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Unequal error protection extensions of low density parity check
accumulate (UEP-LDPCA) codes are discussed and several potential
applications are proposed. Two UEP-LDPCA schemes are analysed
and code parameters are optimised using a density evolution algorithm.
Simulation results show that the extensions have the significant
unequal error protection property. This activates new directions for
existing applications.

Introduction: Many practical applications have been proposed for dis-
tributed source coding [1], such as low complexity video encoding [2]
and robust image authentication [3]. In these applications, low density
parity check accumulate (LDPCA) codes [4] have been widely
adopted as the rate-adaptive Slepian-Wolf code.

Although the requirement of the unequal error protection property of
the Slepian-Wolf code is seldom addressed, there are many potential
applications. Take low complexity video encoding as an example,
some studies attempt to remove the feedback channel requirement of
the method in [2] based on rate estimation methods [5]. However, if
an estimation algorithm fails and the transmitted bits are too few, unre-
coverable errors would occur. If the code could provide unequal error
protection (UEP), more protections can be given to the important
region of an image, such as the facial region in a video conference
image, to avoid these errors. The penalty of rate estimation failure
thus could be decreased, so the rate estimation methods could be
more aggressive. In an image authentication system, for example,
when the protection level of a code can be adjusted on every source
data, the system could have more flexibility to allocate different error
tolerance levels on different areas of an image.

Several UEP designs for LDPC codes have been proposed [6]. In this
Letter, we combine the two UEP designs in [6] into a LDPCA coding
scheme and analyse the UEP performance. The modifications from
ensembles in [6] to the ones in this Letter include: 1. the
UEP-LDPCA is a rate-adaptive code, so the check nodes in the
Tanner graphs are derived from different rates; 2. the Tanner graphs
are modified according to the Slepian-Wolf coding scenario; 3. the
modified UEP-LDPCA codes are optimised and evaluated over binary
symmetric channels (BSCs).

UEP-LDPCA formulation: The Slepian-Wolf code aims to compress
correlated sources by distributed encoding and jointly decoding. The
problem can be rephrased as encoding sources with correlated side infor-
mation, which is available at the decoder side. As a Slepian-Wolf coder,
the LDPCA encoder is the concatenation of a LDPC syndrome generator
and an accumulator. When encoding, the LDPC syndrome generator
encodes the source bits into the syndrome bits according to a full rank
encoding matrix. The encoding matrix can be represented by a Tanner
graph, and ρ(x) and λ(x) represent the degree distribution of check
nodes and source nodes [7], respectively. To provide the rate adaptive
feature, the syndrome bits are transformed into encoding bits. The
compression rate can be computed by the ratio of the amount of encod-
ing bits to the amount of syndrome bits. For generating encoding bits,
LDPCA codes use an accumulator for syndrome merging and puncture
the accumulated syndrome bits instead of the original syndrome bits.
This prevents the loss of edges in the Tanner graphs of the lower rate
codes and shows significant improvement on the other codes [4].
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Fig. 1 Tanner graphs of UEP-LDPCA ensembles
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For the UEP formulation, the source bits are divided into two groups
with different error protection level requirements. The first group has a
higher protection level, denoted as HG; while the other group has a
lower protection level, denoted as LG. Let RH denote the ratio of data
in HG to all data. For UEP-LDPCA, the objective is to provide different
protection levels for different data groups using one code. Fig. 1 shows
the ensembles of two UEP-LDPCA codes, code A and code B, modified
from [6]. The circular nodes denote the N source nodes and square nodes
denote the check nodes.

The key idea of code A in Fig. 1a is to construct a partial regular code
with two source degrees. For source nodes, the one with the larger
connection degree implies it has higher error protection capability
because it receives more information from the check nodes. Therefore,
the data in HG is connected at a higher degree, dH. The data in LG is
connected at a lower degree, dL.

The code B in Fig. 1b combines two Tanner graphs. The graph in the
lower part of Fig. 1b is similar to the first ensemble. It protects all the
data and has two different degrees corresponding to the different data
groups. The upper graph is introduced to protect the data in HG only.
The newly introduced graph further eliminates errors in HG that the
lower graph fails to correct. The ratio of the upper graph’s parity bits
to all parity bits is γ.

Note that, in distributed source coding applications, most studies
assume the parity bits are transmitted over error-free channels and
optimise the code in the Slepian-Wolf coding scenario. In this Letter,
we discuss the UEP codes in this scenario. Therefore, the ensembles
in Fig. 1 are modified from the original ones proposed in [6].

Codes optimisation: For these two UEP-LDPCA codes, we further opti-
mise the degree distribution for minimising the error rates of the data in
HG. Let Λ denote the parameter vectors of UEP-LDPCA codes. In code
A, Λ has two parameters, (dH, dL), to be optimised. For the LDPCA code
construction method in [4], the degree distribution of check nodes would
be approximately concentrated on at most two consecutive values. In
other words, the degree distribution of check nodes could be written
as ρ(x) = ρd*x

j + (1− ρd)*x
j + 1 at any compression rates, RX. For a

given λ(x), the parameters in the concentrated degree distribution
could be derived as

j = 1

Rx((ldH /dH )+ (ldL/dL))

⌊ ⌋
(1)

rd = ( j2 + j)Rx((ldH /dH )+ (ldL/dL))− j (2)
For the second UEP-LDPCA code, the parameter vector has four

parameters, (dH1, dH2, dL, γ). For check nodes, there are two degree
distributions of check nodes in the second code. These degree
distributions could be derived in the same manner as the first code.
For fixed RX, the decoding error probability of HG data would decrease
when γ increases. However, the RX*(1− γ) should be large enough to
guarantee the error probability of the low-protected group acceptable.
In [6], the authors add a constraint on RX*γ. Because the RX is not
fixed in the rate-adaptive coding scenario, we add a constraint on γ
directly.

We adopt the density evolution method [7] to estimate the decoding
error probability during the optimisation process. The correlation
between sources and side information is modelled as BSC with cross-
over probability p. For a fixed decoding iteration, the estimated decoding
error probability of two data groups could be written as PH(RX, p, Λ) and
PL(RX, p, Λ). It depends on RX, p, and Λ. For a single RX, [6] optimises
degree parameters to minimise the decoding error probability of HG
data. However, for the rate adaptive LDPCA code, it is hard to calculate
decoding error probability at all rates within a specified range of
compression rate, [RX,min, RX,max]. Therefore, we minimise the decoding
error probability at RX,min and RX,max simultaneously [8]. To guarantee
the low decoding error probability within the rate range, the cost func-
tion is defined as

PH,max = max(PH (RX ,min, pmin − dmin,L),PH (RX ,max, pmax − dmax,L))
(3)

The channel parameters of BSCs, pmin and pmax, are corresponding to
the Slepian-Wolf limits. The small positive values, δmin and δmax, indi-
cate the performance gaps between the proposed codes and the
Slepian-Wolf limits. To guarantee consistent performance within the
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rate range, δmin and δmax should satisfy (4) below:

H( pmin) − H( pmin − dmin) = H( pmax) − H( pmax − dmax) (4)
Consider the problem of designing an UEP-LDPCA code for RX∈

[0.175 0.7] with RH = 0.1. The search space is dH≤ 30, dH1≤ 30,
dH2≤ 30, dL≤ 30 and γ≤ 0.03. The optimised parameters of the two
UEP-LPDCA ensembles are (dH, dL) = (19,3) and (dH1, dH2, dL, γ) =
(1, 19, 3, 0.025).
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Fig. 2 Comparison of decoding error rate for compression rate RX = 17/66,
33/66, 46/66
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Fig. 3 Comparison of overall compression performance

Experimental results: We conducted finite length simulation to evaluate
the proposed UPE-LDPCA codes. The source length is set as 16434 bits
ELECTRON
and 2000 source blocks were simulated with the maximum number of
decoding iterations as 100. Fig. 2 shows the bit error rates (BERs) of
two data groups, HG and LG. A regular code with source degree 3 is
also evaluated for comparison. Define UEP gain as the ratio of the
BER of LG to the BER of HG. It could be found that the proposed
codes provide significant UEP gain. Especially, the UEP gain of code
B is larger than 102. It is interesting to note that the UEP gain also
increases when operating rate decreases. This property is good
because the operating rates of real applications are usually very low.
The overall compression performance is shown in Fig. 3. The perform-
ance of the proposed codes is in between the regular code and the
optimised irregular code [8] (code C). One important reason for the
inferiority to the optimised irregular code is that the proposed codes
are restricted on the partial regular degree distribution.

Conclusion: In this Letter, two UEP-LDPCA codes are proposed and
evaluated. The codes are for the applications with UEP requirements.
The experimental result shows significant UEP gain compared with
previous studies. However, considering overall coding performance,
there is a performance gap between the proposed UEP-LPDCA codes
and the optimised irregular code. This might motivate the investigation
of advanced UEP-LDPCA to improve overall performance while main-
taining the UEP property.
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