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A semi-analytical solution for the tip-o® response of a vehicle moving along a guideway is
obtained, considering the dynamic interaction between the two subsystems. The guideway is

modeled as an inclined simply-supported uniform °exible beam, and the vehicle as a °exible

free-free beam under a pre-speci¯ed thrust force. The equations of motion for the vehicle and

guideway are developed using the Lagrangian approach and the assumed mode method based
on the Euler�Bernoulli hypothesis. In the form of nonlinear di®erential equations, they are

solved by the Petzold-Gear backward di®erentiation formula (BDF) method. The solutions

obtained are validated by comparing them with the published results for the models with a rigid
vehicle running over a rigid guideway or a °exible guideway. Comparisons of the present

solutions with the existing ones for the vehicle and guideway reveal the advantages of the

approach proposed herein. Other e®ects on the tip-o® responses of the vehicle that are inves-

tigated include the length of the guideway, distance between the shoes of the vehicle, and mass
and rigidity ratios of the vehicle to the guideway. The results presented herein provide valuable

information for the design of the vehicle launch system.

Keywords: Moving load; moving beam model; Lagrangian approach; mode superposition; tip-o®

responses.

1. Introduction

The dynamic response of a beam subjected to a moving vehicle (or structure) has

attracted the attention of researchers for a long time. An excellent state-of-art review

was given in 1984 by the subcommittee on vibration problems associated with

°exural members on transit systems.1 The moving vehicle is often modeled as a
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moving force, a moving mass, a moving oscillator (also called a sprung mass model)

or a moving beam. The moving force model is the simplest and oldest approach,

which neglects the interaction between the vehicle and the beam.2�6 Research work

on this topic can be traced back to 19th century.2 Timoshenko3 derived numerous

approximate solutions to the problem of a simply-supported beam under the moving

loads. Ayre et al.4 studied the transverse vibration of a two-span beam under a

moving constant force. The moving force model is known to be valid only for the case

when the mass of the moving vehicle is much smaller than that of the beam, and only

when the dynamic response of the moving vehicle is not of interest.

A moving mass model is a simple model that to some extent accounts for the

interaction between the moving vehicle and the beam.7�11 The model was ¯rst

proposed by Je®cott7 in 1929. Stani�sić8 employed the Fourier technique to investi-

gate the responses of beams to an arbitrary number of concentrated moving masses.

Akin and Mo¯d9 presented a numerical solution by the separation of variables for the

dynamic response of an Euler�Bernoulli beam to a moving mass. Their solution

scheme is simple and can be used to determine the responses of beams under various

boundary conditions. Dehestani et al.10 showed that it is necessary to consider

the Coriolis acceleration associated with a mass moving along a vibrating beam.

Wu11 examined the e®ects of the inertial, Coriolis, and centrifugal forces induced

by noncoupled moving masses on the dynamic responses of an inclined simply-

supported beam.

A moving oscillator model includes masses, springs and dampers to capture the

dynamic characteristics of a moving vehicle, which is more complicated than a

moving mass model.12�15 Biggs12 presented a semi-analytical solution to the pro-

blem of a sprung mass moving on a simply-supported beam. Using a series expansion

technique, Pesterev and Bergman13 examined the responses of an elastic continuum

to multiple moving oscillators. Yang and Lin14 proposed a vehicle�bridge inter-

action (VBI) element, and Yang and Wu15 further modi¯ed the VBI element

to investigate the vibrations of simply-supported beams during the passage of

high-speed trains.

Unlike a moving oscillator model, which treats a moving vehicle as a discrete

system, a moving beam model considers a vehicle as a continuum and particularly as

a beam. Cojocaru et al.16 studied the vibration of an elastic bridge under an elastic

beam moving at a constant speed. The vehicle was assumed to be connected to the

bridge by means of a rigid interface. The quasi-static deformation of the bridge was

obtained by the Laplace transform, while the dynamic response of the bridge was

determined by the Galerkin method. Zhang and Zheng17 investigated the dynamic

responses of a simply-supported beam to an elastic beam moving at a constant speed

using the modal superposition method. The model consists of two Euler�Bernoulli

beams that were connected by °exible springs at two contact points, so that the

interaction forces between the two beams are found from the relative de°ection of the

two contact points.
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All the aforementioned studies were focused mainly on the dynamic responses of

the beams and are applicable to the design of railroad tracks, railroad bridges and

highway bridges. Relatively few studies were focused on the dynamic behavior of the

vehicle when it moves along the guideway, which sounds like a missile in a launcher

system (see Fig. 1). When a vehicle moves along the guideway, it is mainly subjected

to the thrust, inertia and gravity forces, for which two phases can be identi¯ed.

Before the front shoe of the vehicle (see Fig. 1) loses contact with the guideway, the

vehicle is in a two-shoe contact phase. Then the vehicle rotates with respect to its

rear shoe when its front shoe loses contact with the guideway. Such an e®ect is known

as tip-o®. When the vehicle exhibits tip-o®, it is referred to as being \in the tip-o®

phase". The interaction between the vehicle and its guideway di®ers considerably

between these two phases, and so are the behaviors of the vehicle. Consequently, the

dynamic responses of the vehicle in the two phases have to be modeled separately.

In the ¯eld of control engineering, generally, a vehicle and its guideway are

typically modeled as rigid bodies for the tip-o® analysis (Yao and Zhang18).

Although such modeling is quite simple and can be easily used, it does not take into

account the dynamic interaction between the vehicle and its guideway. This model

fails to yield accurate dynamic responses for the vehicle in real applications when the

mass of the vehicle substantially exceeds that of the guideway, and both of the

vehicle and guideway are °exible. To overcome this drawback, Chou et al.19 proposed

a model with a rigid vehicle moving on a °exible guideway. The dynamic responses of

the rigid vehicle were indirectly obtained from the guideway responses.

Because the response of the vehicle at take-o® signi¯cantly a®ects its °ight con-

trol, accurately determining the response of the vehicle in the tip-o® phase is crucial.

In this study, the vehicle and the guideway displayed in Fig. 1 are further modeled as

a °exible free-free beam and an inclined elastic simply-supported beam, respectively,

based on the Euler�Bernoulli hypothesis. The vehicle is connected to the guideway

at two contact points, assumed to be in rigid contact, so that their dynamic responses

are the same during the take-o®. The equations of motion for the vehicle and

guideway, in terms of functions of the con¯guration coordinates and time, are

Fig. 1. A typical straight guideway used for vehicle launch.
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established via the Lagrangian approach with appropriate displacement constraints.

A modal superposition technique is adopted to convert the governing equations, in

the form of nonlinear partial di®erential equations, into a set of nonlinear ¯rst-order

di®erential equations with time as the independent variable. Then, the Petzold-Gear

backward di®erentiation formula (BDF) numerical method20 is employed to solve

these ¯rst-order di®erential algebraic equations (DAEs). The solutions obtained are

validated by comparison with the published results obtained by models of a rigid

vehicle on a rigid guideway or on a °exible guideway. The e®ects of the guideway

length, distance between the vehicle shoes, and mass and °exural rigidity ratios of

the vehicle to the guideway upon tip-o® of the vehicle are thoroughly studied. The

results presented herein provide valuable information for designing the vehicle

launch systems.

2. Theory and Formulation

Figure 1 shows a straight guideway used for launching a vehicle. While the vehicle

moves, the two shoes of the °exible vehicle slide along the elastic guideway by means

of a rigid contact. The vector of thrust is assumed to be along the vehicle's centerline

(CL) and always coincides with the line joining the two contact points.

2.1. Position history of vehicle

The thrust force, P ðtÞ in Fig. 2, acting on the vehicle is predetermined in real

applications. Figure 3 shows a typical thrust�time diagram, where tb is the thrust

build-up time; Pmax is the value of P ðtÞ after time tb; tF and tR are the times when the

vehicle front and rear shoes lose contact with the guideway, respectively. The term tR
is called the tip-o® time. Between tF and tR, the vehicle tip-o® occurs.

As mentioned in Sec. 1, two phases exist with the vehicle during take-o®, i.e. the

two-shoe contact phase and the tip-o® phase. From the typical thrust�time curve

Fig. 2. Free-body diagrams of the vehicle and guideway.
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shown in Fig. 3 and the design parameters of the vehicle and its guideway, one can

easily ¯nd the position of the rear shoe, �ðtÞ (see Fig. 2), tF and tR can be easily

determined to identify the particular phase with which the vehicle is associated at

each instant. The formulas for �ðtÞ, tF and tR are given below,

. When 0 � t � tb:

�ðtÞ ¼ 1

mv

Pmax

6tb
t3 � 1

2
mvg sin �E � t2

� �
þ �
:ð0Þ � tþ �R; ð2:1Þ

where mv is the mass of the vehicle; �E is the angle of inclination of the guideway;

�
:ð0Þ is the initial velocity of the vehicle and �R (see Fig. 1) is the distance from the

rear shoe of the vehicle to the left end of the guideway when the system is initially

at rest (i.e. �
:ð0Þ ¼ 0 and �ð0Þ ¼ �R).

. When tb < t � tF :

�ðtÞ ¼ 1

2mv

ðPmax �mvg sin �EÞ � ðt� tbÞ2 þ �
:ðtbÞðt� tbÞ þ �ðtbÞ; ð2:2Þ

where �
:ðtbÞ and �ðtbÞ are the velocity of motion and the distance traveled at t ¼ tb,

respectively, and are determined from Eq. (2.1).

. When tF < t � tR:

�ðtÞ ¼ 1

2mv

ðPmax �mvg sin �EÞ � ðt� tbÞ2 þ �
:ðtbÞ � ðt� tbÞ þ �ðtbÞ; ð2:3Þ

tF ¼ tb þ
mv

ðPmax �mvg sin �EÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
:ðtbÞ2 þ

2

mv

½�F � �ðtbÞ�ðPmax �mvg sin �EÞ
s

� �
:ðtbÞ

" #
; ð2:4Þ

Fig. 3. A typical thrust�time curve.
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tR ¼ tb þ
mv

ðPmax �mvg sin �EÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
:ðtbÞ2 þ

2

mv

½�F � �ðtbÞ þ d�ðPmax �mvg sin �EÞ
s

� �
:ðtbÞ

" #
; ð2:5Þ

where �F is the distance from the front shoe of the vehicle to the right end of the

guideway at t ¼ 0, and d is the distance between the two shoes of the vehicle. With

the above equations, the values of �ðtÞ, �:ðtÞ and �
::ðtÞ during the vehicle take-o®

can be calculated.

2.2. Two-shoe contact phase

The dynamic response of the vehicle can be split into two parts, i.e. the elastic

deformation and rigid body motion, known to be completely uncoupled. The

equations of motion and relevant boundary conditions can be derived using the

Lagrangian approach. The kinetic energy and potential energy of the vehicle and

the guideway are

Kv ¼
1

2

Z Lv

0

�vAvð _wv þ �
:
w 0

vÞ2dx1 þ
1

2
mvð�x

:
r
2 þ �y

:
r
2Þ þ 1

2
J ��
:2
r ; ð2:6aÞ

Kg ¼
1

2

Z Lg

0

�gAg _w
2
gdx2; ð2:6bÞ

Vv ¼
1

2

Z Lv

0

ðEvIvw
002
v � Pw

02
v Þdx1 þ

Z Lv

0

�vAvg cos �Ewvdx1

þ ðmvg sin �EÞ�xr þ ðmvg cos �EÞ�yr; ð2:6cÞ

Vg ¼
1

2

Z Lg

0

EgIgw
002
g dx2; ð2:6dÞ

where subscripts v and g refer to the vehicle and the guideway, respectively; the

overhead dot ð�Þ and the prime ð0Þ denote di®erentiation with respect to time t and

coordinate x, respectively; K and V are the kinetic energy and potential energy,

respectively; EI is the °exural rigidity; �A represents the mass per unit length; J is

the mass moment of inertia of the vehicle; �
:ðtÞ denotes the velocity of the vehicle in

the local x2-direction; �xrðtÞ is the axial coordinate of the vehicle under rigid body

motion in the ¯xed coordinate system x2O2y2; �yrðtÞ is the transverse displacement of

the vehicle under rigid body motion, and ��rðtÞ is the angle of rotation of the vehicle

under rigid body motion. The transverse elastic displacements of the vehicle wvðx1; tÞ
and the guideway wgðx2; tÞ are described as functions of the axial coordinates x1 and

x2, respectively.
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The two shoes of the vehicle are assumed to slide along the elastic guideway by

means of a rigid contact. Hence, the corresponding constraint equations are

wðdR; tÞ ¼wgð�; tÞ; ð2:7aÞ
wðdF ; tÞ ¼wgð� þ d; tÞ; ð2:7bÞ

where dR is the distance between the left end and rear shoe of the vehicle; dF is the

distance between the left end and front shoe of vehicle, and wðdR; tÞ and wðdF ; tÞ are
the total transverse displacements at the rear and front shoes of the vehicle,

respectively. The displacements wðdR; tÞ and wðdF ; tÞ comprise a rigid part and an

elastic part.

The transverse elastic displacements of the beams can be expressed in terms of

their normal modes as

wvðx1; tÞ ¼
XN
j¼1

�jðx1ÞY v
j ðtÞ; ð2:8aÞ

wgðx2; tÞ ¼
XN
j¼1

 jðx2ÞY g
j ðtÞ; ð2:8bÞ

where Y v
j ðtÞ and Y g

j ðtÞ are the generalized coordinates corresponding to the jth mode

of the vehicle and guideway, respectively; �jðx1Þ and  jðx2Þ denote the jth mode

shape functions of the vehicle and guideway, respectively.

The vehicle is modeled as a beam with two free ends, and its mode shape functions

�jðx1Þ are21
�jðx1Þ ¼ cosð�vjx1Þ þ coshð�vjx1Þ ��j½sinð�vjx1Þ þ sinhð�vjx1Þ�; ð2:9Þ

where j ¼ 1; 2; . . . ;N

� 4
vj ¼ !2

vj �
�vAv

EvIv
; �j ¼

cosð�vjLvÞ � coshð�vjLvÞ
sinð�vjLvÞ � sinhð�vjLvÞ

; �vjLv � jþ 1

2

� �
�; ð2:10Þ

!vj is the circular frequency of the jth mode of the vehicle, and Lv is the length of the

vehicle. The guideway is modeled as a simply-supported beam with the following

mode shape functions:

 jðx2Þ ¼ sin
j�x2

Lg

� �
; j ¼ 1; 2; . . . ;N; ð2:11Þ

where Lg is the length of the guideway.

The motions of vehicle and guideway have to satisfy Lagrange's equations,

d

dt

@Lðq; _q; tÞ
@qk
:

� �
� @Lðq; _q; tÞ

@qk
¼ 0; k ¼ 1; 2; . . . ;N; ð2:12Þ

where the functional L, expressed in terms of the generalized coordinates qk and

velocities qk
:
, represents the di®erence between the kinetic energy and potential

Dynamic Analyses of a Flexible Vehicle Moving Along a Flexible Guideway
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energy of a conservative dynamic system. To account for the displacement con-

straints in Eqs. (2.7), i.e. wðdR; tÞ � wgð�; tÞ ¼ 0 and wðdF ; tÞ � wgð� þ d; tÞ ¼ 0,

extra terms are added to the functional L using the Lagrange multipliers. Accord-

ingly, the Lagrangian functional L with multipliers �1 and �2 is further expressed as

L ¼ ðKv þKgÞ � ðVv þ VgÞ þ �1G1 þ �2G2

¼ 1

2

Z Lv

0

�vAv

XN
j¼1

½ÁjY
: v

j þ �
:
Á 0

jY
v
j �

( )
2

dx1 þ
1

2
mvð�x

:
r
2 þ �y

:
r
2Þ þ 1

2
J ��
:
r

2

þ 1

2

Z Lg

0

�gAg

XN
j¼1

ÃjY
: g
j

" #
2

dx2 �
1

2

Z Lg

0

EgIg
XN
j¼1

Ã 00
j Y

g
j

" #
2

dx2

� 1

2

Z Lv

0

XN
j¼1

fEvIv½Á 00
j Y

v
j �2 � P ½Á 0

jY
v
j �2gdx1

�
Z Lv

0

�vAvg cos �E
XN
j¼1

ÁjY
v
j dx1 � ðmvg sin �EÞ�xr � ðmvg cos �EÞ�yr

þ �1
XN
j¼1

ÁjðdRÞY v
j ðtÞ þ yðdR; tÞ �

XN
j¼1

Ãjð�ÞY g
j ðtÞ

" #

þ �2
XN
j¼1

ÁjðdF ÞY v
j ðtÞ þ yðdF ; tÞ �

XN
j¼1

Ãjð� þ dÞY g
j ðtÞ

" #
; ð2:13Þ

where

�xrðtÞ ¼ �ðtÞ þ r1d cos ��rðtÞ; ð2:14aÞ
yðdR; tÞ ¼ �yrðtÞ � r1d sin ��rðtÞ; ð2:14bÞ
yðdF ; tÞ ¼ �yrðtÞ þ r2d sin ��rðtÞ; ð2:14cÞ

G1 ¼wðdR; tÞ � wgð�; tÞ

¼
XN
j¼1

�jðdRÞY v
j ðtÞ �

XN
j¼1

 jð�ÞY g
j ðtÞ þ �yrðtÞ � r1d sin ��rðtÞ; ð2:14dÞ

G2 ¼wðdF ; tÞ � wgð� þ d; tÞ

¼
XN
j¼1

�jðdF ÞY v
j ðtÞ �

XN
j¼1

 jð� þ dÞY g
j ðtÞ þ �yrðtÞ þ r2d sin ��rðtÞ; ð2:14eÞ

r1 ¼ ðdG � dRÞ=d; r2 ¼ ðdF � dGÞ=d; yðdR; tÞ and yðdF ; tÞ denote the transverse dis-

placements of the vehicle's rigid body motion at the rear and front shoes, respect-

ively, and G1 and G2 are the displacement constraints. The two unknowns �1 and �2
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can be obtained if Lagrange's equations are solved with the constrained equations.

Notably, no damping is considered in the preceding formulation.

Substituting Eqs. (2.7), (2.8), (2.9) and (2.11) into Eq. (2.13), and then sub-

stituting the resulting expression for L into Eq. (2.12) yield

mv �x
::
rðtÞ þmvg sin �E � P ðtÞ ¼ 0; ð2:15aÞ

mv �y
::
rðtÞ þmvg cos �E � �1 � �2 ¼ 0; ð2:15bÞ

J ��
::
rðtÞ þ ðr1�1 � r2�2Þd cos ��rðtÞ �mvgr1d sin �E sin ��rðtÞ ¼ 0; ð2:15cÞ

~H
a
i
€Y

v
i ðtÞ þ 2�

:
~H
b
iY
: v
i ðtÞ þ ð!2

vi
~H
a
i þ Lv �

::
~H
c
i þ �

: 2 ~H
c
i þ �

::
~H
b
iÞY v

i ðtÞ

� 1

�vAv

½�1�iðdRÞ þ �2�iðdF Þ� þ g cos �E ~H
d
i ¼ 0; ð2:15dÞ

€Y
g
i ðtÞ þ !2

giY
g
i ðtÞ þ

2

mg

½�1 ið�Þ þ �2 ið� þ dÞ� ¼ 0; ð2:15eÞ

XN
j¼1

�jðdRÞY v
j ðtÞ �

XN
j¼1

 jð�ÞY g
j ðtÞ þ �yrðtÞ � r1d sin ��rðtÞ ¼ 0; ð2:15fÞ

XN
j¼1

�jðdF ÞY v
j ðtÞ �

XN
j¼1

 jð� þ dÞY g
j ðtÞ þ �yrðtÞ þ r2d sin ��rðtÞ ¼ 0; ð2:15gÞ

where i ¼ 1; 2; . . . ;N , mg ¼ �gAgLg, !gi is the circular frequency of the ith mode of

the guideway, � 4
gi ¼ !2

gi � �gAg

Eg Ig
, �giLg ¼ i�, and

~H
a
i ¼

1

2�vi
½ð�2

i þ 1Þ coshð�viLvÞ sinhð�viLvÞ � 2�icosh
2ð�viLvÞ

þ 2ð�2
i þ 1Þ sinð�viLvÞ coshð�viLvÞ þ 2�viLv

� 4�i sinð�viLvÞ sinhð�viLvÞ�; ð2:16aÞ

~H
b
i ¼

1

2
ð�2

i þ 1Þcosh2ð�viLvÞ ��i coshð�viLvÞ sinð�viLvÞ � 2

��i coshð�viLvÞ sinhð�viLvÞ þ�2
i sinð�viLvÞ sinhð�viLvÞ; ð2:16bÞ

~H
c
i ¼

1

2
�vi½ð�2

i þ 1Þ coshð�viLvÞ sinhð�viLvÞ � 2�icosh
2ð�viLvÞ

þ4�i � 2�viLv�
2
i �; ð2:16cÞ

~H
d
i ¼

1

�vi
½sinð�viLvÞ þ sinhð�viLvÞ ��i coshð�viLvÞ�: ð2:16dÞ

To include the e®ect of damping in the system of the vehicle and the guideway, an

approach that is commonly used in structural dynamics (Clough and Penzien22) is

adopted to add the distributed viscous damping term to Eqs. (2.15d) and (2.15e).

Dynamic Analyses of a Flexible Vehicle Moving Along a Flexible Guideway
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These equations are thus modi¯ed as:

~H
a
i
€Y

v
i ðtÞ þ ð2�: ~H b

i þ 2�v!vi
~H
a
i ÞY
: v

i ðtÞ
þ ð!2

vi
~H
a
i þ Lv �

::
~H
c
i þ �

: 2 ~H
c
i þ �

::
~H
b
iÞY v

i ðtÞ
� 1

�vAv

½�1�iðdRÞ þ �2�iðdF Þ� þ g cos �E ~H
d
i ¼ 0; ð2:17aÞ

€Y
g
i ðtÞ þ 2�g!giY

: g
i ðtÞ þ !2

giY
g
i ðtÞ þ

2

mg

½�1 ið�Þ þ �2 ið� þ dÞ� ¼ 0; ð2:17bÞ

where 2�v!vi and 2�g!gi are the added damping terms, and �v and �g are the damping

ratios corresponding to the mode shapes �iðx1Þ and  iðx2Þ, respectively.
Equations (2.15a)�(2.15c), (2.15f), (2.15g) and (2.17) form a set of nonlinear

ordinary di®erential equations for describing the rigid body motions of the vehicle

and elastic deformations of the vehicle and the guideway. Equation (2.15a) describes

the rigid body motion of the vehicle in the x1 direction (see Fig. 2). This equation can

be easily derived from Newton's second law based on the free body diagram of the

vehicle in Fig. 2, which was utilized to ¯nd the solution for �ðtÞ in Eqs. (2.1)�(2.3),

where �ðtÞ ¼ �xrðtÞ � r1d. Consequently, Eqs. (2.15b), (2.15c), (2.15f), (2.15g) and

(2.17) can be employed to ¯nd the transverse displacements of the vehicle and the

guideway.A total of 2N þ 4 equationswith 2N þ 4 to-be-determined functions,Y v
i ðtÞ,

Y g
i ðtÞ, �yrðtÞ, ��rðtÞ, �1ðtÞ and �2ðtÞ, are thus obtained. To solve these equations e±-

ciently, Eqs. (2.15f) and (2.15g) are di®erentiated twice with respect to time, along

with the use of Eqs. (2.17), to yield

�1
XN
j¼1

½d2j jð�Þ � d1j�jðdRÞ� þ
1

mv

þ r21d2cos2 ��rðtÞ
J

( )

þ �2
XN
j¼1

½e2j jð�Þ � e1j�jðdRÞ� þ
1

mv

� r1r2d2cos2 ��rðtÞ
J

( )

�
XN
j¼1

f�jðdRÞ½b1jY
: v
jðtÞ þ c1jY

v
j ðtÞ þ f1j�

�  jð�Þ½b2jY
: g

jðtÞ þ c2jY
g
j ðtÞ� þ 2�

:
 0

jð�ÞY
: g

jðtÞ

þ ½ �:: 0
jð�Þ þ �

: 2
 00

j ð�Þ�Y g
j ðtÞg �

mvgr
2
1d2 sin �E sin ��rðtÞ cos ��rðtÞ

J

þ r1d��
:2
rðtÞ sin ��rðtÞ � g cos �E ¼ 0; ð2:18aÞ

�1
XN
j¼1

½d2j jð� þ dÞ � d1j�jðdF Þ� þ
1

mv

� r1r2d2cos2 ��rðtÞ
J

( )

þ �2
XN
j¼1

½e2j jð� þ dÞ � e1j�jðdF Þ� þ
1

mv

þ r22d2cos2 ��rðtÞ
J

( )

S. N. Chou, F. P. Cheng & C. S. Huang

1350009-10

In
t. 

J.
 S

tr
. S

ta
b.

 D
yn

. 2
01

3.
13

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n 
04

/2
6/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



�
XN
j¼1

f�jðdF Þ½b1jY
: v

jðtÞ þ c1jY
v
j ðtÞ þ f1j�

�  jð� þ dÞ½b2jY
: g
jðtÞ þ c2jY

g
j ðtÞ� þ 2�

:
 0

jð� þ dÞY: g
jðtÞ

þ ½ �:: 0
jð� þ dÞ þ �

: 2
 00

j ð� þ dÞ�Y g
j ðtÞg

þ mvgr1r2d2 sin �E sin ��rðtÞ cos ��rðtÞ
J

� r2d��
:2
rðtÞ sin ��rðtÞ � g cos �E ¼ 0; ð2:18bÞ

where

b1j ¼ 2�v!vj þ
2�
:
~H
b
j

~H
a
j

; c1j ¼ !2
vj þ

Lv �
::
~H
c
j þ �

: 2 ~H
c
j þ �

::
~H
b
j

~H
a
j

;

d1j ¼ � �jðdRÞ
�vAv

~H
a
j

; e1j ¼ � �jðdF Þ
�vAv

~H
a
j

; f1j ¼
g cos �E ~H

d
j

~H
a
j

;

b2j ¼ 2�g!gj; c2j ¼ !2
gj; d2j ¼

2 jð�Þ
mg

; e2j ¼
2 jð� þ dÞ

mg

:

ð2:19Þ

Consequently, Eqs. (2.15b), (15c), (2.17) and (2.18) are used to determine the

transverse motions of the vehicle and the guideway for 0 < t � tF , as discussed below.

To solve the above governing equations, the initial conditions are required.

The system (vehicle and guideway) is initially at rest, i.e. the initial velocity and

acceleration of the vehicle and the guideway are zero. However, the vehicle and

guideway are both deformed under the weight of the vehicle. The initial displacement

of the system can be determined from Eqs. (2.15b), (15c), (2.15f), (2.15g) and (2.17)

by setting €Y
g
i ð0Þ ¼ 0, Y

: g

i ð0Þ ¼ 0, €Y
v
i ð0Þ ¼ 0, Y

: v

i ð0Þ ¼ 0, �
::ð0Þ ¼ 0 and �

:ð0Þ ¼ 0.

Then, the initial values of Y g
i ð0Þ, Y v

i ð0Þ, �yrð0Þ, ��rð0Þ, �1ð0Þ and �2ð0Þ can be easily

determined.

2.3. Tip-o® phase

Figure 4 shows the free body diagram of the vehicle and the guideway for

tF < t � tR, when the front shoe of the vehicle has lost contact with the guideway,

while the rear shoe remains in contact with the guideway. Similar to that in the two-

shoe contact phase, the Lagrangian functional L in the tip-o® phase is

L ¼ ðK �
v þK �

g Þ � ðV �
v þ V �

g Þ þ ��
1G

�
1

¼ 1

2

Z Lv

0

�vAv

XN
j¼1

½�jY
: v�
j þ �

:
� 0
jY

v�
j �

( )
2

dx1 þ
1

2
mvð�x

: �
r
2 þ �y

: �
r 2Þ þ

1

2
J ��
:�2
r

þ 1

2

Z Lg

0

�gAg

XN
j¼1

 jY
: g�
j

" #
2

dx2 �
1

2

Z Lg

0

EgIg
XN
j¼1

 00
j Y

g�
j

" #
2

dx2

Dynamic Analyses of a Flexible Vehicle Moving Along a Flexible Guideway
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� 1

2

Z Lv

0

XN
j¼1

fEvIv½� 00
j Y

v�
j �2 � P ½� 0

jY
v�
j �2gdx1

�
Z Lv

0

�vAvg cos �E
XN
j¼1

�jY
v�
j dx1 � ðmvg sin �EÞ�x �

r � ðmvg cos �EÞ�y �
r

þ ��
1

XN
j¼1

�jðdRÞY v�
j ðtÞ �

XN
j¼1

 jð�ÞY g�
j ðtÞ þ �y �

rðtÞ � r1d sin ��
�
rðtÞ

" #
ð2:20Þ

where the superscript � stands for quantities in the tip-o® phase. Since the front shoe

of the vehicle has lost contact with the guideway, the constraint on displacement,

given in Eq. (2.7b), vanishes. Following the procedure described in the preceding

section, the following governing equations are obtained:

mv �x
:: �
rðtÞ þmvg sin �E � P ðtÞ ¼ 0; ð2:21aÞ

mv �y
:: �
rðtÞ þmvg cos �E � � �

1 ¼ 0; ð2:21bÞ
J ��
::�
rðtÞ þ ��

1r1d cos ��
�
rðtÞ �mvgr1d sin �E sin ��

�
rðtÞ ¼ 0; ð2:21cÞ

~H
a
i
€Y

v�
i ðtÞ þ ð2�v!vi

~H
a
i þ 2�

:
~H
b
iÞY
: v�
i ðtÞ þ ð!2

vi
~H
a
i þ Lv �

::
~H
c
i þ �

: 2 ~H
c
i

þ �
::
~H
b
iÞY v�

i ðtÞ � ��
1�iðdRÞ
�vAv

þ g cos �E ~H
d
i ¼ 0; ð2:21dÞ

€Y
g�
i ðtÞ þ 2�g!giY

: g�
i ðtÞ þ !2

giY
g�
i ðtÞ þ 2��

1 ið�Þ
mg

¼ 0; ð2:21eÞ

XN
j¼1

�jðdRÞY v�
j ðtÞ �

XN
j¼1

 jð�ÞY g�
j ðtÞ þ �y �

rðtÞ � r1d sin ��
�
rðtÞ ¼ 0: ð2:21fÞ

Fig. 4. Free body diagrams of the system in tip-o® phase.

S. N. Chou, F. P. Cheng & C. S. Huang
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Again, Eq. (2.21a) is not needed for determining the transverse displacements of

the vehicle and the guideway. Di®erentiating Eq. (2.21f) twice with respect to time

and applying Eqs. (2.21d) and (2.21e) yield

��
1

XN
j¼1

½d�
2j jð�Þ � d�

1j�jðdRÞ� þ
1

mv

þ r21d2cos2 ��
�
rðtÞ

J

( )

�
XN
j¼1

f�jðdRÞ½b�1jY
: v�
j ðtÞ þ c�1jY

v�
j ðtÞ þ f �

1j�

�  jð�Þ½b�2jY
: g�
j ðtÞ þ c�2jY

g�
j ðtÞ� þ 2�

:
 0

jð�ÞY
: g�
j ðtÞ

þ ½ �:: 0
jð�Þ þ �

: 2
 00

j ð�Þ�Y g�
j ðtÞg � mvgr

2
1d2 sin �E sin ��

�
rðtÞ cos ���rðtÞ

J

þ r1d��
:�2
r ðtÞ sin ��

�
rðtÞ � g cos �E ¼ 0; ð2:22Þ

where d�
1j ¼ d1j, e

�
1j ¼ e1j, f

�
1j ¼ f1j , b

�
2j ¼ b2j, c

�
2j ¼ c2j, and

b�1j ¼ 2�v!vj þ
2�
:
~H
b
j

~H
a
j

; c�1j ¼ !2
vj þ

Lv �
::
~H
c
j þ �

: 2 ~H
c
j þ �

::
~H
b
j

~H
a
j

;

d�
2j ¼

2 jð�Þ
mg

; e�2j ¼
2 jð� þ dÞ

mg

:

ð2:23Þ

Equations (2.21b)�(2.21e) and Eq. (2.22) describe the transverse motions of the

vehicle and the guideway in the tip-o® phase; they form a set of 2N þ 3 nonlinear

equations. The initial conditions for solving these equations are obtained from

the continuity conditions between the motions in the two phases: Y v�
j ð0Þ ¼ Y v

j ðtþF Þ,
Y g�
j ð0Þ ¼ Y g

j ðtþF Þ, �y �
rð0Þ ¼ �yrðtþF Þ, ��

�
rð0Þ ¼ ��rðtþF Þ, Y

: v�
j ð0Þ ¼ Y

: v

jðtþF Þ, Y
: g�
j ð0Þ ¼

Y
: g
jðtþF Þ, �y

: �
rð0Þ ¼ �y

:
rðtþF Þ and ��

:�
rð0Þ ¼ ��

:
rðtþF Þ.

2.4. Dynamic responses of vehicle and guideway

The governing equations given in Secs. 2.2 and 2.3 form a set of coupled second order

di®erential nonlinear equations. They can be expressed in matrix form as

M€YþC _YþKY ¼ Q; ð2:24Þ
where Y, _Y and €Y are the generalized coordinate, velocity and acceleration vectors,

respectively; Q is a generalized force vector, and M, C and K are the instantaneous

overall mass, damping and sti®ness matrixes, respectively. Equation (2.24) is further

reduced to a set of ¯rst-order di®erential equations in matrix form by introducing

Z ¼ ðYT
; _Y

T ÞT . Then, the Petzold-Gear BDF method20 is applied to solving the

resulting equations.

After Y and _Y have been determined, the vertical displacement and velocity of

the center of gravity of the vehicle can be determined by applying the following

Dynamic Analyses of a Flexible Vehicle Moving Along a Flexible Guideway
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equations, respectively;

wðdG; tÞ ¼ �yrðtÞ þ wvðdG; tÞ ¼ �yrðtÞ þ
XN
j¼1

�jðdGÞY v
j ðtÞ; ð2:25Þ

_wðdG; tÞ ¼ �y
:
rðtÞ þ _wvðdG; tÞ ¼ �y

:
rðtÞ þ

XN
j¼1

½�jðdGÞY
: v
jðtÞ þ �

:
� 0
jðdGÞY v

j ðtÞ�: ð2:26Þ

The pitch angle and pitch rate of the vehicle are found, respectively, by applying

�ðtÞ ¼ ��rðtÞ þ sin�1 1

d

XN
j¼1

½�jðdF Þ � �jðdRÞ�Y v
j ðtÞ

( )
; ð2:27Þ

_�ðtÞ ¼ ��
:
rðtÞ þ

1

d cos½�ðtÞ � ��rðtÞ�
XN
j¼1

f½�jðdF Þ � �jðdRÞ�Y
: v
jðtÞ

þ �
: ½� 0

jðdF Þ � � 0
jðdRÞ�Y v

j ðtÞg: ð2:28Þ

3. Numerical Validation and Examples

In this section, three cases will be studied to validate the method proposed, by

comparing the results with those by Yao and Zhang18 and Chou et al.19 As men-

tioned in the introduction section, two typical models were applied to study the tip-

o® phenomenon of a vehicle when it moves along the guideway. Yao and Zhang

utilized the model of a rigid vehicle moving along a rigid guideway (the R.R.

model),18 while Chou et al. adopted the model of a rigid vehicle moving on an elastic

guideway (R.E. model).19 In this study, the vehicle and guideway are assumed to be

elastic, and are simulated by the ¯nite elements. Unless noted otherwise, the material

and geometric parameters of the vehicle and guideway and the parameters de¯ning a

typical thrust�time diagram (Fig. 3) are those given in Table 1. Ten modes (N ¼ 10

in Eq. (2.8)) and a time increment of 0.0001 s were used to obtain the results.

3.1. Case 1: A rigid vehicle moves along a rigid guideway

In this case, the °exural rigidities of the vehicle and guideway are assumed to be

1:2� 1015 N �m2 to simulate the behavior of a pseudo-rigid body. Figures 5 and 6

display the numerical results for the pitch angle and pitch rate, respectively, of the

vehicle obtained using three di®erent models. In the two-shoe contact phase, the

pitch angle and pitch rate of the vehicle in the R.R. model are theoretically zero,

while in the R.E. and E.E. models, they have very small values, because the vehicle

and guideway have very large °exural rigidities.

The results by Yao and Zhang18 (R.R. model) for the tip-o® phase di®er signi¯-

cantly from those based on the other models. The former are somewhat inconsistent

with the physical consideration in that a rigid vehicle should maintain its uniform

S. N. Chou, F. P. Cheng & C. S. Huang
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rotational acceleration about its rear shoe when the front shoe loses contact with the

rigid guideway. Consequently, the slope of the pitch rate in Fig. 6 should be constant.

A nearly straight line was revealed by both the present results and those of Chou

et al.,19 whereas those of Yao and Zhang18 do not show a straight line.

3.2. Case 2: A rigid vehicle moves along an elastic guideway

Figures 7 and 8 show the time histories of the pitch angle and pitch rate of vehicle

obtained by the R.E. and E.E. models. For comparison, the °exural rigidity of the

vehicle is set equal to 1:2� 1015 N �m2 in the E.E. model. The pitch angle and pitch

Table 1. Parameters of the vehicle launch system.

Design value of launch system

Parameters Vehicle Guideway

E�I� 1:2� 107 N �m2 1:2� 107 N �m2

��A� 4:0� 102 kg=m 1:5� 102 kg=m

�� 0.03 0.03

L� 4.0m 8.0m
�E — 0.5 rad

d 3.7m —

r1d 2.5m —

�R — 0.1m
�F — 4.2m

tb 0.1 s —

Pmax 7:0� 104 N —

�t 0.0001 s —

�The subscript denotes the vehicle (v) or guideway (g).
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Fig. 5. Pitch angle �� t of vehicle obtained using di®erent models.
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rate of the vehicle are directly obtained from Eqs. (2.27) and (2.28), referred to as the

\vehicle formulation". Besides, the pitch angle and pitch rate of the vehicle for the

R.E. model were indirectly determined from the displacements of the guideway at

the points of contact with the shoes of the vehicle,19 which was referred to as the

\guideway formulation". For consistency, the pitch angle and pitch rate of the

vehicle in the E.E. model were also computed using the \guideway formulation".

0.52 0.56 0.60 0.64 0.680.50 0.54 0.58 0.62 0.66 0.70
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E.E. Model (present)
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F

Fig. 6. Pitch rate _�� t of vehicle obtained using di®erent models.
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Fig. 7. Pitch angle �� t of vehicle obtained using di®erent models and formulations.
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The excellent agreement between the results of the R.E. model and those of the

E.E. model based on the \guideway formulation" con¯rms the accuracy of the

proposed approach. The considerable di®erences in the tip-o® phase between

the results of the R.E. model and those of the E.E. model based on the \vehicle

formulation" indicate the importance of the present approach in predicting the

dynamic response of the vehicle.

3.3. Case 3: An elastic vehicle moves along an elastic guideway

Case 3 is concerned with the motion of an elastic vehicle moving along an elastic

guideway. Table 1 presents the material properties and geometric parameters of the

vehicle and guideway. In Fig. 9, the pitch angles obtained by using a time increment

of 0.0001 s and 10 modes are compared with those using 1 and 50 modes, which

indicates that the solution can be obtained accurately using 10 modes. In Fig. 10, the

pitch angles obtained by using 10 modes and a time increment of 0.0001 s are

compared with those using the time increments of �t ¼ 0:01, 0.001, 0.0001 and

0.00001 s, which indicates that accurate solutions can be obtained using a time

increment of 0.0001 s.

In Figs. 11 and 12, the pitch angles and pitch rates of the vehicle obtained using

three models — R.R., R.E. and E.E. are compared. The tip-o® phase starts at tF ¼
0:5136 s and ends at tR ¼ 0:6876 s. In the two-shoe contact phase, the R.R. model

only considers the rigid body motions so that the pitch angles and pitch rates of the

vehicle equal zero, thereby underestimating the magnitude of the pitch angle of the

vehicle, while the E.E. model includes the elastic deformations of the vehicle and

guideway and yields a higher result for the pitch rate of the vehicle than the other

0 0.2 0.4 0.60.1 0.3 0.5 0.7

-40.00

-30.00

-20.00

-10.00

0.00
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°

= ⋅
= ⋅

×
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Fig. 8. Pitch rate _�� t of vehicle obtained using di®erent models and formulations.
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two models. In the tip-o® phase, the agreement between the results obtained by the

R.R. and E.E. models is better than that between those obtained by the R.E. and

E.E. models. The maximum di®erence in the pitch angle between the results of the

R.E. and E.E. models is 0:5780� at t ¼ 0:6350 s, while the maximum di®erence in

the pitch rate is 10:2670�=s at t ¼ 0:6876 s. The considerable di®erences between the

results obtained by the R.E. and E.E. models are mainly due to the fact that, as

shown in Sec. 3.2, di®erent formulations are employed to determine the pitch angles

0 0.2 0.4 0.60.1 0.3 0.5 0.7
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Fig. 9. Pitch angles of vehicle obtained using di®erent numbers of modes.
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Fig. 10. Pitch angles of vehicle obtained using di®erent time increments.
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and pitch rates of the vehicle. However, at the end of the tip-o® phase (t ¼ 0:6876 s),

the E.E., R.E. and R.R. models yield the pitch angles as �2:3622�, �2:9886� and

�2:5546�, respectively, and the pitch rates as �27:914�=s, �38:181�=s and

�30:410�=s. These di®erences signi¯cantly in°uence the trajectory of the vehicle

after it leaves the guideway.
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Fig. 11. Pitch angles of vehicle obtained using di®erent models.
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Fig. 12. Pitch rates of vehicle obtained using di®erent models.
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4. Parametric Study

After the accuracy of the proposed approach was con¯rmed, the solutions are utilized

to examine the e®ects of some important parameters on the pitch angle and pitch

rate of the vehicle at take-o®. The parameters of interest are the length of the

guideway, Lg; the distance between the shoes of the vehicle, d, the mass ratio, Mr,

de¯ned as �vAvLv=�gAgLg, and the °exural rigidity ratio, Rr, de¯ned as EvIv=EgIg.

In control engineering, the pitch angle and pitch rate of a vehicle at take-o® are the

main concerns because they are the factors that dominate the trajectory of the

vehicle after it leaves the guideway.

4.1. In°uence of length of guideway

The length of the guideway a®ects the duration of a vehicle's movement along the

guideway. Increasing the length of the guideway increases the period for which the

two shoes are in contact with the guideway. Increasing the length of the guideway

also increases the velocity of the vehicle when it enters the tip-o® phase, because the

period for which the motor thrust acts is increased, while the duration tR�tF is

reduced. Consequently, the length of the guideway substantially a®ects the tip-o®

response of the vehicle.

Table 2 presents three combinations of °exural rigidities of the vehicle and

guideway considered herein. Case EI01 is used to represent a °exible vehicle and a

°exible guideway; case EI02 a rigid vehicle and a °exible guideway; and case EI03 a

rigid vehicle and a rigid guideway.

Figures 13 and 14, respectively, show the variations of the pitch angle and pitch

rate of vehicle at take-o® for a guideway length between 4 and 12m. In Tables 1 and

2, the other parameters that must be known to solve for the dynamic response of the

vehicle and the guideway are listed. Both the pitch angle and pitch rate of the vehicle

at take-o® generally decrease as the guideway length increases, since the duration

tR�tF decreases. Accordingly, a longer guideway is associated with a weaker vehicle

tip-o® e®ect. Nevertheless, the length of the guideway should still be selected to ¯t

the spatial limits on the launcher system.

The results given in Figs. 13 and 14 also reveal that the °exural rigidity combi-

nation EI02 always yields a smaller pitch angle and pitch rate of the vehicle than the

combination EI03. Combination EI01 yields results that may be larger or smaller

Table 2. Combinations of °exural rigidities

of vehicle and guideway.

Flexural rigidity ðN �m2Þ
Case EvIv EgIg

EI01 1:2� 1006 1:2� 1007

EI02 1:2� 1015 1:2� 1006

EI03 1:2� 1015 1:2� 1015
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than those obtained using the other two combinations of °exural rigidity, depending

on the length of the guideway. Consequently, the results imply that the vehicle

should be designed to the maximum extent possible sti®er than the guideway.

4.2. In°uence of distance between shoes of vehicle

As stated in the previous section, the value of tR�tF signi¯cantly a®ects the tip-o®

response. The distance between the shoes of the vehicle is a design factor that

4.0 6.0 8.0 10.0 12.0

-80.00

-60.00

-40.00

-20.00

0.00

°

Fig. 14. E®ect of length of guideway on pitch rate of vehicle at take-o® ( _�� Lg diagram).

4.0 6.0 8.0 10.0 12.0

-12.00

-8.00

-4.00

0.00

4.00

°

Fig. 13. E®ect of length of guideway on pitch angle of vehicle at take-o® (�� Lg diagram).
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critically in°uences tR�tF . Hence, it is worth showing the variations of pitch angle

and pitch rate of the vehicle at take-o® with the distance between the shoes of the

vehicle. The three combinations of °exural rigidities of the vehicle and the guideway

in Table 2 are also considered here.

Figures 15 and 16, respectively, show the variations of the pitch angle and pitch

rate of the vehicle at take-o® with the distance between the shoes of the vehicle from

2 to 4m. As expected, as the distance between the shoes of the vehicle increases, the

2.0 2.4 2.8 3.2 3.6 4.0

-4.00

-3.00

-2.00

-1.00

0.00

°

Fig. 15. E®ect of distance between shoes of vehicle on pitch angle of vehicle at take-o®.
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Fig. 16. E®ect of distance between shoes of vehicle on pitch rate of vehicle at take-o®.
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magnitudes of the pitch angle and pitch rate of the vehicle at take-o® increases.

Again, the vehicle and guideway with the °exural rigidity combination EI02 always

gives a smaller pitch angle and pitch rate for the vehicle than combination EI03.

Combination EI01 yields a larger pitch angle than combination EI02.

4.3. In°uence of mass ratio and °exural rigidity ratio

The mass ratio Mr and °exural rigidity ratio Rr can be designed for various real

applications. The e®ects of these two ratios on the pitch angle and pitch rate of the

°
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Fig. 17. E®ect of mass ratio and °exural rigidity ratio on pitch angle of vehicle: (a) 3D plot (b) contour

plot.
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vehicle at take-o® are of interest. These two ratios are changed herein by varying the

mass and °exural rigidity, respectively, of the guideway only.

Figures 17 and 18 show the variations of the pitch angle and pitch rate of the

vehicle at take-o® with Mr and Rr, respectively, in terms of three-dimensional plots

and contours. Figure 17 reveals that the pitch angle decreases as Rr increases, but a

change in Mr has no signi¯cant e®ect. Figure 18 indicates that as both Rr and Mr

°

(a)

(b)

Fig. 18. E®ect of mass ratio and °exural rigidity ratio on pitch rate of vehicle: (a) 3D plot (b) contour plot.
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increase, the pitch rate of the vehicle at take-o® decreases. The contour plots are

useful for selecting a set of optimum parameters for the launch system.

5. Conclusions

In this paper, the governing equations for the dynamic response of a vehicle moving

along its guideway was developed based on the Lagrangian approach and mode

superposition method. The vehicle and guideway were modeled as beams. In

the governing equations, the inertia, Coriolis and centrifugal forces induced by the

vehicle, as well as the interaction between the vehicle and guideway, are all taken

into account. In the form of nonlinear ordinary di®erential equations, they are solved

using the Petzold-Gear BDF method. Theoretically, the model of an elastic vehicle

moving over an elastic guideway, as presented in this paper, captures more closely

the practical reality than the commonly used models involving a rigid vehicle or a

rigid guideway. The solutions presented herein were validated through the conver-

gence studies using various numbers of modes and time increments and by comparing

them with published results for the special cases of a rigid vehicle or a rigid guideway.

The solutions were further employed to investigate the e®ects of the length of

the guideway, the distance between the shoes of the vehicle, the mass ratio and the

°exural rigidity ratio of the vehicle to the guideway on the pitch angle and pitch rate

of the vehicle at take-o®. The numerical results in this study reveal several facts that

are useful to the design of a launch system, listed as follows:

. Increasing the length of the guideway reduces the pitch angle and pitch rate of the

vehicle at take-o®. Reducing the distance between the shoes of the vehicle has a

similar e®ect.

. Increasing the °exural rigidity ratio of the vehicle to the guideway also reduces the

pitch angle and pitch rate of the vehicle at take-o®, while increasing only the mass

ratio signi¯cantly reduces the pitch rate.

. The models of elastic vehicle and elastic guideway, rigid vehicle and elastic

guideway, and rigid vehicle and rigid guideway yield signi¯cantly di®erent pitch

angle and pitch rate for the vehicle at take-o®, which are crucial to controlling the

trajectory of the vehicle after it leaves the guideway. Theoretically, the proposed

model captures more accurately the reality of practical applications than the other

two models do.
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