency, segment, and TESA policies,
respectively. The results are normalized to those of the file
policy. As shown in Fig. 8, TESA outperforms the file policy
by up to 33.1%. This is because TESA reduces disk
positioning time and additional write traffic by considering
both temporal and spatial information. When compared with
the recency policy, which considers only temporal information,

TESA has a performance improvement of up to 21.0%.
Compared to the segment policy, which also considers both
temporal and spatial information, TESA has a performance
improvement of up to 10.9% since it tries to flush nearby
segments (i.e., segments in a zone). Under the sequential write
workload (i.e., seq-write), all the policies have similar
performance because all of them lead to sequential data
flushes. Under the read intensive workload (i.e., videoserver),
these policies also result in similar performance.

Fig. 8. Normalized performance of different writeback policies

Fig. 9. Normalized performance factors of different writeback policies

To further understand the performance of the writeback
policies, the disk driver was modified to measure the average
request sizes, the total numbers of blocks written to the storage,
and the average inter-request distances, during the execution
of each of the write dominated workloads (i.e., seq-write, rnd-
write, postmark, fileserver and data-backup) under the
writeback policies. Note that the inter-request distance is
defined as the distance between the last block of a request R
and the first block of the request following R. Fig. 9 shows the
results normalized to those under the file policy. According to
Fig. 9, the TESA policy results in increased average request
size when compared to the file and recency policies since
TESA tends to flush zones with large segments. Flushing
larger segments often leads to superior performance for disk.
Compared to the segment policy which greedily flushes the
largest segment, TESA shows only a small reduction in the
average request size (i.e., 5.7% reduction in average).
Moreover, the recency, segment and TESA polices all reduce

T.-C. Huang and D.-W. Chang: TESA: a Temporal and Spatial Information Aware Writeback Policy for Home Network-Attached Storage Devices 129

the total write traffic to the storage when compared to the file
policy. This is due to that these policies consider the temporal
information of the buffers and can reduce the frequency of
flushing recently-updated buffers. Finally, both segment and
TESA policies result in reduced average inter-request seek
distances than the other policies. This is because the both
policies tend to flush large segments, and each segment can be
divided into multiple requests with adjacent blocks. TESA
achieves even shorter average inter-request distances than the
segment policy (up to 19.5% reduction), which is contributed
by flushing nearby segments (i.e., segments in a zone).

F. Memory Overhead of TESA

As mentioned before, TESA maintains in-memory data
structures such as zone_cb and seg_cb, and it adds a field in
the buffer_head structure. In the current implementation, the
sizes of the zone_cb and the seg_cb structures are 1292 and 16
bytes, respectively. The added field in the buffer_head
structure occupies 4 bytes. Table I shows the maximum
memory overhead of TESA during the execution of the
workloads. As shown in the table, the maximum memory
overhead is less than 446.8KB for all the workloads. Such
overhead is insignificant and would not lead to noticeable
performance degradation.

TABLE I
MAXIMUM MEMORY OVERHEAD OF TESA

Workloads
Maximum Memory Overhead

(KB)

 seq-write 107.8
 rnd-write 382.3
 postmark 446.8
 fileserver 241.1
 videoserver 10.6
 data-backup 299.5

V. CONCLUSION

In this paper, an intelligent writeback policy called TESA is
proposed to improve the performance of flushing dirty buffers
in home NAS devices. By taking both temporal and spatial
information of the dirty buffers into consideration, the TESA
policy reduces both the disk positioning time and the amount
of disk writes.

The TESA writeback policy was implemented on a NAS
evaluation board running Linux kernel. The performance of
TESA was compared with several existing writeback policies
under 6 benchmarks. According to the performance results, the
performance of TESA is superior to the original file based
writeback policy used in Linux by up to 33.1%. When compared
to a recency based policy, TESA shows a performance
improvement by up to 21.0%. Moreover, TESA outperforms a
previous policy that also exploits both the temporal and spatial
information of the dirty buffers by up to 10.9%.

REFERENCES
[1] J. T. Kim, Y. J. Oh, H. K. Lee, E. H. Paik, and K. R. Park, “Implemen-

tation of the DLNA proxy system for sharing home media contents,”
IEEE Trans. Consumer Electron., vol. 53, no. 1, pp. 139-144,
Feb. 2007.

[2] H. Sohn, Y. M. Ro, and K. N. Plataniotis, “Content sharing between
home networks by using personal information and associated fuzzy vault
scheme,” IEEE Trans. Consumer Electron., vol. 55, no. 2, pp. 431-437,
May 2009.

[3] D. Díaz-Sánchez, F. Almenarez, A. Marín, D. Proserpio and P. A.
Cabarcos, “Media cloud: an open cloud computing middleware for
content management,” IEEE Trans. Consumer Electron., vol. 57, no. 2,
pp. 970-978, May 2011.

[4] P. Bellavista, P. Gallo, C. Giannelli, G. Toniolo, and A. Zoccola,
“Discovering and accessing peer-to-peer services in UPnP-based
federated domotic islands,” IEEE Trans. Consumer Electron., vol. 58,
no. 3, pp. 810-818, Aug. 2012.

[5] J. Gray and P. Shenoy, “Rules of thumb in data engineering,” in Proc.
IEEE Int. Conf. Data Engineering (ICDE), pp. 3-12, Mar. 2000.

[6] A. Batsakis, R. Burns, A. Kanevsky, J. Lentini, and T. Talpey, “AWOL:
an adaptive write optimizations layer,” in Proc. USENIX Conf. File and
Storage Technologies (FAST), pp. 67-80, Feb. 2008.

[7] S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang, “DULO: an effective
buffer cache management scheme to exploit both temporal and spatial
locality,” in Proc. USENIX Conf. File and Storage Technologies
(FAST), pp. 101-114, Dec. 2005.

[8] B. S. Gill and D. S. Modha, ”WOW: wise ordering for writes -
combining spatial and temporal locality in non-volatile caches,” in Proc.
USENIX Conf. File and Storage Technologies (FAST), pp. 129-142, Dec.
2005.

[9] Y. Wang, J. Shu, G. Zhang, W. Xue, and W. Zheng, “SOPA: selecting
the optimal caching policy adaptively,” ACM Trans. Storage, vol. 6, no.
2, pp. 72-89, Jul. 2010.

[10] B. L. Worthington, G. R. Ganger, and Y. N. Patt, “Scheduling
algorithms for modern disk drives,” in Proc. ACM Conf. Measurement
and Modeling of Comp. Sys. (SIGMETRICS), pp. 241-251, May 1994.

[11] D. Anderson, J. Dykes, and E. Riedel, “More than an interface: SCSI
vs. ATA,” in Proc. USENIX Conf. File and Storage Technologies
(FAST), pp. 245-257, Apr. 2003.

[12] J. Gim and Y. Won, “Extract and infer quickly: obtaining sector
geometry of modern hard disk drives,” ACM Trans. Storage, vol. 6, no.
2, pp. 46-71, Jul. 2010.

[13] S. W. Schlosser, J. Schindler, S. Papadomanolakis, M. Shao, A.
Ailamaki, C. Faloutsos, and G. R. Ganger, “On multidimensional data
and modern disks,” in Proc. USENIX Conf. File and Storage
Technologies (FAST), pp. 225-238, Dec. 2005.

[14] A. Traeger, E. Zadok, N. Joukov, and C. P. Wright, “A nine year study
of file system and storage benchmarking,” ACM Trans. Storage, vol. 4,
no. 2, pp. 114-169, May 2008.

[15] T. C. Huang and D. W. Chang, “VM aware journaling: improving
journaling file system performance in virtualization environments,”
Softw. Pract. & Exper., vol. 42, no. 3, pp. 303-330, Mar. 2012.

BIOGRAPHIES

Ting-Chang Huang received his BS, MS degrees in
Computer Science at National Chiao Tung University,
Hsinchu, Taiwan, ROC, in 2003 and 2005, respectively.
He is currently a Ph.D. candidate in Computer Science at
National Chiao Tung University, Hsinchu, Taiwan, ROC.
His research interests include embedded systems, virtual
machines, file and storage systems and power
management techniques.

Da-Wei Chang (M’08) received his BS, MS, and PhD
degrees in Computer and Information Science from
National Chiao Tung University, Hsinchu, Taiwan, in
1995, 1997, and 2001, respectively. He has been a
postdoctoral researcher in National Chiao Tung
University in 2002-2005, and an assistant professor in
Electrical Engineering at National Sun Yat-Sen
University, Kaohsiung, Taiwan, in 2006. He is currently

an associate professor in Computer Science and Information Engineering at
National Cheng Kung University, Tainan, Taiwan. His research interests
include operating systems, file and storage systems, virtual machines and
embedded systems. He is a member of the IEEE and the ACM.

